Skip to main content
Log in

Chatelain’s integral bases for triquadratic number fields

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Let \(K_{n}=\mathbb {Q}( \alpha _{2^{0}},\ldots ,\alpha _{2^{n-3}},~\mu ~\alpha _{2^{n-2}},~\mu ^{\prime }\alpha _{2^{n-1}}) \) be the compositum of the family \((\mathbb {Q} ( \alpha _{2^{k}}) ) _{0\le k\le n-1}\) of n quadratic fields which are distinct in pairs. \(K_{n}\) is so called n-quadratic number field. In our paper, using Danielle Chatelain’s method, we calculate an integral basis of the integral ring \( \mathbb {Z}_{K_{3}}\) of the triquadratic field \(K_{3}= \mathbb {Q} ( \sqrt{dm},\sqrt{dn},\sqrt{d^{\prime }m^{\prime }n^{\prime }l}) . \) We give both an integral basis \(\mathfrak {B}_{K_{3}}\) \(\left( i.e\text { a }\mathfrak { \mathbb {Z} }\text {-basis of } \mathbb {Z} _{K_{3}}\right) \) called the \(\mathfrak { \mathbb {Z} }\text {-}basis\) of Chatelain for \( \mathbb {Z} _{K_{3}}\) and the discriminant \(\mathfrak {D}_{K_{3}/ \mathbb {Q} }\) of \(K_{3}\) over \( \mathbb {Q} \) in the following complete and general cases: \(( dm,dn,d^{\prime }m^{\prime }n^{\prime }l) \equiv \left( 1,1,1\right) ,\left( 1,1,2\right) ,\left( 1,1,3\right) \) and \(\left( 1,2,3\right) \) \((\mathrm {mod} \ 4),\) where the square-free integers dmdn and \(d^{\prime }m^{\prime }n^{\prime }l\) are such that: \(( dm,dn) =d,\) \(\left( dmn,l\right) =1,\) \(( dm,d^{\prime }m^{\prime }n^{\prime }) =d^{\prime }m^{\prime }\) and \(( dn,d^{\prime }m^{\prime }n^{\prime }) =d^{\prime }n^{\prime }.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatelain, D.: Bases des entiers des corps composés par des extensions quadratiques de \(\mathbb{Q}\). Ann . Sci. Univ. Besançon Math. Fasc. 6, 38 (1973)

  2. Kouakou, K.V.: Arithmétique des Corps de Nombres Uni, Bi et Tri-Quadratiques, Mémoire de DEA, Université de COCODY-ABIDJAN, UFRMI, p. 117 (2011)

  3. Lang, S.: Algebra chapitres VII et VIII Addison-Wesley World Student Series Edition

  4. Motoda, Y.: On integral bases of certain real monogenic biquadratic fields. Rep. Fac. Sci. Eng. Saga. Univ. Math. 33(1), 9–22 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Nyul, G.: Non-monogenity of multiquadratic number fields. Acta Math. Inf. Univ. Ostrav. 10(1), 85–93 (2002)

  6. Park, K.H., Motoda, Y., Nakahara, T.: On integral bases of certain real octic abelian fields. Rep. Fac. Sci. Eng. Saga Univ. Math. 34(1), 15 (2005)

  7. Tanoé, F.E.: Chatelain’s integer bases for biquadratic fields, soumis à Afrika Matématika

  8. Williams, K.S.: Integers of biquadratic fields. Can. Math. Bull. 13(4), 519–526 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation and sincere thanks to Professor Alain Togbé for his encouragements and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouassi Vincent Kouakou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouakou, K.V., Tanoé, F.E. Chatelain’s integral bases for triquadratic number fields. Afr. Mat. 28, 119–149 (2017). https://doi.org/10.1007/s13370-016-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0428-x

Keywords

Mathematics Subject Classification

Navigation