Skip to main content
Log in

Fault detection and power distribution optimization of smart grids based on hybrid Petri net

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Although smart grids have attracted significant researches in recent years no comprehensive model has been proposed to capture fault occurrences and power distribution optimization in such systems. In this paper a First Order Hybrid Petri Net (FOHPN) approach is proposed to model smart grids. Since smart grids are event driven systems that are comprised of continuous dynamics, FOHPN approach seems to be a logical choice for modeling and analysis of such systems. An IEEE standard 14-bus power system with actual data is used for modeling and simulation. The proposed model includes all units of smart grids along with their interactions, and it also guarantees the optimal behavior of the system regarding fault detection and power distribution. Simulation results validate both accuracy and reliability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. Power Energy Mag. IEEE 3(5), 34–41 (2005)

    Article  Google Scholar 

  2. Gellings, C.W.: The Smart Grid: Enabling Energy Efficiency and Demand Response. The Fairmont Press Inc, Lilburn Georgia (2009)

    Google Scholar 

  3. Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M.: A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 87(4), 1059–1082 (2010)

    Article  Google Scholar 

  4. Lund, H., Duić, N., Krajac, G., daGraçaCarvalho, M.: Two energy system analysis models: a comparison of methodologies and results. Energy 32(6), 948–954 (2007)

    Article  Google Scholar 

  5. Richardson, D.B.: Electric vehicles and the electric grid: a review of modeling approaches, Impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 19, 247–254 (2013)

    Article  Google Scholar 

  6. Black, M., Strbac, G.: Value of storage in providing balancing services for electricity generation systems with high wind penetration. J. Power Sources 162(2), 949–953 (2006)

    Article  Google Scholar 

  7. Foley, A.M., Gallachóir, B.Ó., Hur, J., Baldick, R., McKeogh, E.J.: A strategic review of electricity systems models. Energy 35(12), 4522–4530 (2010)

    Article  Google Scholar 

  8. Silva, V., Stanojevic, V., Aunedi, M., Pudjianto, D., Strbac, G.: 7 Smart domestic appliances as enabling technology for demand-side integration: modelling, value and drivers. Future Electr. Demand Customers Citiz. Loads 69, 185 (2011)

    Article  Google Scholar 

  9. Mundaca, L., Neij, L.: Energy-economy models and energy efficiency policy evaluation for the household sector-An analysis of modelling tools and analytical approaches. The International Institute for Industrial Environmental Economics (IIIEE), Lund (2009)

    Google Scholar 

  10. Khadgi, P., et al.: A simulation model with multi-attribute utility functions for energy consumption scheduling in a smart grid. Energy Syst. 6(4), 533–550 (2015)

    Article  Google Scholar 

  11. Hahn, A., Govindarasu, M.: Smart grid cybersecurity exposure analysis and evalution framework. In: Power and Energy Society General Meeting, pp. 1–6, IEEE (2010)

  12. Aketi, P., Sen, S.: Modeling demand response and economic impact of advanced and smart metering. Energy Syst. 5(3), 583–606 (2014)

    Article  Google Scholar 

  13. IIASA. Model for Energy Supply Strategy Alternatives and their General Environmental Impact (MESSAGE). http://www.iiasa.ac.at/Research/ENE/model/message.html. Accessed 22 Dec 2011

  14. Tools, I.A.E.A.: Methodologies for Energy System Planning and Nuclear Energy System Assessments. Sustainable Energy for the 21st Century. IAEA: Viena, Austria (2009)

  15. Loulou, R., Labriet, M.: ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput Manag Sci 5, 7e40 (2007)

    MATH  Google Scholar 

  16. ETSAP, MARKAL. http://www.iea-etsap.org/web/Markal.asp. Accessed 15 Sept 2011

  17. Loulou R., Labriet M.: ETSAP-TIAM: the TIMES integrated assessment model part I: Heaps C. An introduction to LEAP. Stockholm Environment Institute (2008)

  18. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J.F., Hermann, S., Rogner, H.H.: Modelling elements of smart grids-enhancing the OSeMOSYS (open source energy modelling system) code. Energy 46(1), 337–350 (2012)

    Article  Google Scholar 

  19. Brams, G.W.: Réseaux de Petri, Vol I et II (1983)

  20. Hawrylak P.J., Haney M., Papa M., Hale, J: Using hybrid attack graphs to model cyber-physical attacks in the Smart Grid. In Resilient Control Systems (ISRCS), 2012 5th International Symposium on, pp. 161–164. IEEE (2012)

  21. Murata, T.: Petri nets: Properties, analysis and applications. Proc IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  22. Biswas, T., Davari, A., Feliachi, A.: Application of discrete event systems theory for modeling and analysis of a power transmission network. In: Power Systems Conference and Exposition, IEEE PES, pp. 1024–1029, IEEE (2004)

  23. Ning, L.: Power system modeling using Petri nets, Doctoral dissertation. Rensselaer Polytechnic Institute, New York (2002)

  24. Lukomski, R., Wilkosz, K: Modeling of multi-agent system for power system topology verification with use of Petri nets. In: Modern Electric Power Systems (MEPS), 2010 Proceedings of the International Symposium, pp. 1–6. IEEE (2010)

  25. Dey, A., Chaki, N., Sanyal, S: Modeling smart grid using generalized stochastic petri net. arXiv preprint arXiv:1108.4139 (2011)

  26. Uzam, M., Jones, A.H., Yucel, I.: A rule-based methodology for supervisory control of discrete event systems modelled as automation Petri nets. Int. J. Int. Control Syst 3(3), 297–325 (1999)

    Google Scholar 

  27. Lee, J.S., Zhou, M.C., Hsu, P.L.: An application of Petri nets to supervisory control for human-computer interactive systems. IEEE Trans. Ind. Electron. 52(5), 1220–1226 (2005)

    Article  Google Scholar 

  28. Koutsoukos, X. D., & Antsaklis, P. J. Hybrid control systems using timed Petri nets: Supervisory control design based on invariant properties. In: Hybrid Systems V, pp. 142–162. Springer, Berlin (1999)

  29. Tsinarakis, G.J., Tsourveloudis, N.C.: Adding two level supervisory control in the Hybrid Petri Net methodology for Production Systems. In Control and Automation. MED’09. 17th Mediterranean Conference on. pp. 1090–1095. IEEE (2009)

  30. Ramírez-Treviño, A., Ruiz-Beltrán, E., Rivera-Rangel, I., López-Mellado, E.: Online fault diagnosis of discrete event systems. A Petri net-based approach. IEEE Trans. Autom. Sci Eng 4(1), 31–39 (2007)

    Article  Google Scholar 

  31. Pamuk, N., Uyaroglu, Y.: Modeling of fault diagnosis in power systems using petri nets. Elektronika ir Elektrotechnika 118(2), 63–66 (2012)

    Article  Google Scholar 

  32. Pamuk, N., Uyaroglu, Y.: The Fault diagnosis for power system using fuzzy petri nets. Przegląd Elektrotechniczny 88(7a), 99–102 (2012)

    Google Scholar 

  33. Binh, P. T. T., & Tuyen, N. D. Fault diagnosis of power system using neural Petri net and fuzzy neural Petri net. In: Power India Conference, p. 5. IEEE (2006)

  34. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  35. Frank, Stephen, Steponavice, Ingrida, Rebennack, Steffen: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  36. Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans Power Syst 31(1), 539–546 (2016)

    Article  Google Scholar 

  37. Balduzzi, F., Giua, A., Menga, G.: First-order hybrid Petri nets: a model for optimization and control. IEEE Trans. Robot. Autom. 16(4), 382–399 (2000)

    Article  Google Scholar 

  38. David, R., Alla, H.: Discrete, continuous, and hybrid Petri nets, vol. 1. Springer, Berlin (2005)

    MATH  Google Scholar 

  39. www.http://smartgrid.ieee.org

  40. Nist framework and roadmap for smart grid interoperability standards. http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_?nal.pdf (2012)

  41. Paruchuri, V.K., Davari, A., Feliachi, A.: Hybrid modeling of power system using hybrid Petri nets. System Theory, 2005. SSST’05. In: Proceedings of the Thirty-Seventh Southeastern Symposium on IEEE (2005)

  42. http://www.ee.washington.edu/research/pstca/pf14/ieee14cdf.txt

  43. Carreras, B.A., et al.: Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos Interdiscip. J. Nonlinear Sci. 12(4), 985–994 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shortle, J., Rebennack, S., Glover, F.W.: Transmission-capacity expansion for minimizing blackout probabilities. IEEE Trans. Power Syst. 29(1), 43–52 (2014)

    Article  Google Scholar 

  45. https://www.enel.com/en-gb/Pages/hub-stories.aspx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Doustmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, Z., Doustmohammadi, A. Fault detection and power distribution optimization of smart grids based on hybrid Petri net. Energy Syst 8, 465–493 (2017). https://doi.org/10.1007/s12667-016-0205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0205-9

Keywords

Navigation