Skip to main content

Advertisement

Log in

Acute and Chronic Vascular Responses to Experimental Focal Arterial Stroke in the Neonate Rat

  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The presence of active developmental angiogenesis and vascular outgrowth in the postnatal brain may differentially affect vascular responses to stroke in newborns and adults, but very little is known about the dynamics of vascular injury and regrowth after stroke during the neonatal period. In this study, we used a clinically relevant animal model of ischemic arterial stroke in neonate rats, a transient middle cerebral artery occlusion (MCAO) in postnatal day 7, to characterize the effects of injury on vascular density and angiogenesis from acute through the chronic phase. A marked vessel degeneration and suppressed endothelial cell proliferation occur in the ischemic regions early after neonatal stroke. In contrast to what has been described in adult animals, endothelial cell proliferation and vascular density are not increased in the peri-ischemic regions during the first week after MCAO in neonates. By 2 weeks after injury, endothelial cell proliferation is increased in the cortical peri-ischemic region, but these changes are not accompanied by an increased vascular density. Suppressed angiogenesis in injured postnatal brain that we report may limit recovery after neonatal stroke. Thus, enhancement of angiogenesis after neonatal stroke may be a promising strategy for the long-term recovery of the affected newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee J, Croen LA, Lindan C, Nash KB, Yoshida CK, Ferriero DM, Barkovich AJ, Wu YW. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol. 2005;58(2):303–8.

    PubMed  Google Scholar 

  2. Kamath BD, Todd JK, Glazner JE, Lezotte D, Lynch AM. Neonatal outcomes after elective cesarean delivery. Obstet Gynecol. 2009;113(6):1231–8.

    PubMed  Google Scholar 

  3. Lynch JK, Nelson KB. Epidemiology of perinatal stroke. Curr Opin Pediatr. 2001;13(6):499–505.

    PubMed  Google Scholar 

  4. Harbert MJ, Tam EW, Glass HC, Bonifacio SL, Haeusslein LA, Barkovich AJ, Jeremy RJ, Rogers EE, Glidden DV, Ferriero DM. Hypothermia is correlated with seizure absence in perinatal stroke. J Child Neurol. 2011;26(9):1126–30.

    PubMed  Google Scholar 

  5. Cilio MR. FD: synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med. 2010;15(5):293–8.

    PubMed  Google Scholar 

  6. Cnossen MH, van Ommen CH, Appel IM. Etiology and treatment of perinatal stroke; a role for prothrombotic coagulation factors? Semin Fetal Neonatal Med. 2009;14(5):311–7.

    PubMed  Google Scholar 

  7. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.

    PubMed  Google Scholar 

  8. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.

    PubMed  Google Scholar 

  9. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    PubMed  Google Scholar 

  10. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009;106(2):641–6.

    PubMed  Google Scholar 

  11. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, Wendland MF, Vexler ZS. Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci. 2012;32(28):9588–600.

    PubMed  Google Scholar 

  12. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007–16.

    PubMed  Google Scholar 

  13. Derugin N, Dingman A, Wendland MF, Fox C, Bollen A, Vexler ZS. Magnetic resonance imaging as a surrogate measure for histological sub-chronic endpoint in a neonatal rat stroke model. Brain Res. 2005;1066(1–2):49–56.

    PubMed  Google Scholar 

  14. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38(10):2795–803.

    PubMed  Google Scholar 

  15. Robertson PL, Du Bois M, Bowman PD, Goldstein GW. Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res. 1985;355(2):219–23.

    PubMed  Google Scholar 

  16. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res. 2000;119(1):139–53.

    PubMed  Google Scholar 

  17. Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23(2):166–80.

    PubMed  Google Scholar 

  18. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156(3):965–76.

    PubMed  Google Scholar 

  19. Arai K, Jin G, Navaratna D, Lo EH. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 2009;276(17):4644–52.

    PubMed  Google Scholar 

  20. Sternberger NH, Sternberger LA. Blood–brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci U S A. 1987;84(22):8169–73.

    PubMed  Google Scholar 

  21. Rosenstein JM, Krum JM, Sternberger LA, Pulley MT, Sternberger NH. Immunocytochemical expression of the endothelial barrier antigen (EBA) during brain angiogenesis. Brain Res Dev Brain Res. 1992;66(1):47–54.

    PubMed  Google Scholar 

  22. Argandona EG, Bengoetxea H, Lafuente JV. Lack of experience-mediated differences in the immunohistochemical expression of blood–brain barrier markers (EBA and GluT-1) during the postnatal development of the rat visual cortex. Brain Res Dev Brain Res. 2005;156(2):158–66.

    PubMed  Google Scholar 

  23. Michaloudi H, Batzios C, Grivas I, Chiotelli M, Papadopoulos GC. Developmental changes in the vascular network of the rat visual areas 17, 18 and 18a. Brain Res. 2006;1103(1):1–12.

    PubMed  Google Scholar 

  24. Ohata M, Sundaram U, Fredericks WR, London ED, Rapoport SI. Regional cerebral blood flow during development and ageing of the rat brain. Brain. 1981;104(2):319–32.

    PubMed  Google Scholar 

  25. Tuor UI, Grewal D. Autoregulation of cerebral blood flow: influence of local brain development and postnatal age. Am J Physiol. 1994;267(6 Pt 2):H2220–8.

    PubMed  Google Scholar 

  26. Kennedy C, Grave GD, Juhle JW, Sokoloff L. Changes in blood flow in the component structures of the dog brain during postnatal maturation. J Neurochem. 1972;19(10):2423–33.

    PubMed  Google Scholar 

  27. Chiron C, Raynaud C, Maziere B, Zilbovicius M, Laflamme L, Masure MC, Dulac O, Bourguignon M, Syrota A. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.

    PubMed  Google Scholar 

  28. Kennedy C, Sakurada O, Shinohara M, Miyaoka M. Local cerebral glucose utilization in the newborn macaque monkey. Ann Neurol. 1982;12(4):333–40.

    PubMed  Google Scholar 

  29. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487–97.

    PubMed  Google Scholar 

  30. Svedin P, Guan J, Mathai S, Zhang R, Wang X, Gustavsson M, Hagberg H, Mallard C. Delayed peripheral administration of a GPE analogue induces astrogliosis and angiogenesis and reduces inflammation and brain injury following hypoxia-ischemia in the neonatal rat. Dev Neurosci. 2007;29(4–5):393–402.

    PubMed  Google Scholar 

  31. Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol. 2000;157(5):1473–83.

    PubMed  Google Scholar 

  32. Cobbs CS, Chen J, Greenberg DA, Graham SH. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett. 1998;249(2–3):79–82.

    PubMed  Google Scholar 

  33. Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke. 1996;27(10):1865–72. discussion 1872–1863.

    PubMed  Google Scholar 

  34. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57(9):874–82.

    PubMed  Google Scholar 

  35. Lin TN, Wang CK, Cheung WM, Hsu CY. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2000;20(2):387–95.

    PubMed  Google Scholar 

  36. Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005;36(7):1533–7.

    PubMed  Google Scholar 

  37. Renner O, Tsimpas A, Kostin S, Valable S, Petit E, Schaper W, Marti HH. Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. Brain Res Mol Brain Res. 2003;113(1–2):44–51.

    PubMed  Google Scholar 

  38. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab. 1999;19(6):643–51.

    PubMed  Google Scholar 

  39. Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J, Stanimirovic D. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J. 2005;19(13):1809–21.

    PubMed  Google Scholar 

  40. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.

    PubMed  Google Scholar 

  41. Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, Vexler ZS, Ferriero DM. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis. 2003;14(3):524–34.

    PubMed  Google Scholar 

  42. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.

    PubMed  Google Scholar 

  43. Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41(2):343–9.

    PubMed  Google Scholar 

  44. Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38(11):3032–9.

    PubMed  Google Scholar 

  45. Plane JM, Andjelkovic AV, Keep RF, Parent JM. Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol Dis. 2010;37(1):218–27.

    PubMed  Google Scholar 

  46. Chang YS, Mu D, Wendland M, Sheldon RA, Vexler ZS, McQuillen PS, Ferriero DM. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr Res. 2005;58(1):106–11.

    PubMed  Google Scholar 

  47. Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012;32(1):81–92.

    PubMed  Google Scholar 

  48. Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Ran R, Khatri P, Tomsick T, Sharp FR. Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp Neurol. 2008;210(2):549–59.

    PubMed  Google Scholar 

  49. Ghabriel MN, Zhu C, Hermanis G, Allt G. Immunological targeting of the endothelial barrier antigen (EBA) in vivo leads to opening of the blood–brain barrier. Brain Res. 2000;878(1–2):127–35.

    PubMed  Google Scholar 

  50. Lu H, Demny S, Zuo Y, Rea W, Wang L, Chefer SI, Vaupel DB, Yang Y, Stein EA. Temporary disruption of the rat blood–brain barrier with a monoclonal antibody: a novel method for dynamic manganese-enhanced MRI. NeuroImage. 2010;50(1):7–14.

    PubMed  Google Scholar 

  51. Engelhardt B. Development of the blood–brain barrier. Cell Tissue Res. 2003;314(1):119–29.

    PubMed  Google Scholar 

  52. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    PubMed  Google Scholar 

  53. Vexler ZS, Yenari MA. Does inflammation after stroke affect the developing brain differently than adult brain? Dev Neurosci. 2009;31(5):378–93.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant RO1 NS44025 (Z.S.V.), National Institutes of Health grant RO1 NS55915 (Z.S.V.), and Postdoctoral Fellowship Program from the Ramón Areces Foundation, Madrid, Spain (D.F.L.). We acknowledge Peter Newman, PhD, Blood Center of Winconsin, for kindly providing anti-PECAM-1 antibody, Erin Oswald, BS, for her support with experiments, and Richard Daneman, PhD, University of California San Francisco, for useful discussions and advice.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinaida S. Vexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-López, D., Faustino, J., Derugin, N. et al. Acute and Chronic Vascular Responses to Experimental Focal Arterial Stroke in the Neonate Rat. Transl. Stroke Res. 4, 179–188 (2013). https://doi.org/10.1007/s12975-012-0214-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0214-5

Keywords

Navigation