
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    

    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Revista Matemática Complutense

	
                        Article

Fractional Laplacian equations with critical Sobolev exponent


                    	
                            Published: 23 April 2015
                        


                    	
                            Volume 28, pages 655–676, (2015)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                [image: ]
                            
                            Revista Matemática Complutense
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	Raffaella Servadei1 & 
	Enrico Valdinoci2,3 


                        
    

                        
                            	
            
                
            1170 Accesses

        
	
            
                
            52 Citations

        
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract
In this paper we complete the study of the following elliptic equation driven by a general non-local integrodifferential operator \(\mathcal {L}_K\)
                        
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} \mathcal {L}_K u+\lambda u+|u|^{2^*-2}u+f(x, u)=0 &{} \hbox {in } \Omega \\ u=0 &{} \hbox {in } {\mathbb {R}}^n{\setminus } \Omega , \end{array}\right. \end{aligned}$$

that was started by Servadei and Valdinoci (Commun Pure Appl Anal 12(6):2445–2464, 2013). Here \(s\in (0,1),\, \Omega \) is an open bounded set of \({\mathbb {R}}^n,\, n>2s\), with continuous boundary, \(\lambda \) is a positive real parameter, \(2^*=2n/(n-2s)\) is a fractional critical Sobolev exponent and \(f\) is a lower order perturbation of the critical power \(|u|^{2^*-2}u\), while \(\mathcal {L}_K\) is the integrodifferential operator defined as 
$$\begin{aligned} \mathcal {L}_Ku(x)= \int _{{\mathbb {R}}^n}\left( u(x+y)+u(x-y)-2u(x)\right) K(y)\,dy, \quad x\in {\mathbb {R}}^n. \end{aligned}$$

Under suitable growth condition on \(f\), we show that this problem admits non-trivial solutions for any positive parameter \(\lambda \). This existence theorem extends some results obtained in [15, 19, 20]. In the model case, that is when \(K(x)=|x|^{-(n+2s)}\) (this gives rise to the fractional Laplace operator \(-(-\Delta )^s\)), the existence result proved along the paper may be read as the non-local fractional counterpart of the one obtained in [12] (see also [9]) in the framework of the classical Laplace equation with critical nonlinearities.
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                    Notes
	As a matter of fact, the solution \(u_\infty \) constructed in Step 2 will turn out to be the limit of \(u_j\) in the topology of \(X_0\), but this will be achieved only at the end of the proof, see (2.32) below. Notice that, at this stage, the existence of the solution given by Step 2 does not end the proof of Theorem 1 because (2.2) and (2.3) are in use.


	Or, according to the different terminologies, absolutely continuous in \(\Omega \), uniformly with respect to \(j\in {\mathbb {N}}\).
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Appendix A: The functional setting
Appendix A: The functional setting
Here we recall the definition of the functional analytic spaces \(X\) and \(X_0\) we work in.
In our framework the functional space \(X\) denotes the linear space of Lebesgue measurable functions from \({\mathbb {R}}^n\) to \({\mathbb {R}}\) such that the restriction to \(\Omega \) of any function \(g\) in \(X\) belongs to \(L^2(\Omega )\) and
$$\begin{aligned}\hbox {the map}\quad (x,y)\mapsto (g(x)-g(y))\sqrt{K(x-y)}\quad \hbox {is in}\quad L^2\left( {\mathbb {R}}^{2n} \setminus ({\mathcal {C}}\Omega \times {\mathcal {C}}\Omega ), dxdy\right) , \end{aligned}$$

where \({\mathcal {C}}\Omega :={\mathbb {R}}^n {\setminus }\Omega \), while
$$\begin{aligned} X_0=\{g\in X : g=0\,\, \hbox {a.e. in}\,\, {\mathbb {R}}^n{\setminus } \Omega \}. \end{aligned}$$

Note that \(X\) and \(X_0\) are non-empty, since \(C^2_0 (\Omega )\subseteq X_0\) by [16], Lemma 5.1] (for this we need condition (1.6)).
The space \(X\) is endowed with the norm defined as
$$\begin{aligned} \Vert g\Vert _X=\Vert g\Vert _{L^2(\Omega )}+\left( \int _Q |g(x)-g(y)|^2K(x-y)dx\,dy\right) ^{1/2}, \end{aligned}$$

                    (3.1)
                

where \(Q={\mathbb {R}}^{2n}{\setminus } \mathcal {O}\) and \({\mathcal {O}}=({\mathcal {C}}\Omega )\times ({\mathcal {C}}\Omega ) \subset {\mathbb {R}}^{2n}\). It is easily seen that \(\Vert \cdot \Vert _X\) is a norm on \(X\) (see, for instance, [17] for a proof). By [17], Lemmas 6and7] as a norm on \(X_0\) we can consider the function
$$\begin{aligned} X_0\ni g\mapsto \Vert g\Vert _{X_0}=\left( \int _Q|g(x)-g(y)|^2K(x-y)\,dx\,dy\right) ^{1/2}. \end{aligned}$$

                    (3.2)
                

Along the paper we also denote by \(H^s(\Omega )\) the usual fractional Sobolev space endowed with the norm (the so-called Gagliardo norm)
$$\begin{aligned} \Vert g\Vert _{H^s(\Omega )}=\Vert g\Vert _{L^2(\Omega )}+ \left( \int _{\Omega \times \Omega }\frac{|g(x)-g(y)|^2}{|x-y|^{n+2s}}\,dx\,dy\right) ^{1/2}. \end{aligned}$$

                    (3.3)
                

We remark that, even in the model case in which \(K(x)=|x|^{-(n+2s)}\), the norms in (3.1) and (3.3) are not the same, because \(\Omega \times \Omega \) is strictly contained in \(Q\) : this makes the classical fractional Sobolev space approach not sufficient for studying the problem.
For further details on the fractional Sobolev spaces we refer to [10] and to the references therein.
Some relations between the space \(X_0\) and the usual fractional Sobolev space \(H^s({\mathbb {R}}^n)\) were proved in [17], Lemma 5-\(b)\)] and in [19], Lemma 7], while, as for the embeddings of \(X_0\) and \(H^s({\mathbb {R}}^n)\) into the classical Lebesgue spaces, many properties were proved in [10, 17, 19]. We would like to note that, with respect to such embeddings, the fractional Sobolev space \(H^s({\mathbb {R}}^n)\) behaves like the usual Sobolev space \(H^1({\mathbb {R}}^n)\), while \(X_0\) as \(H^1_0(\Omega )\). This is due to the fact that the functions \(v\in X_0\) are such that \(v=0\) a.e. in \({\mathbb {R}}^n{\setminus } \Omega \) and so \(X_0\) may be seen as a space of functions defined in the bounded set \(\Omega \).
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