Skip to main content
Log in

Optimization of Inocula Conditions for Enhanced Biosurfactant Production by Bacillus subtilis SPB1, in Submerged Culture, Using BoxBehnken Design

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The inoculum age and density can influence considerably the production yield and cost of the fermentation process. Some literature studies report the use of two-stage inocula to enhance metabolite production. In the present study, optimization studies were done in order to define the best inocula conditions supporting a maximum biosurfactant production by Bacillus subtilis SPB1. Hence, by adjusting the levels of the two-stage inocula strategy, lipopeptide production was effectively enhanced to almost 3.4 g/l as estimated gravimetrically. The new defined parameters were as follows; a first inoculum age of 23 h followed by a second inoculum age and size of 4 h and 0.01, respectively. Thereby, we note an improved production as compared to the production yield described under non-optimized inocula conditions reported in our previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Am Soc Microbiol 61:47–64

    CAS  Google Scholar 

  2. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  3. Abushady HM, Bashandy AS, Aziz NH, Ibrahim HMM (2005) Molecular characterization of Bacillus subtilis Surfactin producing strain and the factors affecting its production. Int J Agri Biol 3:337–344

    Google Scholar 

  4. Makkar RS, Cameotra SS (2002) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45 °C. J Surfactants Deterg 5(1):11–17

    Article  CAS  Google Scholar 

  5. Mukherjee S, Das P, Sivapathasekaran C, Sen R (2008) Enhanced production of biosurfactant by a marine bacterium on statistical screening of nutritional parameters. Biochem Eng J 42:254–260

    Article  CAS  Google Scholar 

  6. Mnif I, Ellouze-Chaabouni S, Ghribi D (2012) Response surface methodological approach to optimize the nutritional parameters for enhanced production of lipopeptide biosurfactant in submerged culture by B. subtilis SPB1. J Adv Scient Res 3(1):87–94

    Google Scholar 

  7. Abdel-Mawgoud AM, Aboulwafa MM, Abdel-Haleem HN (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:305–325

    Article  CAS  Google Scholar 

  8. Sen R, Swaminathan T (2004) Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J 21:141–148

    Article  CAS  Google Scholar 

  9. Sen R, Swaminathan T (1997) Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Appl Microbiol Biotechnol 47:358–363

    Article  CAS  Google Scholar 

  10. Ghribi D, Mnif I, Boukedi H, Radhouan K, Chaabouni-Ellouze S (2011) Statistical optimization of medium components for economical production of Bacillus subtilis surfactin, a biocontrol agent for the olive moth Prays oleae. Afr J Microbiol Res 5(27):4927–4936

    Google Scholar 

  11. Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. doi:10.4061/2011/653654

  12. Ghribi D, Elleuch M, Abdelkefi LM, Ellouze-Chaabouni S (2012) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res 48:68–72

    Article  CAS  Google Scholar 

  13. Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Boukedi H, Ellouze-Chaabouni S (2012) Histopathological effects of Bacillus subtilis SPB1 biosurfactant in the midgut of Ephestia kuehniella (Lepidoptera: Pyralidae) and improvement of its insecticidal efficiency. J plant Dis Protect 119(1):24–29

    CAS  Google Scholar 

  14. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Ellouze-Chaabouni S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. doi:10.1155/2012/373682

  15. Mathieu D, Nony J, Phan-Tan-Luu R, Nemrod W (2000) New efficient methodology for research using optimal design (NEMROD) Software. LPRAI, Marseille

  16. Olivera FL, Caron GR, Brandelli A (2004) Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem Eng J 21:53–58

    Article  Google Scholar 

  17. Gu X-B, Zheng Z-M, Yu H-Q, Wang J, Liang F-L, Liu R-L (2005) Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochem 40:3196–3201

    Article  CAS  Google Scholar 

  18. Tafreshi SH, Mirdamadi S, Norouzian D, Khatami S, Sardari S (2010) Optimization of non-nutritional factors for a cost-effective enhancement of nisin production using orthogonal array method. Probiotics Antimicro Prot 2:267–273

    Article  CAS  Google Scholar 

  19. Stanbury PF, Whittaker A, Hall SJ (1995) Principles of fermentation technology (Chap. 6), 2nd ed. Butterworth-Heinemann, Jordon Hill, Oxford, pp 147–164

  20. Mojsov K (2010) Experimental investigations of submerged fermentation and synthesis of pectinolytic enzymes by Aspergillus Niger: effect of inoculum size and age of spores. Appl Technol Innovations 2(2):40–46

    Google Scholar 

  21. Bicas JL, Barros FFC, Wagner R, Godoy HT, Pastore GM (2008) Optimization of R-(+)-a-terpineol production by the biotransformation of R-(+)-limonene. J Ind Microbiol Biotechnol 35:1061–1070

    Article  CAS  Google Scholar 

  22. Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Biores Technol 102:8569–8581

    Article  CAS  Google Scholar 

  23. Survase SA, Annapure US, Singhal RS (2009) Statistical optimization of cyclosporin A production on a semi-synthetic medium using Tolypocladium inflatum MTCC 557. Global J Biotechnol Biochem 4(2):184–192

    CAS  Google Scholar 

  24. Miner JA, Martin DJ, Smith A (1997) Two-stage inocula for the production of alpha-amylase by Bacillus amyloliquefaciens. Enz Microbial Technol 21:382–386

    Article  Google Scholar 

  25. Ghribi D, Zouari N, Trigui W, Jaoua S (2007) Use of sea water as salts source in starch- and soya bean-based media, for the production of Bacillus thuringiensis bioinsecticides. Process Biochem 42:374–378

    Article  CAS  Google Scholar 

  26. Lachhab K, Tyagi RD, Valéro JR (2001) Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: effect of inoculum and sludge solids concentration. Process Biochem 37:197–208

    Article  CAS  Google Scholar 

  27. Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Biores Technol 101:2389–2396

    Article  Google Scholar 

  28. Shih I-L, Kuo C-Y, Hsieh F-C, Kao S-S, Hsieh C (2008) Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. J Chinese Inst Chem Eng 39:635–643

    Article  CAS  Google Scholar 

  29. Jaapar SZS, Kalil MS, Ali E, Anuar N (2011) Effects of age of inoculum, size of inoculum and headspace on hydrogen production using Rhodobacter sphaeroides. Bacteriol J 1(1):16–23

    Article  Google Scholar 

  30. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  Google Scholar 

  31. Piggot PJ, Losick R (2001) Sporulation genes and intercom- partmental regulation. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives from genes to cells. American Society for Microbiology, Washington, DC, pp 483–517

    Google Scholar 

  32. Zhang C-H, Wu J-Y, He G-Y (2002) Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Appl Microbiol Biotechnol 60:396–402

    Article  CAS  Google Scholar 

  33. Xi B-D, He X-S, Wei Z-M, Jiang Y-H, Li M-X, Li D, Li Y, Dang Q-L (2012) Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere 88(6):744–750

    Article  CAS  Google Scholar 

  34. Tari C, Parulekar SJ, Stark BC, Webter DA (1998) Synthesis and excretion of α-amylase in vgb + and vgb − recombinant escherichia coli: a comparative study. Biotechnol Bioeng 59:672–678

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from “Tunisian Ministry of Higher Education, Scientific Research and Technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Mnif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mnif, I., Ellouze-Chaabouni, S. & Ghribi, D. Optimization of Inocula Conditions for Enhanced Biosurfactant Production by Bacillus subtilis SPB1, in Submerged Culture, Using BoxBehnken Design. Probiotics & Antimicro. Prot. 5, 92–98 (2013). https://doi.org/10.1007/s12602-012-9113-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9113-z

Keywords

Navigation