Skip to main content

Advertisement

Log in

Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH4) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH4 emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18–0.80 Tg CH4 year−1 (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500–42 000 km2 of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH4 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anderson, C.B., C.R. Griffith, A.D. Rosemond, R. Rozzi, and O. Dollenz. 2006. The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile—Do exotic beavers engineer differently in sub-Antarctic ecosystems? Biological Conservation 128: 467–474.

    Article  Google Scholar 

  • Bastviken, D., L.J. Tranvik, J.A. Downing, P.M. Crill, and A. Enrich-Prast. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

    Article  CAS  Google Scholar 

  • Bluzma, P. 2003. Beaver abundance and beaver site use in a hilly landscape (eastern Lithuania). Acta Zoologica Lituanica 13: 8–14.

    Article  Google Scholar 

  • Bridgham, S.D., H. Cadillo-Quiroz, J.K. Keller, and Q. Zhuang. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19: 1325–1346.

    Article  Google Scholar 

  • Bubier, J.L., T.R. Moore, and N.T. Roulet. 1993. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74: 2240–2254.

    Article  Google Scholar 

  • Butler, D.R., and G.P. Malanson. 1995. Sedimentation rates and patterns in beaver ponds in a mountain environment. Geomorphology 13: 255–269.

    Article  Google Scholar 

  • Butler, D.R., and G.P. Malanson. 2005. The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology 71: 48–60.

    Article  Google Scholar 

  • Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Collen, P., and R.J. Gibson. 2001. The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish—A review. Reviews in Fish Biology and Fisheries 10: 439–461.

    Article  Google Scholar 

  • Commission for Environmental Cooperation. 1997. Ecological regions of North America. Montreal: Commission for Environmental Cooperation. 60.

    Google Scholar 

  • Dacey, J.W.H., and M.J. Klug. 1979. Methane efflux from lake sediments through water lillies. Science 203: 1253–1255.

    Article  CAS  Google Scholar 

  • Danilov, P.I., 1995. Canadian and European beavers in Russian Northwest. In The third Nordic beaver symposium, 10–16.

  • Dove, A.E. 1995. Methane dynamics of a northern boreal beaver pond. MSc. Montreal: McGill University.

    Google Scholar 

  • Downing, J.A., J.J. Cole, C.M. Duarte, J.J. Middelburg, J.M. Melack, Y.T. Prairie, P. Kortelainen, R.G. Striegl, et al. 2012. Global abundance and size distribution of streams and rivers. Inland Waters 2: 229–236.

    Article  Google Scholar 

  • Ford, T.E., and R.J. Naiman. 1988. Alteration of carbon cycling by beaver—Methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology 66: 529–533.

    Article  Google Scholar 

  • Gurnell, A.M. 1998. The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography 22: 167–189.

    Google Scholar 

  • Halley, D.J., and F. Rosell. 2003. Population and distribution of European beavers (Castor fiber). Lutra 46: 91–101.

    Google Scholar 

  • Halley, D.J., F. Rosell, and A. Saveljev. 2012. Population and distribution of Eurasian beaver (Castor fiber). Baltic Forestry 18: 168–175.

    Google Scholar 

  • Hartman, G. 1994. Long-term population development of a reintroduced beaver (Castor fiber) population in Sweden. Conservation Biology 8: 713–717.

    Article  Google Scholar 

  • Jarema, S.I., J. Samson, B.J. McGill, and M.M. Humphries. 2009. Variation in abundance across a species’ range predicts climate change responses in the range interior will exceed those at the edge: A case study with North American beaver. Global Change Biology 15: 508–522.

    Article  Google Scholar 

  • Le Mer, J., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37: 25–50.

    Article  Google Scholar 

  • Lelieveld, J., P.J. Crutzen, and F.J. Dentener. 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B: 128–150.

    Article  CAS  Google Scholar 

  • Lizarralde, M.S. 1993. Current status of the introduced beaver (Castor canadensis) population in Tierra del Fuego, Argentina. AMBIO 22: 351–358.

    Google Scholar 

  • McComb, W.C., J.R. Sedell, and T.D. Buchholz. 1990. Dam-site selection by beavers in an eastern Oregon basin. Great Basin Naturalist 50: 273–281.

    Google Scholar 

  • Moore, T.R., and N.T. Roulet. 1995. Methane emission from Canadian peatlands. In Soils and global change, R. Lal, J. Kimble, E. Levine and B. A. Stewart, 153–164. Boca Raton: CRC Press.

  • Moore, T.R., A. De Young, J.L. Bubier, E.R. Humphreys, P.M. Lafleur, and N.T. Roulet. 2011. A multi-year record of methane flux at the Mer Bleue Bog, southern Canada. Ecosystems 14: 646–657.

    Article  CAS  Google Scholar 

  • Naiman, R.J., J.M. Melillo, and J.E. Hobbie. 1986. Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology 67: 1254–1269.

    Article  Google Scholar 

  • Naiman, R.J., T. Manning, and C.A. Johnston. 1991. Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry 12: 1–15.

    Article  Google Scholar 

  • Nisbet, E.G. 1989. Some northern sources of atmospheric methane: production, history, and future implications. Canadian Journal of Earth Sciences 26: 1603–1611.

    Article  CAS  Google Scholar 

  • Novak, M. 1999. Beaver. In Wild furbearer management and conservation in North America, M. Novak, J. A. Baker, M. E. Obbard, and B. Malloch, 282–312. Queen’s Printer for Ontario.

  • Nyssen, J., J. Pontzeele, and P. Billi. 2011. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. Journal of Hydrology 402: 92–102.

    Article  Google Scholar 

  • Packalen, M.S., S.A. Finkelstein, and J.W. McLaughlin. 2014. Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation. Nature Communications 5: 1–8.

    Article  Google Scholar 

  • Parkes, J.P., J. Paulson, C.J. Donlan, and K. Campbell. 2008. Control of North American beavers in Tierra del Fuego: Feasibility of eradication and alternative management options. Landcare Research, LC0708/084, Lincoln, NZ.

  • Payette, S., A. Delwaide, M. Caccianiga, and M. Beauchemin. 2004. Accelarated thawing of subarctic peatland permafrost over the last 50 years. Geophysical Research Letters 31: L18208.

    Article  Google Scholar 

  • Pupininkas, S. 1999. The state of the beaver (Castor fiber) population and characteristics of beaver sites in eastern Lithuania. Acta Zoologica Lituanica 9: 20–26.

    Article  Google Scholar 

  • Roulet, N.T., R. Ash, and T.R. Moore. 1992. Low boreal wetlands as a source of atmospheric methane. Journal of Geophysical Research-Atmospheres 97: 3739–3749.

    Article  CAS  Google Scholar 

  • Roulet, N.T., P.M. Crill, N.T. Comer, A. Dove, and R.A. Boubonniere. 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere. Journal of Geophysical Research-Atmospheres 102: 29313–29319.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M., A. Furutani, R.J. Flett, and R.D. Hamilton. 1976. Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration. Limnology and Oceanography 21: 357–364.

    Article  CAS  Google Scholar 

  • Ruedemann, R., and W.J. Schoonmaker. 1938. Beaver dams as geologic agents. Science 88: 523–525.

    Article  CAS  Google Scholar 

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Turetsky, M.R., A. Kotowska, J.L. Bubier, N.B. Dise, P.M. Crill, E.R.C. Hornibrook, K. Minkkinen, T.R. Moore, et al. 2014. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology 20: 2183–2197.

    Article  Google Scholar 

  • Ulevičius, A., M. Jasiulionis, N. Jakštienė, and V. Žilys. 2009. Morphological alteration of land reclamation canals by beavers (Castor fiber) in Lithuania. Estonian Journal of Ecology 58: 126–140.

    Article  Google Scholar 

  • van Hulzen, J.B., R. Segers, P.M. van Bodegom, and P.A. Leffelaar. 1999. Temperature effects on soil methane production: an explanation for observed variability. Soil Biology & Biochemistry 31: 1919–1929.

    Article  Google Scholar 

  • Verpoorter, C., T. Kutser, D.A. Seekell, and L.J. Tranvik. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 6396–6402.

  • Westbrook, C.J., D.J. Cooper, and B.W. Baker. 2006. Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resources Research 42: 1–12.

    Article  Google Scholar 

  • Weyhenmeyer, C.E. 1999. Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms. Global Biogeochemical Cycles 13: 1079–1090.

    Article  CAS  Google Scholar 

  • Wright, J.P. 2002. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologica 132: 96–101.

    Article  Google Scholar 

  • Yavitt, J.B., L.L. Angell, T.J. Fahey, C.P. Cirmo, and C.T. Driscoll. 1992. Methane fluxes, concentrations, and production in two Adirondack beaver impoundments. Limnology and Oceanography 37: 1057–1066.

    Article  CAS  Google Scholar 

  • Zurowski, W., and B. Kasperczyk. 1986. Characteristics of a European beaver population in the Suwalki Lakeland. Acta Theriologica 31: 311–325.

    Article  Google Scholar 

  • Zurowski, W., and B. Kasperczyk. 1988. Effects of reintroduction of European beaver in the lowlands of the vistula basin. Acta Theriologica 33: 325–338.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship awarded to the lead author. Additional support was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant and by the Global Institute for Water Security. Comments on an earlier version of the paper from Shaun Watmough and three anonymous reviewers helped improve the final version and were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin J. Whitfield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitfield, C.J., Baulch, H.M., Chun, K.P. et al. Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas. AMBIO 44, 7–15 (2015). https://doi.org/10.1007/s13280-014-0575-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-014-0575-y

Keywords

Navigation