Skip to main content
Log in

Mitochondrial Disease in Childhood: mtDNA Encoded

  • Review
  • Published:
Neurotherapeutics

Abstract

Since the first description of a mitochondrial DNA (mtDNA)-associated disease in the late 1980s, there have been more than 275 mutations within the mtDNA genome described causing human disease. The phenotypic expression of these disorders is vast, as disturbances of the unique physiology of mitochondria can create a wide range of clinical heterogeneity. Features of heteroplasmy, threshold effect, genetic bottleneck, mtDNA depletion, mitotic segregation, and maternal inheritance have been identified and described as a result of novel biochemical and genetic controls of mitochondrial function. We hope that as we unfold this fascinating part of clinical medicine, the reader will see how alterations in the tapestry of mitochondrial biochemistry and genetics can give rise to human illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chinnery PF, Johnson MA, Wardell TM, et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000;48:188-193.

    PubMed  CAS  Google Scholar 

  2. Skladal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 2003;126:1905-1912.

    PubMed  Google Scholar 

  3. Benard G, Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 2008;10:1313-1342.

    PubMed  CAS  Google Scholar 

  4. Milone M, Benarroch EE. Mitochondrial dynamics: General concepts and clinical implications. Neurology 2012;78:1612-1619.

    PubMed  CAS  Google Scholar 

  5. Saraste, M. Oxidative phosphorylation at the fin de siecle. Science 1999;283:579-587.

    Google Scholar 

  6. Nouws J, Nijtmans LGJ, Smeitink JA, Vogel RO. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause pathology and treatment options. Brain 2012;135:12-22.

    PubMed  Google Scholar 

  7. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-465.

    PubMed  CAS  Google Scholar 

  8. Di Re M, Sembngi H, He J, et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res 2009;37:5701-5713.

    PubMed  Google Scholar 

  9. Holt IJ, He J, Mao CC, et al. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007;7:311-321.

    PubMed  CAS  Google Scholar 

  10. Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 2006;281:25791-25802.

    PubMed  CAS  Google Scholar 

  11. Iborra FJ,. Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004;2:9.

    PubMed  Google Scholar 

  12. Bogenhagen D, Clayton DA. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 1977;11:719-727.

    PubMed  CAS  Google Scholar 

  13. Taanman JW, Muddle JR, Muntau AC. Mitochondrial DNA depletion can be prevented by cGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts. Hum Mol Genet 2003;12:1839-1845.

    PubMed  CAS  Google Scholar 

  14. Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 2006;106:383-405.

    PubMed  CAS  Google Scholar 

  15. Carrodeguass JA, Theis K, Bogenhagen DF, Kisker C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell 2001;7:43-54.

    Google Scholar 

  16. Spelbrink JN, Tolvonen JM, Hakkaart GA, et al. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 2000;275:24818-24828.

    PubMed  CAS  Google Scholar 

  17. Copeland WC. Inherited mitochondrial diseases of DNA replication. Ann Rev Med 2008;59:131-146.

    PubMed  CAS  Google Scholar 

  18. Clayton DA. Replication of animal mitochondrial DNA. Cell 1982;28:693-705.

    PubMed  CAS  Google Scholar 

  19. Yasukawa T, Reyes A, Cluett TJ, et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J 2006;25:5358-5371.

    PubMed  CAS  Google Scholar 

  20. Holt IJ. Mitochondrial DNA replication and repair: all a flap. Trends Biochem Sci 2009;34:358-365.

    PubMed  CAS  Google Scholar 

  21. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981;290:470-474.

    PubMed  CAS  Google Scholar 

  22. Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 1991:453-478.

  23. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008;88:611-638.

    PubMed  CAS  Google Scholar 

  24. Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Ann Rev Biochem 2007;76:679-699.

    PubMed  CAS  Google Scholar 

  25. O’Brien TW. Properties of human mitochondrial ribosomes. IUBMB 2003;55:505-513.

    Google Scholar 

  26. Nagaike T, Suzuki T, Ureda. Polyadenylation in mammalian mitochondria; insights from recent studies. Biochim Biophys Acta 2008;1779:266-269.

    PubMed  CAS  Google Scholar 

  27. Anderson S, de Brujn MH, Coulson AR, Eperon IC, Sanger F, Young IG. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 1982;156:683-717.

    PubMed  CAS  Google Scholar 

  28. Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007;64:662-688.

    PubMed  CAS  Google Scholar 

  29. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717-719.

    PubMed  CAS  Google Scholar 

  30. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988;242:1427-1430.

    PubMed  CAS  Google Scholar 

  31. MITOMAP: A Human Mitochondrial Genome Database: Available at: http://www.mitomap.org. Accessed August 1, 2012.

  32. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003;370:751-762.

    PubMed  CAS  Google Scholar 

  33. Sacconi S, Salviati L, Nishigaki Y, et al. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 2008;17:1814-1820.

    PubMed  CAS  Google Scholar 

  34. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci 1980;77:6715-6719.

    PubMed  CAS  Google Scholar 

  35. Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011;334:1141-1144.

    PubMed  CAS  Google Scholar 

  36. Al Rawi S, Louvet-Vallee S, Djeddi A, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011;334:1144-1147.

    PubMed  Google Scholar 

  37. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. New Engl J Med 2002;347:576-580.

    PubMed  Google Scholar 

  38. Schwartz M, Vissing J. No evidence for paternal inheritance of mtDNA in patients with sporadic mtDNA mutations. J Neurol Sci 2004;218:99-101.

    PubMed  CAS  Google Scholar 

  39. Filosto M, Mancuso M, Vives-Bauza C, et al. Lack of paternal inheritance of muscle mitochondrial DNA in sporadic mitochondrial myopathies. Ann Neurol 2003;54:524-526.

    PubMed  CAS  Google Scholar 

  40. Taylor RW, McDonnell MT, Blakely EL, et al. Genotypes from patients indicates no paternal mitochondrial DNA contribution. Ann Neurol 2003;54:521-524.

    PubMed  CAS  Google Scholar 

  41. Hauswirth WW, Paipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A 1982;79:4686-4690.

    PubMed  CAS  Google Scholar 

  42. Carling PJ, Cree LM, Chinnery PF. The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 2011;11:686-692.

    PubMed  CAS  Google Scholar 

  43. Piko I, Matsummoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 1976;49:1-10.

    PubMed  CAS  Google Scholar 

  44. Cao L, Shitara H, Sugimoto M, Hayashi J-I, Abe K, Yonekawa H. New evidence confirms that mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoS Genet 2009;5:e1000756. doi:10.1371/journal.pgen.1000756.

    PubMed  Google Scholar 

  45. Jenuth FP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996;14:146-151.

    PubMed  CAS  Google Scholar 

  46. Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008;40:1484-1488.

    PubMed  CAS  Google Scholar 

  47. Rahman S, Poulton J, Marchington D, Suomalainen A. Decrease of 3243 A > G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum genet 2001;68:238-240.

    PubMed  CAS  Google Scholar 

  48. Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders-past, present and future. Biochim Biophys Acta 2004;1659:115-120.

    PubMed  CAS  Google Scholar 

  49. Smeitink JA, Zeviani M, Turnbull DM, Jackobs HT. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 2006;3:1-13.

    Google Scholar 

  50. Elliott HR, Samuels DC, Eden JA, Reltoin CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008;83:254-260.

    PubMed  CAS  Google Scholar 

  51. Schaefer AM, McFarland R, Blakely EL, et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008;63:35-39.

    PubMed  CAS  Google Scholar 

  52. Darin N, Oldfors A, Moslemi Ar, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical and DNA abnormalities. Ann Neurol 2001;49:377-383.

    PubMed  CAS  Google Scholar 

  53. Ferrari G, Lamantea E, Donati A, et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA-polymerase-γ A. Brain 2005;128:723-731.

    PubMed  Google Scholar 

  54. Debray F-G, Lambert M, Chevalier I, et al. Long-term outcome and clinical spectrum of 73 patients with mitochondrial disease. Pediatrics 2007;119:722-733.

    PubMed  Google Scholar 

  55. Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnosis. Pediatrics 2008;122:1003-1008.

    PubMed  Google Scholar 

  56. Rubio-Gozalbo ME, Dijkman KP, van den Heuvel LP, Sengers RC, Wendel U, Smeitink JA. Clinical differences in patients with mitochondriocytopathies due to nuclear versus mitochondrial DNA mutations. Hum Mutat 2000;15:522-532.

    PubMed  CAS  Google Scholar 

  57. Sue CM, Bruno C, Andreu AL, et al. Infantile encephalopathy associated with the MELAS A3243G mutation. J Pediatr 1999;134:696-700.

    PubMed  CAS  Google Scholar 

  58. McFarland R, Clark AA, Morris AA, et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002;30:145-146.

    PubMed  CAS  Google Scholar 

  59. Taylor RW, Giordano C, Davidson MM, et al. A homplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 2003;41:1786-1796.

    PubMed  CAS  Google Scholar 

  60. McFarland R, Schaefer AM, Gardner JL, et al. Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol 2004;55:478-484.

    PubMed  CAS  Google Scholar 

  61. Horvath R, Kemp JP, Tuppen HA, et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009;132:3165-3174.

    PubMed  Google Scholar 

  62. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM. Sequence variation in mitochondrial complex I genes; mutation or polymorphism? J Med Genet 2006;43:175-179.

    PubMed  CAS  Google Scholar 

  63. Swalwell H, Blakely EL, Sutton R, et al. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m7472CinsMTTSI mutation: are two mutations better than one? Eur J Hum Genet 2008;16:1265-1274.

    PubMed  CAS  Google Scholar 

  64. Cai W, Fu Q, Zhou X, Qu J, Tong Y, Guan MX. Mitochondrial variants may influence the phenotype manifestation of Leber’s hereditary optic neuropathy-associated ND4 G11778A mutation. J Genet Genomics 2008;35:649-655.

    PubMed  CAS  Google Scholar 

  65. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989;144:346-349.

    Google Scholar 

  66. Sadikovic B, Wang J, El-Hattab A, et al. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes. PLoS One 2010;5:e15687.doi:101371/journal.pone.0015687.

    PubMed  CAS  Google Scholar 

  67. Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 1995;57:239-247.

    PubMed  CAS  Google Scholar 

  68. Shoffner FM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A, 1989;86:7952-7956.

    PubMed  CAS  Google Scholar 

  69. Krishnan KJ, Reeve AK, Samuels DC, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet 2008;40:275-279.

    PubMed  CAS  Google Scholar 

  70. Dunbar DR, Moonie PA, Swingler RJ, Davidson D, Roberts R, Holt IJ. Maternally transmitted partial direct tandem duplication of mitochondrial DNA associated with diabetes mellitus. Hum Molec Genet 1993;2:1619-1624.

    PubMed  CAS  Google Scholar 

  71. Saneto RP, Naviaux RK. Polymerase gamma disease through the ages. Dev Disabil Res Rev 2010;16:163-174.

    PubMed  Google Scholar 

  72. Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial intergenomic signaling. Gene 2005;354:162-168.

    PubMed  CAS  Google Scholar 

  73. Koopman WJH, Willems PHGM, Smeitink JAM. Mongenic mitochondrial disorders. N Engl J Med 2012;366:1132-1141.

    Google Scholar 

  74. Garcia-Cazorla A, De Lonlay P, Nossogne MC, Rustin P, Touati G, Saudubray JM. Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 2005;116:1170-1177.

    PubMed  CAS  Google Scholar 

  75. Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Bichem Biophys Acta 1996;1276:87-105.

    Google Scholar 

  76. McFarland R, Clark KM, Morris AA, et al. Multiple neonatal deaths due to homoplasmic mitochondrial DNA mutation. Hum Genet 2002;30:145-146.

    CAS  Google Scholar 

  77. Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatric Neurology 2008;39:223-235.

    PubMed  Google Scholar 

  78. Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psych 1951;14:216-221.

    CAS  Google Scholar 

  79. Saneto RP, Friedman SD, Shaw DWW. Neuroimaging of mitochondrial disease. Mitochondrion 2008;8:396-413.

    PubMed  CAS  Google Scholar 

  80. Ostergaard E, Hansen FJ, Sorensen N, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 2007;130:853-861.

    PubMed  Google Scholar 

  81. Piao YS, Tang GC, Yand H, Lu DH. Clinico-neuropathological study of a Chinese case of familial adult Leigh syndrome. Neuropathology 2006;26:218-221.

    PubMed  Google Scholar 

  82. Bugiani M, Tiranti V, Farina L, Uziel G, Zeviani M. Novel mutations in COX15 in a long surviving Leigh syndrome patient with cytochrome c oxidase deficiency. J Med Genet 2005:42:e28.

    PubMed  CAS  Google Scholar 

  83. Martin E, Burger R, Wiestler OD, Caduff R, Boltshauser E, Boesch C. Brainstem lesion revealed by MRI in a case of Leigh’s disease with respiratory failure. Ped Radiol 1990;20:349-350.

    CAS  Google Scholar 

  84. Rahman S, Blok RB, Dahl HHM, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996;39:343-351.

    PubMed  CAS  Google Scholar 

  85. Pearson HA, Lobel JS, Kocoshis SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediat 1979;95:976-984.

    PubMed  CAS  Google Scholar 

  86. Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancrease syndrome: a multisystem mitochondrial disorder in infancy. J Clin Invest 1990;86:1601-1608.

    PubMed  CAS  Google Scholar 

  87. Moraes CT, DiMauro S, Zeviani M, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 1989;320:1293-1299.

    PubMed  CAS  Google Scholar 

  88. DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Koenigsberger R, DeVivo DC. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase activity. Trans Am Neurol Assoc 1981;106:205-207.

    PubMed  CAS  Google Scholar 

  89. Horvath R, Kemp JP, Tuppen HAL, et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009;132:3165-3174.

    PubMed  Google Scholar 

  90. Silvestri G, Santorelli FM, Shanske S, et al. A new mtDNA mutation in the tRNA (Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mut 1994;3:37-43.

    PubMed  CAS  Google Scholar 

  91. Skladal D, Sudmeier C, Konstantopoulou V, et al. The clinical spectrum of mitochondrial disease in 75 pediatric patients. Clin Pediatr 2001;42:703-710.

    Google Scholar 

  92. Scaglia F, Towgin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004;114:925-931.

    PubMed  Google Scholar 

  93. Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): current concepts. J Child Neurol 1994;9:4-13.

    PubMed  CAS  Google Scholar 

  94. Ribacoba R, Salas-Puig J, Gonzalez C, Astudillo A. Characteristics of status epilepticus in MELAS. Analysis of four cases. Neurology 2006;21:1-11.

    CAS  Google Scholar 

  95. Saneto RP, Bouldin A. A boy with muscle weakness, hypercarbia, and the mitochondrial DNA A3243G mutation. J Child Neurol 2006;21:77-79.

    PubMed  Google Scholar 

  96. Groto Y, Nonaka I, Horai S. A mutation in tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies. Nature 1990;348:651-653.

    Google Scholar 

  97. Groto Y, Nonaka I, Horai S. A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta 1991;1097:238-240.

    Google Scholar 

  98. Taylor RW, Chinnery PF, Haldane F, et al. MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA. Ann Neurol 1996;40:459-462.

    PubMed  CAS  Google Scholar 

  99. Shanske S, Coku J, Lu J, et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 2008;65:368-372.

    PubMed  Google Scholar 

  100. Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol 2003;53:128-132.

    PubMed  CAS  Google Scholar 

  101. Manfredi G, Schon EA, Moraes CT, et al. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 1995;5:391-398.

    PubMed  CAS  Google Scholar 

  102. Maceluch JA, Niedziela M. The clinical diagnosis and molecular genetics of Kearns-Sayre syndrome: a complex mitochondrial encephalomyopathy. Pediatr Endocrinol Rev 2006;4:117-137.

    PubMed  Google Scholar 

  103. Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990;46:428-433.

    PubMed  CAS  Google Scholar 

  104. Sembrano E, Barthlen GM, Wallace S, Lamm C. Polysomnographic findings in a patient with the mitochondrial encephalomyopathy NARP. Neurology 1997;49:1714-1717.

    PubMed  CAS  Google Scholar 

  105. Santorelli FM, Tanji K, Shanske S, DiMauro S. Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 1997;49:270-273.

    PubMed  CAS  Google Scholar 

  106. Wong L-JC. Pathogeneic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 2007;36:279-293.

    PubMed  CAS  Google Scholar 

  107. Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 1995;118:319-337.

    PubMed  Google Scholar 

  108. Wallace DC, Lott MT, Brown MD, Kerstann K. Mitochondria and neuro-ophthalmologic diseases. In: Scriver CR, Beaudet AL, Sly WA, Valle D (eds). The metabolic and molecular bases of inherited disease, 8th ed. Vol II. McGraw-Hill, New York, 2001, pp. 2425-2509.

  109. Carelli V, Achilli A, Valentino ML, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet 2006;78:564-574.

    PubMed  CAS  Google Scholar 

  110. Kirkman MA, Yu-Wai-Man P, Korsten A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009;132:2317-2326.

    PubMed  Google Scholar 

  111. Giordano C, Monopoli M, Perli E, et al. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 2011;134:220-234.

    PubMed  Google Scholar 

  112. Hirano M, DiMauro S. Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane RJM (ed.), Handbook of Muscle Disease, Vol 1. Marcel Dekker Inc., New York, pp. 479-504.

  113. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fibers (MERRF) is associated with mitochondrial DNA tRNA(lys) mutation. Cell 1990;61:931-937.

    PubMed  CAS  Google Scholar 

  114. Yoneda M, Tanno Y, Horai S, Ozawa T, Miyatake T, Tsuji S. A common mitochondrial mutation DNA mutation in the tRNA(Lys) of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem Int 1990;21:789-796.

    PubMed  CAS  Google Scholar 

  115. DiMauro S, Hirano M. MERRF. In: Pagon RA, Bird TD, Dolan CR et al. (eds) GeneReviews [Internet]. University of Washington, Seattle, WA, 1993. Available at: http//www.ncbi.nlm.nih.gov/books/NDB1520.

  116. Haas RH, Parikh S, Falk MJ, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007;120:1326-1333.

    PubMed  Google Scholar 

  117. Hass RH, Parikh S, Falk JM, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet and Metab 2008;94:16-37.

    Google Scholar 

  118. Frederiksen AL, Andersen PH, Kyvik KO, Jeppesen TD, Vissing J, Schwartz M. Tissue specific distribution of the 3243A- > G mtDNA mutation. J Med Genet 2006;43:671-677.

    PubMed  CAS  Google Scholar 

  119. de Laat P, Koene S, van den Heuvel LPWJ, Rodenburg RJT, Jensen MCH, Smeitink JAM. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A>:G mutation. J Inherit Metab Dis 2012 Mar 9 (Epub ahead of print).

  120. Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012;4:CD004426.

    PubMed  Google Scholar 

  121. Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 2012;105:91-102.

    Google Scholar 

  122. Taivassalo T, Gardner JL, Taylor RW, et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 2006;129:3391-3401.

    PubMed  Google Scholar 

  123. Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005;37:2094-2101.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the many patients and their families that had allowed us to part of their medical care. This work was supported, in part, by NIH grant U54NS078059-01 (to RPS) and the Mitochondrial Research Guild at Seattle Children’s Hospital (to RPS and MMS).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell P. Saneto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saneto, R.P., Sedensky, M.M. Mitochondrial Disease in Childhood: mtDNA Encoded. Neurotherapeutics 10, 199–211 (2013). https://doi.org/10.1007/s13311-012-0167-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0167-0

Keywords

Navigation