Skip to main content
Log in

Laserspray and Matrix-Assisted Ionization Inlet Coupled to High-Field FT-ICR Mass Spectrometry for Peptide and Protein Analysis

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

We present the first coupling of laser spray ionization inlet (LSII) and matrix assisted ionization inlet (MAII) to high-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for generation of electrospray-like ions to take advantage of increased sensitivity, mass range, and mass resolving power afforded by multiple charging. We apply the technique to top-down protein analysis and characterization of metalloproteins. We also present a novel method for generation of multiply-charged copper–peptide complexes with varying degrees of copper adduction by LSII. We show an application of the generated copper–peptide complexes for protein charge state and molecular weight determination, particularly useful for an instrument such as a linear ion trap mass analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass-spectrometry of large biomolecules. Science 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  2. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9, 37–70 (1990)

    Article  CAS  Google Scholar 

  3. Hillenkamp, F., Karas, M., Beavis, R.C., Chait, B.T.: Matrix-assisted laser desorption ionization mass-spectrometry of biopolymers. Anal. Chem. 63, A1193–A1202 (1991)

    Google Scholar 

  4. Karas, M., Hillenkamp, F.: Laser Desorption Ionization of Proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299–2301 (1988)

    Article  CAS  Google Scholar 

  5. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Article  CAS  Google Scholar 

  6. Fernandez, F.M., Harris, G.A., Galhena, A.S.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011)

    Article  Google Scholar 

  7. Fernandez, F.M., Harris, G.A., Nyadong, L.: Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133, 1297–1301 (2008)

    Article  Google Scholar 

  8. Van Berkel, G.J., Pasilis, S.P., Ovchinnikova, O.: Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 43, 1161–1180 (2008)

    Article  Google Scholar 

  9. Vertes, A., Nemes, P., Barton, A.A., Li, Y.: Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal. Chem. 80, 4575–4582 (2008)

    Article  Google Scholar 

  10. Vertes, A., Nemes, P., Barton, A.A.: Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81, 6668–6675 (2009)

    Article  Google Scholar 

  11. Vertes, A., Nemes, P.: Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007)

    Article  Google Scholar 

  12. Cooper, H.J., Håkansson, K., Marshall, A.G.: The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005)

    Google Scholar 

  13. McLafferty, F.W., Zubarev, R.A., Kelleher, N.L.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  Google Scholar 

  14. Hunt, D.F., Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 101, 9528–9533 (2004)

    Article  Google Scholar 

  15. Zubarev, R.A., Budnik, B.A., Haselmann, K.F.: Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem. Phys. Lett. 342, 299–302 (2001)

    Article  Google Scholar 

  16. Elkin, Y.N., Budnik, B.A., Haselmann, K.F., Gorbach, V.I., Zubarev, R.A.: Applications of electron-ion dissociation reactions for analysis of polycationic chitooligosaccharides in Fourier transform mass spectrometry. Anal. Chem. 75, 5994–6001 (2003)

    Article  Google Scholar 

  17. Engel, B.J., Pan, P., Reid, G.E., Wells, J.M., McLuckey, S.A.: Charge state dependent fragmentation of gaseous protein ions in a quadrupole ion trap: bovine ferri-, ferro-, and apo-cytochrome c. Int. J. Mass Spectrom. 219, 171–187 (2002)

    Article  CAS  Google Scholar 

  18. He, M., Reid, G.E., Shang, H., Lee, G.U., McLuckey, S.A.: Dissociation of multiple protein ion charge states following a single gas-phase purification and concentration procedure. Anal. Chem. 74, 4653–4661 (2002)

    Article  CAS  Google Scholar 

  19. Schaaff, T.G., Cargile, B.J., Stephenson, J.L., McLuckey, S.A.: Ion trap collisional activation of the (M + 2H)(2+)–(M + 17H)(17+) ions of human hemoglobin beta-chain. Anal. Chem. 72, 899–907 (2000)

    Article  CAS  Google Scholar 

  20. Jockusch, R.A., Schnier, P.D., Price, W.D., Strittmatter, E.F., Demirev, P.A., Williams, E.R.: Effects of charge state on fragmentation pathways, dynamics, and activation energies of ubiquitin ions measured by blackbody infrared radiative dissociation. Anal. Chem. 69, 1119–1126 (1997)

    Article  CAS  Google Scholar 

  21. Cooks, R.G., Takats, Z., Wiseman, J.M., Gologan, B.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004)

    Article  Google Scholar 

  22. Eberlin, M.N., Haddad, R., Milagre, H.M.S., Catharino, R.R.: Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. Anal. Chem. 80, 2744–2750 (2008)

    Article  Google Scholar 

  23. Kotiaho, T., Haddad, R., Sparrapan, R., Eberlin, M.N.: Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. Anal. Chem. 80, 898–903 (2008)

    Article  Google Scholar 

  24. Hiraoka, K.: Fundamentals and application of probe electrospray ionization. Bunseki Kagaku 59, 95–105 (2010)

    Article  CAS  Google Scholar 

  25. Hiraoka, K., Yu, Z., Chen, L.C., Erra-Balsells, R., Nonami, H.: Real-time reaction monitoring by probe electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1507–1513 (2010)

    Article  Google Scholar 

  26. Huang, M.Z., Hsu, H.J., Lee, L.Y., Jeng, J.Y., Shiea, L.T.: Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J. Proteome Res. 5, 1107–1116 (2006)

    Article  CAS  Google Scholar 

  27. Shiea, J., Huang, M.Z., HSu, H.J., Lee, C.Y., Yuan, C.H., Beech, I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19, 3701–3704 (2005)

    Google Scholar 

  28. Rezenom, Y.H., Dong, J., Murray, K.K.: Infrared laser-assisted desorption electrospray ionization mass spectrometry. Analyst 133, 226–232 (2008)

    Article  CAS  Google Scholar 

  29. Hawkridge, A.M., Sampson, J.S., Muddiman, D.C.: Direct characterization of intact polypeptides by matrix-assisted laser desorption electrospray ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 21, 1150–1154 (2007)

    Article  Google Scholar 

  30. Muddiman, D.C., Sampson, J.S., Hawkridge, A.M.: Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006)

    Article  Google Scholar 

  31. Muddiman, D.C., Sampson, J.S., Murray, K.K.: Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 667–673 (2009)

    Article  Google Scholar 

  32. Shiea, J., Cheng, S.C., Cheng, T.L., Chang, H.C.: Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions. Anal. Chem. 81, 868–874 (2009)

    Article  Google Scholar 

  33. Shiea, J., Cheng, S.C., Huang, M.Z.: Thin-layer chromatography/laser-induced acoustic desorption/electrospray ionization mass spectrometry. Anal. Chem. 81, 9274–9281 (2009)

    Article  Google Scholar 

  34. Dixon, R.B., Sampson, J.S., Muddiman, D.C.: Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection. J. Am. Soc. Mass Spectrom. 20, 597–600 (2009)

    Article  CAS  Google Scholar 

  35. Li, J., Inutan, E.D., Wang, B., Lietz, C.B., Green, D.R., Manly, C.D., Richards, A.L., Marshall, D.D., Lingenfelter, S., Ren, Y., Trimpin, S.: Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. J. Am. Soc. Mass Spectrom. 23, 1625–1643 (2012)

    Article  CAS  Google Scholar 

  36. Trimpin, S., Herath, T.N., Inutan, E.D., Cernat, S.A., Miller, J.B., Mackie, K., Walker, J.M.: Field-free transmission geometry atmospheric pressure matrix-assisted laser desorption/ionization for rapid analysis of unadulterated tissue samples. Rapid Commun. Mass Spectrom. 23, 3023–3027 (2009)

    Article  CAS  Google Scholar 

  37. Trimpin, S., Ren, Y., Wang, B.X., Lietz, C.B., Richards, A.L., Marshall, D.D., Inutan, E.D.: Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal. Chem. 83, 5469–5475 (2011)

    Article  CAS  Google Scholar 

  38. Trimpin, S., Wang, B.X., Lietz, C.B., Inutan, E.D., Leach, S.M.: Producing highly charged ions without solvent using laserspray ionization: a total solvent-free analysis approach at atmospheric pressure. Anal. Chem. 83, 4076–4084 (2011)

    Article  Google Scholar 

  39. Trimpin, S., Wang, B., Inutan, E.D., Li, J., Lietz, C.B., Harron, A., Pagnotti, V.S., Sardelis, D., McEwen, C.N.: A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J. Am. Soc. Mass Spectrom. 23, 1644–1660 (2012)

    Article  CAS  Google Scholar 

  40. Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol. Cell. Proteom. 9, 362–367 (2010)

    Article  CAS  Google Scholar 

  41. Inutan, E.D., Richards, A.L., Wager-Miller, J., Mackie, K., McEwen, C.N., Trimpin, S.: Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol. Cell. Proteom. 10, 1–8 (2011)

    Article  Google Scholar 

  42. Inutan, E.D., Trimpin, S.: Laserspray ionization-ion mobility spectrometry-mass spectrometry: baseline separation of isomeric amyloids without the use of solvents desorbed and ionized directly from a surface. J. Proteome Res. 9, 6077–6081 (2010)

    Article  CAS  Google Scholar 

  43. Lippard, S.J.: Principles of bioinorganic chemistry, pp. 3–35. University Science Books, Mill Valley (1994)

    Google Scholar 

  44. Thomas, H., Havlis, J., Peychl, J., Shevchenko, A.: Dried-droplet probe preparation on AnchorChip (TM) targets for navigating the acquisition of matrix-assisted laser desorption/ionization time-of-flight spectra by fluorescence of matrix/analyte crystals. Rapid Commun. Mass Spectrom. 18, 923–930 (2004)

    Article  CAS  Google Scholar 

  45. Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G.: High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 tesla. Anal. Chem 80, 3985–3990 (2008)

    Article  CAS  Google Scholar 

  46. Richards, A.L., Marshall, D.D., Inutan, E.D., McEwen, C.N., Trimpin, S.: High-throughput analysis of peptides and proteins by laserspray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 25, 247–250 (2011)

    Article  CAS  Google Scholar 

  47. Marshall, A.G., Hendrickson, C.L.: Charge reduction lowers mass resolving power for isotopically resolved electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Rapid Commun. Mass Spectrom. 15, 232–235 (2001)

    Article  CAS  Google Scholar 

  48. Richards, A.L., Lietz, C.B., Wager-Miller, J.B., Mackie, K., Trimpin, S.: Imaging mass spectrometry in transmission geometry. Rapid Commun. Mass Spectrom. 25, 815–820 (2011)

    Article  CAS  Google Scholar 

  49. McEwen, C.N., Pagnotti, V.S., Inutan, E.D., Trimpin, S.: New paradigm in ionization: multiply charged ion formation from a solid matrix without a laser or voltage. Anal. Chem. 82, 9164–9168 (2010)

    Article  CAS  Google Scholar 

  50. Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82, 11–15 (2010)

    Article  CAS  Google Scholar 

  51. Kuprowski, M.C., Boys, B.L., Konermann, L.: Analysis of protein mixtures by electrospray mass spectrometry: effects of conformation and desolvation behavior on the signal intensities of hemoglobin subunits. J. Am. Soc. Mass Spectrom. 18, 1279–1285 (2007)

    Article  CAS  Google Scholar 

  52. Gatlin, C.L., Turecek, F., Vaisar, T.: Gas-phase complexes of amino-acids with cu(ii) and diimine ligands. 1. Aliphatic and aromatic-amino-acids. J. Mass Spectrom 30, 1605–1616 (1995)

    Article  CAS  Google Scholar 

  53. Gatlin, C.L., Turecek, F., Vaisar, T.: Gas-phase complexes of amino-acids with cu(ii) and diimine ligands. 2. Amino-acids with O, N, and S functional-groups in the side-chain. J. Mass Spectrom 30, 1617–1627 (1995)

    Article  CAS  Google Scholar 

  54. Wong, C.K.L., Chan, T.W.D.: Cationization processes in matrix-assisted laser desorption/ionization mass spectrometry: attachment of divalent and trivalent metal ions. Rapid Commun. Mass Spectrom. 11, 513–519 (1997)

    Article  CAS  Google Scholar 

  55. Shields, S.J., Bluhm, B.K., Russell, D.H.: Novel method for [M + Cu](+) ion formation by matrix-assisted laser desorption ionization. Int. J. Mass Spectrom. 183, 185–195 (1999)

    Article  Google Scholar 

  56. Wu, Z.X., Fernandez-Lima, F.A., Perez, L.M., Russell, D.H.: A new copper containing MALDI matrix that yields high abundances of [peptide + Cu](+) ions. J. Am. Soc. Mass Spectrom. 20, 1263–1271 (2009)

    Article  CAS  Google Scholar 

  57. Lei, Q.P., Amster, I.J.: The reactions of ground state Cu + and Fe + with the 20 common amino acids. J. Am. Soc. Mass Spectrom. 7, 722–730 (1996)

    Article  CAS  Google Scholar 

  58. Prudent, M., Girault, H.H.: On-line electrogeneration of copper-peptide complexes in microspray mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 560–568 (2008)

    Article  CAS  Google Scholar 

  59. Castleberry, V., Dee, J., Villarroel, O., Laboren, I., Bellert, D.: Two photon resonant excitation of copper-Rydberg levels. Phys. Lett. A 372, 4805–4808 (2008)

    Article  CAS  Google Scholar 

  60. Mainfray, G., Manus, C.: Multiphoton ionization of atoms. Reports on Progress in Physics 54, 1333–1372 (1991)

    Article  CAS  Google Scholar 

  61. Nelson, R.W., Hutchens, T.W.: Mass-spectrometric analysis of a transition-metal-binding peptide using matrix-assisted laser-desorption time-of-flight mass-spectrometry: a demonstration of probe tip chemistry. Rapid Commun. Mass Spectrom. 6, 4–8 (1992)

    Article  CAS  Google Scholar 

  62. Salih, B., Masselon, C., Zenobi, R.: Matrix-assisted laser desorption/ionization mass spectrometry of noncovalent protein transition metal ion complexes. J. Mass Spectrom. 33, 994–1002 (1998)

    Article  CAS  Google Scholar 

  63. Zenobi, R., Knochenmuss, R.: Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998)

    Article  CAS  Google Scholar 

  64. Senko, M.W., Beu, S.C., Mclafferty, F.W.: Mass and Charge assignment for electrospray ions by cation adduction. J. Am. Soc. Mass Spectrom. 4, 828–830 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support for this work by NSF Division of Materials Research through DMR-06-54118 and the State of Florida, and NSF CAREER 0955975 to S.T. The authors thank John P. Quinn and Daniel McIntosh for assistance with fabrication of the sample holder and Dr. Vadislav Lobodin for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Marshall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

14.5 T FT-ICR mass spectra of des-Arg1-bradykinin at different time intervals across the total ion chromatogram profile at an HMC temperature of 150 °C, obtained by matrix-assisted ionization inlet: 0.5-0.7 min (top), 1.0-1.2 min (middle), 2.0-2.2 min (bottom). Asterisks denote chemical noise. (PPT 124 kb)

Figure S2

14.5 T FT-ICR mass spectra of des-Arg1-bradykinin obtained by matrix-assisted ionization inlet (top) and electrospray ionization (bottom). (PPT 115 kb)

Figure S3

Ion source fragmentation efficiency as a function of nozzle skimmer voltage for des-Arg1-bradykinin, obtained by matrix-assisted ionization inlet (blue) and electrospray ionization (red). Mass spectra were acquired following ion source collision-induced dissociation in the LTQ multipole region. (PPT 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyadong, L., Inutan, E.D., Wang, X. et al. Laserspray and Matrix-Assisted Ionization Inlet Coupled to High-Field FT-ICR Mass Spectrometry for Peptide and Protein Analysis. J. Am. Soc. Mass Spectrom. 24, 320–328 (2013). https://doi.org/10.1007/s13361-012-0545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0545-1

Key words

Navigation