Skip to main content

Advertisement

Log in

Craniofacial surgery, from past pioneers to future promise

  • Review
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Objectives

As a surgical subspecialty devoted to restoration of normal facial and calvarial anatomy, craniofacial surgeons must navigate the balance between pathologic states of bone excess and bone deficit. While current techniques employed take root in lessons learned from the success and failure of early pioneers, craniofacial surgery continues to evolve, and novel modalities will undoubtedly arise integrating past and present experiences with future promise to effectively treat craniofacial disorders.

Methods

This review provides an overview of current approaches in craniofacial surgery for treating states of bone excess and deficit, recent advances in our understanding of the molecular and cellular processes underlying craniosynostosis, a pathological state of bone excess, and current research efforts in cellular-based therapies for bone regeneration.

Results

The surgical treatment of bone excess and deficit has evolved to improve both the functional and morphological outcomes of affected patients. Recent progress in elucidating the molecular and cellular mechanisms governing bone formation will be instrumental for developing improved therapies for the treatment of pathological states of bone excess and deficit.

Conclusions

While significant advances have been achieved in craniofacial surgery, improved strategies for addressing states of bone excess and bone deficit in the craniofacial region are needed. Investigations on the biomolecular events involved in craniosynostosis and cellular-based bone tissue engineering may soon be added to the armamentarium of surgeons treating craniofacial dysmorphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerszten PC, Gerszten E (1995) Intentional cranial deformation: a disappearing form of self-mutilation. Neurosurgery 37(3): 374–381 discussion 381–382

    Article  PubMed  CAS  Google Scholar 

  2. Gerszten PC (1993) An investigation into the practice of cranial deformation among the pre-Columbian peoples of Northern Chile. Int J Osteoarchaeol 3(2): 87–98

    Article  Google Scholar 

  3. Goodrich JT, Tutino M (2001) An annotated history of craniofacial surgery and intentional cranial deformation. Neurosurg Clin N Am 12(1): 45–68, viii

    PubMed  CAS  Google Scholar 

  4. Broca P (1881) The bone lesions of prehistoric man in France. Paleopathology 360(1)

  5. Otto AW (1830) Textbook of Anatomic Pathology. Rucher, Berlin, Germany

    Google Scholar 

  6. Virchow R (1851) About Cretinism, namely in France, and about pathologic skull formation. Verh Phys Med Gesellsch Wuerzburg 2: 231–271

    Google Scholar 

  7. Lane LC (1892) Pioneer craniectomy for relief of mental imbecility due to premature sutural closure and microcephalus. JAMA 18(2): 49–50

    Google Scholar 

  8. Lannelongue O. Craniotomy for microcephaly. Compte Rend Acad Sci 110: 1382–1385

  9. LeFort R (1901) Experimental report of mechanical fractures. Revue Chirurgie Paris 23: 208

    Google Scholar 

  10. Wolfe SA (1997) The influence of Paul Tessier on our current treatment of facial trauma, both in primary care and in the management of late sequelae. Clin Plast Surg 24(3): 515–518

    PubMed  CAS  Google Scholar 

  11. Ortiz-Monasterio F, del Campo AF, Carrillo A (1978) Advancement of the orbits and the midface in one piece, combined with frontal repositioning, for the correction of Crouzon’s deformities. Plast Reconstr Surg 61(4): 507–516

    PubMed  CAS  Google Scholar 

  12. Persing JA, Edgerton MT, Jane JA (1989) Scientific foundations and surgical treatment of craniosynostosis. Baltimore: Williams & Wilkins

    Google Scholar 

  13. Grabb WC, Smith JW, Aston SJ (1991) Plastic surgery. 4th ed. Boston: Little, Brown

    Google Scholar 

  14. Nacamuli RP, Wan DC, Lenton KA, Longaker MT (2005) New developments in pediatric plastic surgery research. Clin Plast Surg 32(1): 123–136, ix–x

    Article  PubMed  Google Scholar 

  15. Lenton KA, Nacamuli RP, Wan DC, et al. (2005) Cranial suture biology. Curr Top Dev Biol 66: 287–328

    Article  PubMed  CAS  Google Scholar 

  16. Kaufman BA, Muszynski CA, Matthews A, Etter N (2004) The circle of sagittal synostosis surgery. Semin Pediatr Neurol 11(4): 243–248

    Article  PubMed  Google Scholar 

  17. Jane JA, Edgerton MT, Futrell JW, Park TS (1978) Immediate correction of sagittal synostosis. J Neurosurg 49(5): 705–710

    Article  PubMed  CAS  Google Scholar 

  18. Vollmer DG, Jane JA, Park TS, Persing JA (1984) Variants of sagittal synostosis: strategies for surgical correction. J Neurosurg 61(3): 557–562

    Article  PubMed  CAS  Google Scholar 

  19. Kanev PM, Lo AK (1995) Surgical correction of sagittal craniosynostosis: complications of the pi procedure. J Craniofac Surg 6(2): 98–102

    Article  PubMed  CAS  Google Scholar 

  20. Shaffrey ME, Persing JA, Delashaw JB, et al. (1991) Surgical treatment of metopic synostosis. Neurosurg Clin N Am 2(3): 621–627

    PubMed  CAS  Google Scholar 

  21. Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111(6): 2032–2048, quiz 2049

    Article  PubMed  Google Scholar 

  22. Posnick JC (1996) Upper facial asymmetries resulting from unilateral coronal synostosis. Diagnosis and surgical reconstruction. Atlas Oral Maxillofac Surg Clin North Am 4(1): 53–66

    PubMed  CAS  Google Scholar 

  23. Mofid MM, Manson PN, Robertson BC, et al. (2001) Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg 108(5): 1103–1114, discussion 1115–1117

    Article  PubMed  CAS  Google Scholar 

  24. McCarthy JG (1994) The role of distraction osteogenesis in the reconstruction of the mandible in unilateral craniofacial microsomia. Clin Plast Surg 21(4): 625–631

    PubMed  CAS  Google Scholar 

  25. McCarthy JG (1994) Mandibular bone lengthening. Operative Tech Plast Reconstr Surg 1(2): 99–104

    Article  Google Scholar 

  26. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop 250: 8–26

    PubMed  Google Scholar 

  27. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop (238): 249–281

  28. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop 239: 263–285

    PubMed  Google Scholar 

  29. Snyder CC, Levine GA, Swanson HM, Browne EZ, Jr (1973) Mandibular lengthening by gradual distraction. Preliminary report. Plast Reconstr Surg 51(5): 506–508

    Article  PubMed  CAS  Google Scholar 

  30. McCarthy JG, Schreiber J, Karp N, et al. (1992) Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 89(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  31. Karp NS, Thorne CH, McCarthy JG, Sissons HA (1990) Bone lengthening in the craniofacial skeleton. Ann Plast Surg 24(3): 231–237

    Article  PubMed  CAS  Google Scholar 

  32. Rachmiel A, Levy M, Laufer D (1995) Lengthening of the mandible by distraction osteogenesis: A report of cases. J Oral Maxillofac Surg 53(7): 838–846

    Article  PubMed  CAS  Google Scholar 

  33. Rachmiel A, Jackson IT, Potparic A, Laufer D (1995) Midface advancement in sheep by gradual distraction: A 1-year follow-up study. J Oral Maxillofac Surg 53(5): 525–529

    Article  PubMed  CAS  Google Scholar 

  34. Ortiz Monasterio F, Molina F, Andrade L, et al. (1997) Simultaneous mandibular and maxillary distraction in hemifacial microsomia in adults: Avoiding occlusal disasters. Plast Reconstr Surg 100(4): 852–861

    PubMed  CAS  Google Scholar 

  35. Toth BA, Kim JW, Chin M, Cedars M (1998) Distraction osteogenesis and its application to the midface and bony orbit in craniosynostosis syndromes. J Craniofac Surg 9(2): 100–113, discussion 119-122

    Article  PubMed  CAS  Google Scholar 

  36. Cedars MG, Linck DL, 2nd, Chin M, Toth BA (1999) Advancement of the midface using distraction techniques. Plast Reconstr Surg 103(2): 429–441

    Article  PubMed  CAS  Google Scholar 

  37. Whitaker LA, Munro IR, Salyer KE, et al. (1979) Combined report of problems and complications in 793 craniofacial operations. Plast Reconstr Surg 64(2): 198–203

    Article  PubMed  CAS  Google Scholar 

  38. Davies DW, Munro IR (1975) The anesthetic management and intraoperative care of patients undergoing major facial osteotomies. Plast Reconstr Surg 55(1): 50–55

    Article  PubMed  CAS  Google Scholar 

  39. Whitaker LA, Bartlett SP, Schut L, Bruce D (1987) Craniosynostosis: an analysis of the timing, treatment, and complications in 164 consecutive patients. Plast Reconstr Surg 80(2): 195–212

    PubMed  CAS  Google Scholar 

  40. Fearon JA, Yu J, Bartlett SP, et al. (1997) Infections in craniofacial surgery: a combined report of 567 procedures from two centers. Plast Reconstr Surg 100(4): 862–868

    PubMed  CAS  Google Scholar 

  41. McCarthy JG, Epstein F, Sadove M, et al. (1984) Early surgery for craniofacial synostosis: an 8-year experience. Plast Reconstr Surg 73(4): 521–533

    Article  PubMed  CAS  Google Scholar 

  42. Wilkie AO, Slaney SF, Oldridge M, et al. (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2): 165–172

    Article  PubMed  CAS  Google Scholar 

  43. Robin NH, Feldman GJ, Mitchell HF, et al. (1994) Linkage of Pfeiffer syndrome to chromosome 8 centromere and evidence for genetic heterogeneity. Hum Mol Genet 3(12): 2153–2158

    Article  PubMed  CAS  Google Scholar 

  44. Muenke M, Schell U, Hehr A, et al. (1994) A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 8(3): 269–274

    Article  PubMed  CAS  Google Scholar 

  45. Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Current Biology 5(5): 500–507

    Article  PubMed  CAS  Google Scholar 

  46. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, et al. (2001) Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A 98(13): 7182–7187

    Article  PubMed  CAS  Google Scholar 

  47. Bellus GA, Gaudenz K, Zackai EH, et al. (1996) Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet 14(2): 174–176

    Article  PubMed  CAS  Google Scholar 

  48. Mayahara H, Ito T, Nagai H, et al. (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9(1): 73–80

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura K, Kawaguchi H, Aoyama I, et al. (1997) Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res 15(2): 307–313

    Article  PubMed  CAS  Google Scholar 

  50. Moore R, Ferretti P, Copp A, Thorogood P (2002) Blocking endogenous FGF-2 activity prevents cranial osteogenesis. Dev Biol 243(1): 99–114

    Article  PubMed  CAS  Google Scholar 

  51. Mehrara BJ, Mackool RJ, McCarthy JG, et al. (1998) Immunolocalization of basic fibroblast growth factor and fibroblast growth factor receptor-1 and receptor-2 in rat cranial sutures. Plast Reconstr Surg 102(6): 1805–1817, discussion 1818–1820

    Article  PubMed  CAS  Google Scholar 

  52. Most D, Levine JP, Chang J, et al. (1998) Studies in cranial suture biology: up-regulation of transforming growth factor-beta1 and basic fibroblast growth factor mRNA correlates with posterior frontal cranial suture fusion in the rat. Plast Reconstr Surg 101(6): 1431–1440

    Article  PubMed  CAS  Google Scholar 

  53. Gosain AK, Recinos RF, Agresti M, Khanna AK (2004) TGF-beta1, FGF-2, and receptor mRNA expression in suture mesenchyme and dura versus underlying brain in fusing and nonfusing mouse cranial sutures. Plast Reconstr Surg 113(6): 1675–1684

    Article  PubMed  Google Scholar 

  54. Warren SM, Brunet LJ, Harland RM, et al. (2003) The BMP antagonist noggin regulates cranial suture fusion. Nature 422(6932): 625–629

    Article  PubMed  CAS  Google Scholar 

  55. Greenwald JA, Mehrara BJ, Spector JA, et al. (2001) In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol 158(2): 441–452

    PubMed  CAS  Google Scholar 

  56. Zhou YX, Xu X, Chen L, et al. (2000) A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 9(13): 2001–2008

    Article  PubMed  CAS  Google Scholar 

  57. Chen L, Li D, Li C, et al. (2003) A Ser250Trp substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 33(2): 169–178

    Article  PubMed  CAS  Google Scholar 

  58. Loeys BL, Chen J, Neptune ER, et al. (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3): 275–281

    Article  PubMed  CAS  Google Scholar 

  59. Opperman LA, Adab K, Gakunga PT (2000) Transforming growth factorbeta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn 219(2): 237–247

    Article  PubMed  CAS  Google Scholar 

  60. Opperman LA, Galanis V, Williams AR, Adab K (2002) Transforming growth factor-beta3 (Tgf-beta3) down-regulates Tgf-beta3 receptor type I (Tbetar-I) during rescue of cranial sutures from osseous obliteration. Orthod Craniofac Res 5(1): 5–16

    Article  PubMed  CAS  Google Scholar 

  61. Opperman LA, Nolen AA, Ogle RC (1997) TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J Bone Miner Res 12(3): 301–310

    Article  PubMed  CAS  Google Scholar 

  62. Opperman LA, Chhabra A, Cho RW, Ogle RC (1999) Cranial suture obliteration is induced by removal of transforming growth factor (TGF)-beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro. J Craniofac Genet Dev Biol 19(3): 164–173

    PubMed  CAS  Google Scholar 

  63. Roth DA, Longaker MT, McCarthy JG, et al. (1997) Studies in cranial suture biology: Part I. Increased immunoreactivity for transforming growth factor-beta (b1, b2, b3) during rat cranial suture fusion. J Bone Miner Res 12(3): 311–321

    Article  PubMed  CAS  Google Scholar 

  64. Nacamuli RP, Fong KD, Warren SM, et al. (2003) Markers of osteoblast differentiation in fusing and nonfusing cranial sutures. Plast Reconstr Surg 112(5): 1328–1335

    Article  PubMed  Google Scholar 

  65. Nacamuli RP, Song HM, Fang TD, et al. (2004) Quantitative transcriptional analysis of fusing and nonfusing cranial suture complexes in mice. Plast Reconstr Surg 114(7): 1818–1825

    Article  PubMed  Google Scholar 

  66. Mehrara BJ, Steinbrech DS, Saadeh PB, et al. (1999) Expression of highaffinity receptors for TGF-beta during rat cranial suture fusion. Ann Plast Surg 42(5): 502–508

    Article  PubMed  CAS  Google Scholar 

  67. Roth DA, Gold LI, Han VK, et al. (1997) Immunolocalization of transforming growth factor beta 1, beta 2, and beta 3 and insulin-like growth factor I in premature cranial suture fusion. Plast Reconstr Surg 99(2): 300–309

    Article  PubMed  CAS  Google Scholar 

  68. Wan DC, Pomerantz JH, Brunet LJ, et al. (2007) Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. J Biol Chem 282(36): 26450–26459

    Article  PubMed  CAS  Google Scholar 

  69. Urist MR, DeLange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220(4598): 680–686

    Article  PubMed  CAS  Google Scholar 

  70. Reddi H (1995) Bone morphogenetic proteins. Adv Dent Res 9(3 Suppl):13

    Article  PubMed  CAS  Google Scholar 

  71. Nacamuli RP, Fong KD, Lenton KA, et al. (2005) Expression and possible mechanisms of regulation of BMP3 in rat cranial sutures. Plast Reconstr Surg 116(5): 1353–1362

    Article  PubMed  CAS  Google Scholar 

  72. Wilkie AO (1997) Craniosynostosis: genes and mechanisms. Hum Mol Genet 6(10): 1647–1656

    Article  PubMed  CAS  Google Scholar 

  73. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7(3): 165–197

    Article  PubMed  CAS  Google Scholar 

  74. Ueno H, Gunn M, Dell K, et al. (1992) A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptors. J Biol Chem 267: 1470–1476

    PubMed  CAS  Google Scholar 

  75. Lomri A, Lemonnier J, Delannoy P, Marie PJ. (2001) Increased expression of protein kinase Calpha, interleukin-1alpha, and RhoA guanosine 5′-triphosphatase in osteoblasts expressing the Ser252Trp fibroblast growth factor 2 receptor Apert mutation: identification by analysis of complementary DNA microarray. J Bone Miner Res 16(4): 705–712

    Article  PubMed  CAS  Google Scholar 

  76. Kim HJ, Lee MH, Park HS, et al. (2003) Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn 227(3): 335–346

    Article  PubMed  CAS  Google Scholar 

  77. Moursi AM, Winnard PL, Fryer D, Mooney MP (2003) Delivery of transforming growth factor-beta2-perturbing antibody in a collagen vehicle inhibits cranial suture fusion in calvarial organ culture. Cleft Palate Craniofac J 40(3): 225–232

    Article  PubMed  Google Scholar 

  78. Wu XB, Li Y, Schneider A, et al. (2003) Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112(6): 924–934

    PubMed  CAS  Google Scholar 

  79. Losee JE, Cooper GM, Barbano T, et al. (2005) Noggin Inhibits Resynostosis in Craniosynostotitc Rabbits. (Abstract Presented at the XIth International Congress of the International Society of Craniofacial Surgery)

  80. Shenaq SM (1988) Reconstruction of complex cranial and craniofacial defects utilizing iliac crest-internal oblique microsurgical free flap. Microsurgery 9(2): 154–158

    Article  PubMed  CAS  Google Scholar 

  81. Bruens ML, Pieterman H, de Wijn JR, Vaandrager JM (2003) Porous polymethylmethacrylate as bone substitute in the craniofacial area. J Craniofac Surg 14(1): 63–68

    Article  PubMed  Google Scholar 

  82. Nicholson JW (1998) Glass-ionomers in medicine and dentistry. Proc Inst Mech Eng [H] 212(2): 121–126

    CAS  Google Scholar 

  83. Bostrom R, Mikos A (1997) Tissue engineering of bone. In Atala A, Mooney DJ, Vacanti JP, Langer R, eds. Synthetic Biodegradable Polymer Scaffolds, Vol. 1. Boston: Birkhauser 215–234

    Google Scholar 

  84. Cho BC, Kim JY, Lee JH, et al. (2004) The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg 15(2): 299–311, discussion 312–313

    Article  PubMed  Google Scholar 

  85. Mulliken JB, Glowacki J (1980) Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65(5): 553–560

    Article  PubMed  CAS  Google Scholar 

  86. Weissman IL (2002) Stem cells-scientific, medical, and political issues. N Engl J Med 346(20): 1576–1579

    Article  PubMed  Google Scholar 

  87. Pittenger MF, Mackay AM, Beck SC, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147

    Article  PubMed  CAS  Google Scholar 

  88. Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251: 3–11

    PubMed  CAS  Google Scholar 

  89. Zuk PA, Zhu M, Ashjian P, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279–4295

    Article  PubMed  CAS  Google Scholar 

  90. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309): 71–74

    Article  PubMed  CAS  Google Scholar 

  91. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13(1): 69–80

    Article  PubMed  CAS  Google Scholar 

  92. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13(1): 81–88

    Article  PubMed  CAS  Google Scholar 

  93. Schantz JT, Hutmacher DW, Lam CX, et al. (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9Suppl 1: S127–139

    Article  PubMed  CAS  Google Scholar 

  94. Schantz JT, Teoh SH, Lim TC, et al. (2003) Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng 9Suppl 1: S113–126

    Article  PubMed  CAS  Google Scholar 

  95. Rohner D, Hutmacher DW, Cheng TK, et al. (2003) In vivo efficacy of bone — marrow — coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 66(2): 574–580

    Article  PubMed  CAS  Google Scholar 

  96. De Ugarte DA, Morizono K, Elbarbary A, et al. (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3): 101–109

    Article  PubMed  Google Scholar 

  97. Banfi A, Muraglia A, Dozin B, et al. (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28(6): 707–715

    Article  PubMed  CAS  Google Scholar 

  98. Mendes SC, Tibbe JM, Veenhof M, et al. (2002) Bone Tissue-Engineered Implants Using Human Bone Marrow Stromal Cells: Effect of Culture Conditions and Donor Age. Tissue Eng 8(6): 911–920

    Article  PubMed  CAS  Google Scholar 

  99. Mueller SM, Glowacki J (2001) Agerelated decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82(4): 583–590

    Article  PubMed  CAS  Google Scholar 

  100. Peroni D, Scambi I, Pasini A, et al. (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 2008; 314(3):603–615

    Article  PubMed  CAS  Google Scholar 

  101. Zuk PA, Zhu M, Mizuno H, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2): 211–228

    Article  PubMed  CAS  Google Scholar 

  102. Shi YY, Nacamuli RP, Salim A, Longaker MT (2005) The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 116(6): 1686–1696

    Article  PubMed  CAS  Google Scholar 

  103. Bergman RJ, Gazit D, Kahn AJ, et al. (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11(5): 568–577

    Article  PubMed  CAS  Google Scholar 

  104. Lee JA, Parrett BM, Conejero JA, et al. (2003) Biological alchemy: engineering bone and fat from fatderived stem cells. Ann Plast Surg 50(6): 610–617

    Article  PubMed  Google Scholar 

  105. Lee JH, Rhie JW, Oh DY, Ahn ST (2008) Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous threedimensional scaffold. Biochem Biophys Res Commun 370(3): 456–460

    Article  PubMed  CAS  Google Scholar 

  106. Hicok KC, Du Laney TV, Zhou YS, et al. (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10(3–4): 371–380

    Article  PubMed  CAS  Google Scholar 

  107. Peterson B, Zhang J, Iglesias R, et al. (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1–2): 120–129

    Article  PubMed  CAS  Google Scholar 

  108. Cowan CM, Shi YY, Aalami OO, et al. (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22(5): 560–567

    Article  PubMed  CAS  Google Scholar 

  109. Lendeckel S, Jodicke A, Christophis P, et al. (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32(6): 370–373

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Longaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, D.C., Kwan, M.D., Kumar, A. et al. Craniofacial surgery, from past pioneers to future promise. J. Maxillofac. Oral Surg. 8, 348–356 (2009). https://doi.org/10.1007/s12663-009-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-009-0084-x

Keywords

Navigation