Skip to main content
Log in

Uniform families of minimal rational curves on Fano manifolds

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

It is a well known fact that families of minimal rational curves on rational homogeneous manifolds of Picard number one are uniform, in the sense that the tangent bundle to the manifold has the same splitting type on each curve of the family. In this note we prove that certain—stronger—uniformity conditions on a family of minimal rational curves on a Fano manifold of Picard number one allow to prove that the manifold is homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreatta, M., Wiśniewski, J.A.: On manifolds whose tangent bundle contains an ample locally free subsheaf. Inv. Math. 146, 209–217 (2001)

    Article  MATH  Google Scholar 

  2. Araujo, C.: Rational curves of minimal degree and characterizations of projective spaces. Math. Ann. 335, 937–951 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho, K., Miyaoka, Y., Shepherd-Barron, N.I.: Characterizations of projective space and applications to complex symplectic manifolds. In: Mori, Shigefumi et al. (eds.) Higher Dimensional Birational Geometry. Advanced Studies in Pure Mathematics, vol. 35, pp. 1–88. Mathematical Society of Japan, Tokyo (2002)

  4. Collingwood, D.H., McGovern, W.M.: Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York (1993)

    Google Scholar 

  5. Ein, L.: Varieties with small dual varieties. I. Invent. Math. 86, 63–74 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujita, T.: On polarized manifolds whose adjoint bundles are not semipositive. In: Oda, T. (ed.) Algebraic Geometry. Advanced Studies in Pure Mathematics, vol. 10, pp. 167–178, North-Holland, Amsterdam (1987)

  7. Hirzebruch, F., Kodaira, K.: On the complex projective spaces. J. Math. Pures Appl. (9) 36, 201–216 (1957)

    MathSciNet  MATH  Google Scholar 

  8. Hong, J.,Hwang, J.-M.: Characterization of the rational homogeneous space associated to a long simple root by its variety of minimal rational tangents. In: Konno, Kazuhiro et al. (eds.) Algebraic Geometry. Advanced Studies in Pure Mathematics, vol. 50, pp. 217–236. Mathematical Society of Japan, Tokyo (2008)

  9. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, Springer, New York (1980) (Third printing, revised)

  10. Hwang, J.-M.: Geometry of minimal rational curves on Fano manifolds. In: School on Vanishing Theorems and Effective Results in Algebraic Geometry. ICTP Lecture Notes, vol. 6, pp. 335–393, Abdus Salam International Centre for Theoretical Physics, Trieste (2001)

  11. Hwang, J.-M.: On the degrees of Fano fourfolds of Picard number 1. J. Reine Angew. Math. 556, 225–235 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Hwang, J.-M., Mok, N.: Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation. Invent. Math. 131, 393–418 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang, J.-M., Mok, N.: Birationality of the tangent map for minimal rational curves. Asian J. Math. 8, 51–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang, J.-M., Ramanan, S.: Hecke curves and Hitchin discriminant. Ann. Sci. École Norm. Sup. (4) 37, 801–817 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Kaledin, D.: Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600, 135–156 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Kebekus, S.: Families of singular rational curves. J. Algebraic Geom. 11, 245–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kebekus, S., Peternell, T., Sommese, A.J., Wiśniewski, J.A.: Projective contact manifolds. Invent. Math. 142, 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kebekus, S., Solá Conde, L.E.: Existence of rational curves on algebraic varieties, minimal rational tangents, and applications. In: Catanese, Fabrizio et al. (eds.) Global Aspects of Complex Geometry, pp. 359–416, Springer, Berlin (2006)

  19. Kollár, J.: Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32, Springer, Berlin (1995)

  20. Lanteri, A., Palleschi, M., Sommese, A.J.: Discriminant loci of varieties with smooth normalization. Comm. Algebra 28, 4179–4200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazarsfeld, R.: Positivity in algebraic geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2004)

  22. Matsumura, H.: Commutative ring theory. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  23. Mok, N.: Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents. In: Lau, Ka-Sing et al. (eds.) Third International Congress of Chinese Mathematicians. AMS/IP Studies in Advanced Mathematics, Part 1–2, vol. 2, pp. 41–61, American Mathematical Society, Providence (2008)

  24. Muñoz, R., Occhetta, G., Solá Conde, L.E., Watanabe, K.: Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle. Math. Ann. 361, 583–609 (2015)

  25. Muñoz, R., Occhetta, G., Solá Conde, L.E.,Watanabe, K.,Wiśniewski, J.: A survey on the Campana–Peternell conjecture. Rendiconti dell’Istituto di Matematica dell’Università di Trieste, (2015, To appear)

  26. Occhetta, G., Solá Conde, L.E., Watanabe, K., Wiśniewski, J.A.: Fano manifolds whose elementary contractions are smooth \({\mathbb{P}}^1\)-fibrations (2014). arXiv:1407.3658 (Preprint)

  27. Serre, J.P.: Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après Armand Borel et André Weil). Séminaire Bourbaki, Vol. 2, Exp. No. 100, pp. 447–454. Soc. Math. France, Paris (1995)

  28. Solá Conde, L.E., Wiśniewski, J.A.: On manifolds whose tangent bundle is big and 1-ample. Proc. London Math. Soc. (3) 89, 273–290 (2004)

  29. Tevelev, E.A.: Projectively dual varieties. J. Math. Sci. (N. Y.) 117, 4585–4732 (2003). Algebraic geometry

    Article  MathSciNet  MATH  Google Scholar 

  30. Zak, F.L.: Severi varieties. Mat. Sbornik 126, 115–132 (1985). Algebraic geometry

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The results in this paper were obtained mostly while the second author was a Visiting Researcher at the Korea Institute for Advanced Study (KIAS) and the Department of Mathematics of the University of Warsaw. He would like to thank both institutions for their support and hospitality. The authors would like to thank J. Wiśniewski for his interesting comments and discussions on this topic, and an anonymous referee, whose remarks helped to improve substantially the final form of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Occhetta.

Additional information

G. Occhetta partially supported by PRIN project “Geometria delle varietà algebriche” and the Department of Mathematics of the University of Trento. L. E. S. Conde supported by the Korean National Researcher Program 2010-0020413 of NRF, and by the Polish National Science Center project 2013/08/A/ST1/00804. Kiwamu Watanabe: partially supported by JSPS KAKENHI Grant Number 26800002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Occhetta, G., Solá Conde, L.E. & Watanabe, K. Uniform families of minimal rational curves on Fano manifolds. Rev Mat Complut 29, 423–437 (2016). https://doi.org/10.1007/s13163-015-0183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-015-0183-9

Keywords

Mathematics Subject Classification

Navigation