Skip to main content
Log in

Recent advances on power distribution system planning: a state-of-the-art survey

  • Review Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The rise in installation/reinforcement and maintenance costs of power distribution systems enforces the planner to adopt an optimal strategy during system planning. The planning should be uch that the designed system should economically and reliably take care of spatial and temporal load growth, and service area expansion in the planning horizon. Mathematically, this planning is a multivariable multi-objective optimization problem. During the past decade or so, several planning algorithms have been developed. The purpose of this survey is to present a comprehensive review of all the developments in the planning technology, which includes all the reported optimization models and solution strategies. This state-of-the art survey is systematically organized to serve as a stepping stone for future researchers as well as a planning guide for the engineers. The various planning models are grouped in a three-level classification structure starting with two broad categories, i.e., planning without and with reliability considerations. The tree grows further with subdivisions. The last level of this classification tree consists of different planning models and solution strategies. Comprehensive discussions on each planning model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\(C^B\) :

Cost coefficient of binary variables

\(y\) :

Binary decision variables

\(C^C\) :

Cost coefficient of continuous variables

\(P_j\) :

Power flow in branch \(j\)

\(S_{af}\) :

Set of all facilities (substations, feeders)

\(S_{br}\) :

Set of all branches

\(C_k^p\) :

Cost coefficient for \(k\)th policy

\(\eta _{sg} (\eta _{st} )\) :

Number of stages (states)

\(C_S (i,j)\) :

Cost of \(j\)th reinforcement plan for \(i\)th year

\(C_{Tr} (i-1,j),(i,m)\) :

Transfer cost from state (\(i-1,j\)) to state (\(i\),\(m)\)

\(C_{Scen_j }\) :

Cost coefficient for \(j\)th scenario

\(scen_j\) :

\(j\)th conductor replacement scenario

\(t_a\) :

Number of planning years

\(wt_i\) :

Weight of \(i\)th scenario

\(C_i^{s}\) :

Cost coefficient for \(i\)th scenario

Ap(Ip,Fp):

Admissible (implementable, feasible) policies

\(C_j^{EP}\) :

Cost coefficient for \(j\)th expansion plan

\(S_{EP}\) :

set of expansion plans

\(C_j^{CP}\) :

Cost coefficient for \(j\)th construction plan

\(S_{CP}\) :

Set of construction plans

\(C_i^{ss} (C_{i,j}^{fb} )\) :

Installation cost of substation \(i\) (branch ij)

\(E_s (E_{br} )\) :

Set of existing substations (branches)

\(wt_i ,wt_{i,j}\) :

Weighting factors (\(\gg \)0)

\(P_{\max _i } (P_{\max _{i,j} } )\) :

Capacity of Substation \(i\) (branch ij,)

\(\tilde{C}^B(\tilde{C}^C)\) :

Fuzzy cost coefficient of binary (continuous) variables

\(\tilde{P}\) :

Fuzzy power flow

\(C^{out}\) :

Outage cost

\(\lambda (d)\) :

Failure rate (repair duration)

\(l_{j}\) :

Length of feeder branch \(j\)

\(S_{Ceq}\) :

Set of control equipments

\(S_{st}\) :

Set of substation source transformers

\(C^{\mathrm{int}}(C^{dur})\) :

Cost per customer interruption (duration)

\(N_{C-sub}\) :

Number of substation customer

\(C^{LR}(L_{j,k}^R )\) :

Cost of load reallocation (amount of load transfer from substation \(j\) to \(k)\)

\(S_S (S_k^{LR} )\) :

Set of substations (substations for load reallocation for \(k\)th substation)

\(L_{total} (\eta _b )\) :

Total load (number of branches)

\(NDL_{avg} (NDL_i )\) :

Average non-delivered load (non-delivered load due to fault at branch \(i)\)

References

  1. Gonen, T.: Electric Power Distribution System Engineering. Mcgraw-Hill publication, New York (1986)

    Google Scholar 

  2. Lee Willis, H.: Power Distribution Planning Reference Book. 2nd edn, Revised and Expanded. Marcel Dekker, New York (2004)

  3. Gonen, T., Ramirez-Rosado, I.J.: Review of distribution system planning models: a model for optimal multi-stage planning. IEE Proc. Part-C 133(7), 397–408 (1986)

    Google Scholar 

  4. Temraz, H.K., Quintana, V.H.: Distribution system expansion models: an overview. Electr. Power Syst. Res. 26, 61–70 (1993)

    Article  Google Scholar 

  5. Khator, S.K., Leung, L.C.: Power distribution planning: a review of models and issues. IEEE Trans. Power Syst. 12(3), 1151–1159 (1997)

    Article  Google Scholar 

  6. Masud, E.: An interactive procedure for sizing and timing distribution substations using optimization techniques. IEEE Trans. Power Appar. Syst. 93(5), 1281–1286 (1974)

    Article  Google Scholar 

  7. Gonen, T., Foote, B.L.: Mathematical dynamic optimization model for electrical distribution system planning. Electr. Power Energy Syst. 4(2), 129–136 (1982)

    Article  Google Scholar 

  8. Ramirez-Rosado, I.J., Gonen, T.: Pseudodynamic planning for expansion of power distribution systems. IEEE Trans. Power Syst. 6(1), 245–254 (1991)

    Article  Google Scholar 

  9. Sun, D.I., Farris, D.R., Cote, P.J., Shoults, R.R., Chen, S.S.: Optimal distribution substation and primary feeder planning via fixed charge network formulation. IEEE Trans. Power Appar. Syst. 101(3), 602–608 (1982)

    Article  Google Scholar 

  10. El-Kady, M.A.: Computer based planning of distribution substation and primary feeders. IEEE Trans. Power Appar. Syst. 103(6), 1183–1189 (1984)

    Article  Google Scholar 

  11. Gonen, T., Ramirez-Rosado, I.J.: Optimal multi-stage planning of power distribution systems. IEEE Trans. Power Deliv. 2(2), 512–519 (1987)

    Article  Google Scholar 

  12. Farrag, M.A., El-Metwally, M.M., El-Bages, M.S.: A new model for distribution system planning. Electr. Power Energy Syst. 21(7), 523–531 (1999)

    Article  Google Scholar 

  13. Hongwei, D., Yixin, Y., Chunhua, H., Chengshan, W., Shaoyun, G.: Optimal planning of distribution substation locations and sizes-model and algorithm. Electr. Power Energy Syst. 18(6), 353–357 (1996)

    Google Scholar 

  14. Vaziri, M., Tomsovic, K., Bose, A., Gonen, T.: Distribution expansion problem: formulation and practicality for a multistage globally optimal solution. Proc. IEEE PES Winter Meeting 3, 1461–1466 (2001)

    Google Scholar 

  15. Vaziri, M., Tomsovic, K., Bose, A.: A directed graph formulation of the multistage distribution expansion problem. IEEE Trans. Power Deliv. 19(3), 1335–1341 (2004)

    Article  Google Scholar 

  16. Vaziri, M., Tomsovic, K., Bose, A.: Numerical analyses of a directed graph formulation of the multistage distribution expansion problem. IEEE Trans. Power Deliv. 19(3), 1348–1354 (2004)

    Article  Google Scholar 

  17. Paiva, P.C., Khodr, H.M., Domínguez-Navarro, J.A., Yusta, J.M., Urdaneta, A.J.: Integral planning of primary-secondary distribution systems using mixed integer linear programming. IEEE Trans. Power Syst. 20(2), 1134–1143 (2005)

    Article  Google Scholar 

  18. Ponnavaikko, M., Rao, K.S.P., Venkata, S.S.: Distribution system planning through a quadratic mixed integer programming approach. IEEE Trans. Power Deliv. 2(4), 1157–1163 (1987)

    Article  Google Scholar 

  19. Carneiro, M.S., Franca, P.M., Silveira, P.D.: Long range planning of power distribution system: primary networks. Electr. Power Energy Syst. 27(3), 223–231 (1993)

    Article  Google Scholar 

  20. Singh, P., Makram, E.B., Adams, W.P.: A new technique for optimal time dynamic distribution substation and feeder planning. Electr. Power Energy Syst. 47(3), 197–204 (1998)

    Article  Google Scholar 

  21. Sharif, S.S., Salama, M.M.A., Vannelli, A.: Optimal model for future expansion of radial distribution networks using mixed integer programming. Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol 1, pp. 152–155 (1994)

  22. Blanchard, M., Delorme, L., Simard, C., Nadeau, Y.: Experience with optimization software for distribution system planning. IEEE Trans. Power Syst. 11(4), 1891–1898 (1996)

    Article  Google Scholar 

  23. Ramirez-Rosado, I.J., Bernal-Augustín, J.L.: Genetic algorithms applied to the design of large power distribution systems. IEEE Trans. Power Syst. 13(2), 696–703 (1998)

    Article  Google Scholar 

  24. Diaz-Dorado, E., Cidras, J., Miguez, E.: Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage. IEEE Trans. Power Syst. 17(3), 879–884 (2002)

    Article  Google Scholar 

  25. Duan, G., Yixin, Y.: Power distribution system optimization by an algorithm for capacitated steiner tree problems with complex-flows and arbitrary cost functions. Electr. Power Energy Syst. 25(7), 515–523 (2003)

    Article  Google Scholar 

  26. Gómez, J.F., Khodr, H.M., Oliveira, P.M., Ocque, L., Yusta, J.M., Villasana, R., Urdaneta, A.J.: Ant colony system algorithm for the planning of primary distribution circuits. IEEE Trans. Power Syst. 19(2), 996–1004 (2004)

    Article  Google Scholar 

  27. Parada, V., Ferland, J.A., Arias, M., Daniels, K.: Optimization of electrical distribution feeders using simulated annealing. IEEE Trans. Power Deliv. 19(3), 1135–1141 (2004)

    Article  Google Scholar 

  28. Ranjan, R., Vekatesh, B., Das, D.: A new algorithm for power distribution system planning. Electr. Power Energy Syst. 62(1), 55–65 (2002)

    Article  Google Scholar 

  29. Ganguly, S., Sahoo, N.C., Das, D.: Mono- and multi-objective planning of electrical distribution networks using particle swarm optimization. Appl. Soft Comput. 11(2), 2391–2405 (2011)

    Article  Google Scholar 

  30. Lavorato, M., Rider, M.J., Garcia, A.V., Romero, R.: A constructive heuristic algorithm for distribution system planning. IEEE Trans. Power Syst. 25(3), 1734–1742 (2010)

    Article  Google Scholar 

  31. Nara, K., Satoh, T., Aoki, K., Kitagawa, M., Yamanaka, M.: Multi-year expansion planning for distribution systems. IEEE Trans. Power Syst. 6(3), 952–958 (1991)

    Article  Google Scholar 

  32. Nara, K., Satoh, T., Kuwabara, H., Aoki, K., Kitagawa, M., Ishihara, T.: Distribution systems expansion planning by multi-stage branch exchange. IEEE Trans. Power Syst. 7(1), 208–214 (1992)

    Article  Google Scholar 

  33. Nara, K., Hayashi, Y., Muto, S., Tuchida, K.: A new algorithm for distribution feeder expansion planning in urban area. Electr. Power Res. 46(3), 185–193 (1998)

    Article  Google Scholar 

  34. Peponis, G.J., Papadopoulos, M.P.: New dynamic branch exchange method for optimal distribution system planning. IEE Proc. Gener. Transm. Distrib. 144(3), 333–339 (1997)

    Article  Google Scholar 

  35. Goswami, S.: Distribution system planning using branch exchange technique. IEEE Trans. Power Syst. 12(2), 718–723 (1997)

    Article  Google Scholar 

  36. Partanen, J.: A modified dynamic programming algorithm for sizing, locating and timing of feeder reinforcements. IEEE Trans. Power Deliv. 5(1), 277–283 (1990)

    Article  Google Scholar 

  37. Salis, G.J., Safigianni, A.S.: Optimal long-term planning of a radial primary distribution network, Part I. Electr. Power Energy Syst. 20(1), 35–41 (1998)

    Article  Google Scholar 

  38. Salis, G.J., Safigianni, A.S.: Optimal long-term planning of a radial primary distribution network, Part II. Electr. Power Energy Syst. 20(1), 43–51 (1998)

    Article  Google Scholar 

  39. Carvalho, P.M.S., Ferreira, L.A.F.M., Lobo, F.G., Barruncho, L.M.F.: Optimal distribution network expansion planning under uncertainty by evolutionary decision convergence. Electr. Power Energy Syst. 20(2), 124–129 (1998)

    Article  Google Scholar 

  40. Moustafa, Y.G., Amer, A.H., Mansour, M.M., Temraz, H.K., Madkour, M.A.: An artificial neural network for optimum topology in distribution expansion planning. Can. Conf. Electr. Comput. Eng. 2, 786–789 (1996)

    Google Scholar 

  41. Asakura, T., Yura, T., Hayashi, N., Fukuyama, Y.: Long-term distribution network expansion planning considering multiple construction plans. Proceedings of the International Conference on Power System Technology, vol. 2, pp. 1101–1106 (2000)

  42. Youssef, H.K., Hackam, R.: Dynamic solution of distribution planning in intermediate time range. IEEE Trans. Power Deliv. 3(1), 341–348 (1988)

    Article  Google Scholar 

  43. Quintana, W.H., Temraz, H.K., Hipel, K.W.: Two-stage power system distribution planning algorithm. IEE Proc. Part-C 104(1), 11–29 (1993)

    Google Scholar 

  44. Ramirez-Rosado, I.J., Dominguez-Navarro, J.A., Yustaloyo, J.M.: A new model for optimal electricity distribution planning based on fuzzy set techniques. Proc. IEEE PES Summer Meeting 2, 1048–1054 (1999)

    Google Scholar 

  45. Billington R., Allan R.: Reliability evaluation of power systems. International edn, Springer, Berlin (1996)

  46. Bhowmik, S., Goswami, S.K., Bhattacherjee, P.K.: A new power distribution system planning through reliability evaluation technique. Electr. Power Syst. Res. 54(3), 169–179 (2000)

    Article  Google Scholar 

  47. Filipec, M., Skrlec, D., Krajcar, S.: Genetic algorithm for optimal open-loop distribution network design in competitive pool. Proc. IEEE AFRICON 2, 977–982 (1999)

    Google Scholar 

  48. Nahman, J.M., Peric, D.M.: Optimal planning of radial distribution networks by simulated annealing technique. IEEE Trans. Power Syst. 23(2), 790–795 (2008)

    Article  Google Scholar 

  49. Lotero, R.C., Contreras, J.: Distribution system planning with reliability. IEEE Trans. Power Deliv. 26(4), 2552–2562 (2011)

    Article  Google Scholar 

  50. Miranda, V., Ranito, J.V., Proenca, L.M.: Genetic algorithm in optimal multistage distribution network planning. IEEE Trans. Power Syst. 9(4), 1927–1931 (1994)

    Article  Google Scholar 

  51. Tang, Y.: Power distribution systems planning with reliability modeling and optimization. IEEE Trans. Power Syst. 11(1), 181–189 (1995)

    Article  Google Scholar 

  52. Nahman, J., Spiric, J.: Optimal planning of rural medium voltage distribution networks. Electr. Power Energy Syst. 19(8), 549–556 (1997)

    Article  Google Scholar 

  53. Boulaxis, N.G., Papadopoulos, M.P.: Optimal feeder routing in distribution system planning using dynamic programming technique and GIS facilities. IEEE Trans. Power Deliv. 17(1), 242–247 (2002)

    Google Scholar 

  54. Fletcher, R.H., Strunz, K.: Optimal distribution system horizon planning-part I: formulation. IEEE Trans. Power Syst. 22(2), 791–799 (2007)

    Article  Google Scholar 

  55. Fletcher, R.H., Strunz, K.: Optimal distribution system horizon planning-part II: application. IEEE Trans. Power Syst. 22(2), 862–870 (2007)

    Article  Google Scholar 

  56. Jonnavithula, S., Billington, R.: Minimum cost analysis of feeder routing in distribution system planning. IEEE Trans. Power Syst. 19(4), 1801–1810 (2004)

    Article  Google Scholar 

  57. Kagan, N., Adams, R.N.: A Benders’ decomposition approach to the multi-objective distribution planning problem. Electr. Power Energy Syst. 15(5), 259–271 (1993)

    Article  Google Scholar 

  58. Ramirez-Rosado, I.J., Bernal-Agustín, J.L.: Reliability and costs optimization for distribution networks expansion using an evolutionary algorithm. IEEE Trans. Power Syst. 16(1), 111–118 (2001)

    Article  Google Scholar 

  59. Carrano, E.G., Soares, L.A.E., Takahashi, R.H.C., Saldanha, R.R., Neto, O.M.: Electric distribution network multiobjective design using a problem-specific genetic algorithm. IEEE Trans. Power Deliv. 21(2), 995–1005 (2006)

    Article  Google Scholar 

  60. Mendoza, F., Bernal-Agustín, J.L., Domínguez-Navarro, J.A.: NSGA and SPEA applied to multi-objective design of power distribution systems. IEEE Trans. Power Syst. 21(4), 1938–1945 (2006)

    Google Scholar 

  61. Rivas-Dávalos, F., Irving, M.R.: An approach based on the strength Pareto evolutionary algorithm 2 for power distribution system planning. Lect. Notes Comput. Sci. 3410, 707–720 (2005)

    Article  Google Scholar 

  62. Kong, T., Cheng, H., Hu, Z., Yao, L.: Multiobjective planning of open-loop MV distribution networks using ComGIS network analysis and MOGA. Electr. Power Energy Syst. 79(2), 390–398 (2009)

    Article  Google Scholar 

  63. Ganguly S., Sahoo N.C., Das D.: Multi-objective expansion planning of electrical distribution networks using comprehensive learning particle swarm optimization. Applications of Soft Computing (Book Series: AISC, 58), pp. 193–202 (2009)

  64. Chen, J.L., Hsu, Y.: An expert system for load allocation in distribution expansion planning. IEEE Trans. Power Deliv. 4(3), 1910–1918 (1989)

    Article  Google Scholar 

  65. Kagan, N., Adams, R.N.: Electrical power distribution systems planning using fuzzy mathematical programming. Electr. Power Energy Syst. 16(3), 191–196 (1994)

    Article  Google Scholar 

  66. Ramirez-Rosado, I.J., Dominguez-Navarro, J.A.: Possibilistic model based on fuzzy sets for the multiobjective optimal planning of electric power distribution networks. IEEE Trans. Power Syst. 19(4), 1801–1810 (2004)

    Article  Google Scholar 

  67. Ramirez-Rosado, I.J., Dominguez-Navarro, J.A.: New multi-objective tabu search algorithm for fuzzy optimal planning of power distribution systems. IEEE Trans. Power Syst. 21(1), 224–233 (2006)

    Article  Google Scholar 

  68. Skok M., Skrlec D., Krajcar S.: Genetic algorithm and GIS enhanced long-term planning of large link structured distribution systems. Proceedings of the LESCOPE 2002, pp. 55–60 (2002)

  69. Skok M., Krajcar S., Skrlec D.: Dynamic planning of medium voltage open-loop distribution networks under uncertainty. Proceedings of the 13th International Conference on Intelligent Systems Application on Power Systems, USA, pp. 551–556 (2005)

  70. Carrano, E.G., Guimaraes, F.G., Takahasi, R.H.C., Neto, O.M., Campelo, F.: Electric distribution network expansion under load-evolution uncertainty using an immune system inspired algorithm. IEEE Trans. Power Syst. 22(2), 851–861 (2007)

    Article  Google Scholar 

  71. Leung, L.C., Khator, S.K., Schnepp, J.C.: Planning substation capacity under the single-contingency scenario. IEEE Trans. Power Syst. 10(3), 1442–1447 (1995)

    Article  Google Scholar 

  72. Sarada, A.K., Khator, S.K., Leung, L.C.: Distribution planning in an electric utility: feeder configurations. Comput. Ind. Eng. 28(2), 329–339 (1995)

    Article  Google Scholar 

  73. Nazar, M.S., Haghifam, M.R.: Multiobjective electric distribution system expansion planning using hybrid energy hub concept. Electr. Power Energy Syst. 79(6), 899–911 (2009)

    Article  Google Scholar 

  74. Nara, K., Kuwabara, H., Kitagawa, M., Ohtaka, K.: Algorithm for expansion planning in distribution systems taking fault into consideration. IEEE Trans. Power Syst. 9(1), 324–330 (1994)

    Article  Google Scholar 

  75. Kuwabara, H., Nara, K.: Multi-year and multi-state distribution systems expansion planning by multi-stage branch exchange. IEEE Trans. Power Deliv. 12(1), 457–463 (1997)

    Article  Google Scholar 

  76. Asakura, T., Genji, T., Yura, T., Hayashi, N., Fukuyama, Y.: Long-term distribution network expansion planning by network reconfiguration and generation of construction plans. IEEE Trans. Power Syst. 18(3), 1196–1204 (2003)

    Article  Google Scholar 

  77. Ganguly, S., Sahoo, N.C., Das, D.: A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation. Energy Syst. 1(3), 291–337 (2010)

    Article  Google Scholar 

  78. Sahoo, N.C., Ganguly, S., Das, D.: Simple heuristics-based selection of local guides for multi-objective PSO with an application to electrical distribution system planning. Eng. Appl. Artif. Intel. 24(4), 567–585 (2011)

    Google Scholar 

  79. Sahoo, N.C., Ganguly, S., Das, D.: Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization. Swarm Evol. Comput. 3, 15–32 (2012)

    Article  Google Scholar 

  80. Ganguly, S., Sahoo, N.C., Das, D.: Multi-objective planning of electrical distribution systems incorporating shunt capacitor banks. Proceedings of the IEEE International Conference on Energy, Automation and Signal (ICEAS), pp 1–6 (2011)

  81. Sahoo, N.C., Ganguly, S., Das, D.: Fuzzy-Pareto-dominance driven possibilistic model based planning of electrical distribution systems using multi-objective particle swarm optimization. Expert Systems with Applications, Elsevier 39(1), 881–893 (2012)

    Article  Google Scholar 

  82. Ganguly S., Sahoo N.C., and Das D.: Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets Syst. (2012, in press). doi:10.1016/j.fss.2012.07.005

  83. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken (2004)

    Google Scholar 

  84. El-Khattam, W., Hegazy, Y.G., Salama, M.M.A.: An integrated distributed generation optimization model for distribution system planning. IEEE Trans. Power Syst. 20(2), 1158–1165 (2005)

    Article  Google Scholar 

  85. Haffner, S., Pereira, L.F.A., Pereira, L.A., Barreto, L.S.: Multistage model for distribution expansion planning with distributed generation—part I: problem formulation. IEEE Trans. Power Deliv. 23(2), 915–923 (2008)

    Article  Google Scholar 

  86. Haffner, S., Pereira, L.F.A., Pereira, L.A., Barreto, L.S.: Multistage model for distribution expansion planning with distributed generation—part II: numerical results. IEEE Trans. Power Deliv. 23(2), 924–929 (2008)

    Article  Google Scholar 

  87. Wong, S., Bhattacharya, K., Fuller, J.D.: Electric power distribution system design and planning in a deregulated environment. IET Gener. Transm. Distrib. 3(12), 1061–1078 (2009)

    Article  Google Scholar 

  88. Barin, A., Pozzatti, L.F., Canha, L.N., Machado, R.Q., Abaide, A.R., Arend, G.: Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning. Electr. Power Energy Syst. 32, 1157–1164 (2010)

    Article  Google Scholar 

  89. Martins, V.F., Borges, C.L.T.: Active distribution network integrated planning incorporating distributed generation and load response uncertainties. IEEE Trans. Power Syst. 26(4), 2164–2172 (2011)

    Article  Google Scholar 

  90. Falaghi, H., Singh, C., Haghifam, M.R., Ramezani, M.: DG integrated multistage distribution system expansion planning. Electr. Power Energy Syst. 33, 1489–1497 (2011)

    Article  Google Scholar 

  91. Naderi, E., Seifi, H., Sepasian, M.S.: A dynamic approach for distribution system planning considering distributed generation. IEEE Trans. Power Deliv. 27(3), 1313–1322 (2012)

    Article  Google Scholar 

  92. Zou, K., Agalgaonkar, A.P., Muttaqi, K.M., Perera, S.: Distribution system planning with incorporating DG reactive capability and system uncertainties. IEEE Trans. Sustain. Energy 3(1), 112–123 (2012)

    Article  Google Scholar 

  93. Borges, C.L.T., Martins, V.F.: Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties. Electr. Power Energy Syst. 36, 107–116 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Sahoo, N.C. & Das, D. Recent advances on power distribution system planning: a state-of-the-art survey. Energy Syst 4, 165–193 (2013). https://doi.org/10.1007/s12667-012-0073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0073-x

Keywords

Navigation