Skip to main content
Log in

Synthesis of In situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Novel in situ chondroitin sulfate (CS) hydrogel was synthesized via phosphine-mediated Michael type addition reaction by mixing precursor solutions of both CS-acrylate and CS-tri(2-carboxyethyl)phosphine (TCEP) as an electrophile and a nucleophile, respectively. CS-acrylate and CS-TCEP were synthesized in advance by chemical grafting of acrylic acid and TCEP to adipic dihydrazide (ADH)-grafted CS. After verification of chemical grafting of TCEP to CS-ADH by phosphorous peaks in the proton nuclear magnetic resonance spectra (1H NMR) and Fourier transform infrared spectroscopy (FTIR), gel formation was evaluated with a tilting method under different pHs, temperatures and concentrations of the precursor solutions. Precursor solutions spontaneously turned into a gel within a minute to several hours depending on the solution conditions, where a basic pH and higher concentrations and reaction temperatures of the precursor solutions induced quicker gel formation. The fabricated CS hydrogel was thermally stable at low temperatures as observed by both differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA), and also swelled to equilibrium state, leading to 1 to 2 times increase in mass, where a basic medium induced more gel swelling than an acid one. The morphologies of the equilibrated swollen gel showed expansion of its polymer network having pores with a diameter of 13 to 16 µm in dehydrated state. The hydrogel released rhodamine B, a model drug, over approximately 10 h and had 1.08 MPa of compressive modulus for the 10% hydrogel. On the other hand, degradation of the CS hydrogel was controlled by the addition of chondroitinase ABC, along with the reduction of compression strength. The hydrogel had excellent in vitro biocompatibility both inside and on the surface of the CS hydrogel when tested with the live and dead assay of fibroblasts. From these experimental results, we concluded that when TCEP acted as a nucleophilic cross-linking agent of Michael type addition reaction in the synthesis of CS hydrogel, the CS hydrogel demonstrated adequate physicochemical and biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Knutson, J. Iida, G. B. Fields, and J. B. McCarthy, Mol. Biol. Cell, 7, 383 (1996).

    CAS  Google Scholar 

  2. O. Bruyere and J. Reginster, Drug Aging, 24, 573 (2007).

    Article  CAS  Google Scholar 

  3. S. S. Deepa, Y. Umehara, S. Higashima, N. Itoh, and K. Sugahara, J. Biol. Chem., 277, 43707 (2002).

    Article  CAS  Google Scholar 

  4. K. Zou, H. Muramatsu, S. Ikematsu, S. Sakuma, R. Salama, T. Shinomura, K. Kimata, and T. Muramatsu, Eur. J. Biochem., 267, 4046 (2000).

    Article  CAS  Google Scholar 

  5. R. E. Miller, A. J. Grodzinsky, K. Cummings, A. H. K. Plaas, A. A. Cole, R. T. Lee, and P. Patwari, Arthritis Rheum., 62, 3686 (2010).

    Article  CAS  Google Scholar 

  6. M. Lovu, G. Dumais, and P. Souich, Osteoarthr. Cartil., 16, 14 (2008).

    Google Scholar 

  7. J. F. Piai, A. F. Rubira, and E. C. Muniz, Acta Biomater., 5, 2601 (2009).

    Article  CAS  Google Scholar 

  8. A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, S. S. C. de Smedt, J. Demeester, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen, Macromolecules, 33, 3705 (2000).

    Article  CAS  Google Scholar 

  9. K. Stuart and A. Panitch, Biopolymers, 89, 841 (2008).

    Article  CAS  Google Scholar 

  10. M. Hanthamrongwit, W. H. Reid, and M. H. Grant, Biomaterials, 17, 775 (1996).

    Article  CAS  Google Scholar 

  11. K. R. Kirker, Y. Luo, J. H. Nielson, J. Shelby, and G. D. Prestwich, Biomaterials, 23, 3661 (2002).

    Article  CAS  Google Scholar 

  12. I. Strehin, W. M. Ambrose, O. Schein, A. Salahuddin, and J. Elisseeff, J. Cataract. Refr. Surg., 35, 567 (2009).

    Article  Google Scholar 

  13. J. M. G. Reyes, S. Herretes, A. Pirouzmanesh, D.-A. Wang, J. H. Elisseeff, A. Jun, P. J. McDonnell, R. S. Chuck, and A. Bebrens, Invest. Ophthalmol. Vis. Sci., 46, 1247 (2005).

    Article  Google Scholar 

  14. S. J. Bryant, J. A. Arthur, and K. S. Anseth, Acta Biomater., 1, 243 (2005).

    Article  Google Scholar 

  15. I. Strehin, Z. Nahas, K. Arora, T. Nguyen, and J. Elisseeff, Biomaterials, 31, 2788 (2010).

    Article  CAS  Google Scholar 

  16. Q. Li, C. G. Williams, D. D. N. Sun, J. Wang, K. Leong, and J. H. Elisseeff, J. Biomed. Mater. Res. A, 68A, 28 (2003).

    Article  Google Scholar 

  17. S. Jo, D. Kim, J. Woo, G. Yoon, Y. D. Park, G. Tae, and I. Noh, Macromol. Res., 19, 147 (2011).

    Article  CAS  Google Scholar 

  18. C.-T. Lee, C.-P. Huang, and Y.-D. Lee, Biomacromolecules, 7, 1179 (2005).

    Article  Google Scholar 

  19. S. J. Bryant, K. A. Davis-Arehart, N. Luo, R. K. Shoemaker, J. A. Arthur, and K. S. Anseth, Macromolecules, 37, 6726 (2004).

    Article  CAS  Google Scholar 

  20. C.-T. Lee, P.-H. Kung, and Y.-D. Lee, Carbohydr. Polym., 61, 348 (2005).

    Article  CAS  Google Scholar 

  21. J. M. Varghese, Y. A. Ismail, C. K. Lee, K. M. Shin, M. K. Shin, S. I. Kim, I. So, and S. J. Kim, Sens. Actuators, 135, 336 (2008).

    Article  Google Scholar 

  22. Q. Li, D. Wang, and J. Elisseeff, Macromolecules, 36, 2556 (2003).

    Article  CAS  Google Scholar 

  23. D.-A. Wang, S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio, and J. H. Elisseeff, Nat. Mater., 6, 385 (2007).

    Article  CAS  Google Scholar 

  24. S. Varghese, N. S. Hwang, A. C. Canver, P. Theprungsirikul, D. W. Lin, and J. H. Elisseeff, Matrix Biol., 27, 12 (2008).

    Article  CAS  Google Scholar 

  25. M. E. Gilbert, K. R. Kirker, S. D. Gray, P. D. Ward, J. G. Szakacs, G. D. Prestwich, and R. R. Orlandi, Laryngoscope, 114, 1406 (2004).

    Article  CAS  Google Scholar 

  26. F. Wang, Z. Li, M. Khan, K. Tamama, P. Kuppusamy, W. R. Wagner, C. K. Sen, and J. Guan, Acta Biomater., 6, 1978 (2010).

    Article  CAS  Google Scholar 

  27. B. Huang, C. Q. Li, Y. Chou, G. Luo, and C. Z. Zhang, J. Biomed. Mater. Res. B, 74, 159 (2009).

    Google Scholar 

  28. Y. J. Park, Y. M. Lee, J. Y. Lee, Y. J. Seol, C. P. Chung, and S. J. Lee, J. Control Release., 67, 385 (2000).

    Article  CAS  Google Scholar 

  29. S. Nakashima, Y. Matsuyama, K. Takahashi K. Satoh T. H. Koie, K. Kanayama, T. Tsuji, K. Maruyama, S. Imagama, Y. Sakai, and N. Ishiguro, Bio-Med. Mat. Eng., 19, 421 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insup Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, S., Kim, S. & Noh, I. Synthesis of In situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol. Res. 20, 968–976 (2012). https://doi.org/10.1007/s13233-012-0138-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0138-7

Keywords

Navigation