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Abstract
Emotion recognition from EEG signals is a major field of research in cognitive computing. The major challenges involved 
in the task are extracting meaningful features from the signals and building an accurate model. This paper proposes a fuzzy 
ensemble-based deep learning approach to classify emotions from EEG-based models. Three individual deep learning models 
have been trained and combined using a fuzzy rank-based approach implemented using the Gompertz function. The model 
has been tested on two benchmark datasets: DEAP and AMIGOS. Our model has achieved 90.84% and 91.65% accuracies 
on the valence and arousal dimensions, respectively, for the DEAP dataset. The model also achieved accuracy above 95% 
on the DEAP dataset for the subject-dependent approach. On the AMIGOS dataset, our model has achieved state-of-the-art 
accuracies of 98.73% and 98.39% on the valence and arousal dimensions, respectively. The model achieved accuracies of 
99.38% and 98.66% for the subject-independent and subject-dependent cases, respectively. The proposed model has provided 
satisfactory results on both DEAP and AMIGOS datasets and in both subject-dependent and subject-independent setups. 
Hence, we can conclude that this is a robust model for emotion recognition from EEG signals.
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Introduction

Over the last two centuries, there has been a lot of biological 
sciences research driven by the demand for new healthcare 
treatments and ongoing efforts to understand the biological 

underpinnings of illnesses [1, 2]. Recent developments in 
the life sciences have made it possible to investigate biologi-
cal systems holistically and to gain access to the molecular 
minutiae of living things like never before. Nevertheless, it 
is extremely difficult to draw meaningful conclusions from 
such data due to the presence of inherent complexity of bio-
logical systems along with larger dimension, variety, and 
noise present in them [3]. As a result, new equipment that 
are accurate, dependable, durable, and capable of process-
ing large amounts of biological data are needed. This has 
inspired many researchers in the life and computer sciences 
to adopt an interdisciplinary strategy to clarify the workings 
and dynamics of living things, with notable advancements in 
biological and biomedical research [4]. As a result, numerous 
artificial intelligence approaches, particularly machine learn-
ing, have been put forth over time to make it easier to iden-
tify, categorise, and forecast patterns in biological data [5].

  Deep learning, a subset of machine learning,  extracts 
more meaningful and complementary features from a large 
training dataset primarily without human intervention. 
Learning data representations by introducing increasingly 
complex degrees of abstraction is the fundamental idea 
behind deep learning. Nearly all levels work on the prin-
ciple that more abstract representations at a high level are 
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defined with respect to lesser abstract representations seen 
at low levels [6]. Because it enables a system to understand 
and learn complicated representations straight from the raw 
data, this kind of hierarchical learning process is particularly 
potent and useful in a wide range of disciplines [7, 8].

Emotions play a vital role in our daily lives. Hence, emo-
tion recognition is an important part of human–computer 
interactions. Emotion can be recognised from speech, facial 
expressions, and physiological signals. However, emotion 
recognition from physiological signals is most reliable as 
humans can deliberately conceal or fake their emotional 
expression through speech or gesture [9, 10]. Hence, emo-
tion recognition from EEG signals has drawn the attention 
of many researchers over the past decade.

Our study has classified two dimensions of emotion: 
valence and arousal. These are the two most important 
parameters for describing human emotions. Valence indi-
cates whether an emotion is positive or negative. Arousal 
indicates the level of arousal developed in our bodies due 
to emotion. Figure 1 categorises some common emotions 
according to their valence and arousal values.

Electroencephalogram (EEG) is a medical procedure during 
which electrodes with thin wires are pasted on our scalp and 
detect voltage fluctuations in brain neurons. These EEG signals 
capture the electrical activities of our brain and can be used to 
detect human emotions [10]. As mentioned earlier, emotion 
recognition from physiological signals is more reliable and 
accurate. Moreover, EEG can continuously detect changes in 
human emotions. Hence, it can be used for patient monitoring 
[11, 12]. In our study, we have analysed EEG signals to predict 

human emotions accurately. The steps involved in the process 
of EEG-based emotion recognition are represented in Fig. 2.

There are two ways to perform EEG-based emotion 
recognition: subject-dependent and subject-independent 
approaches [13]. The subject-dependent approach generally 
gives higher accuracy than the independent approach, but the 
former requires the model to be trained for each subject [14]. 
In our study, we have implemented both subject-dependent 
and independent approaches.

The main contributions of the work can thus be summa-
rised as follows:

• This study proposes a fuzzy ensemble approach for 
emotion recognition from EEG signals. This fuzzy-
based approach has been applied for the first time in this 
domain, achieving remarkable accuracy.

• The proposed model has been tested on two standard 
benchmark datasets: DEAP [15] and AMIGOS [16]. 
Both are benchmark datasets in the realm of EEG-based 
emotion recognition. It is to be noted that AMIGOS is 
the largest existing dataset in this domain.

• The model also gives a satisfactory performance in both 
subject-dependent and subject-independent approaches. 
Hence, the model is flexible and can be applied to either 
approach as the situation demands.

• The proposed model also shows impressive classi-
fication accuracy when tested for both valence and 
arousal dimensions.

The rest of the paper has been organised as follows: 
the literature analysis related to EEG-based emotion rec-
ognition has been discussed in the “Related Works” sec-
tion, whereas the benchmark datasets used for our experi-
ment are described in the “Dataset” section. The proposed 
fuzzy ensemble-based deep learning methodology is pre-
sented in the “Methodology” section, whereas the overall 
results obtained by the proposed model are explained in the 
“Results” section. Lastly, the conclusion followed by some 
future scope is mentioned in the “Conclusion” section.

Related Works

Many research works have been conducted on EEG-based 
emotion recognition over the past years. Initially, supervised 
machine learning algorithms were implemented. But later, 

Fig. 1  Two-dimensional valence-arousal space

Fig. 2  Pipeline for emotion 
recognition from EEG signals
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the focus shifted to mostly deep learning-based approaches 
to obtain state-of-the-art accuracies.

Yoon and Chung [17] used fast Fourier transform fea-
tures and implemented a Bayesian function and percep-
tion convergence algorithm. They achieved an accuracy of 
70.9% for the valence dimension on the DEAP dataset [15]. 
Dabas et al. [18] implemented machine learning models 
like support vector machine (SVM) and Naïve Bayes and 
obtained an accuracy of 58.90% and 78.06% on the DEAP 
dataset [15].

Liu et al. [19] performed emotion recognition on the 
DEAP dataset. They used different types of features like 
time-domain features such as mean and standard devia-
tion, frequency-domain features like power spectral density 
(PSD), and time–frequency domain features like discrete 
wavelet transform (DWT). They used the random forest 
and K-nearest neighbour (KNN) model and achieved an 
accuracy of 66.17% for arousal. You and Liu [20] extracted 
time-domain features from a 5-s slice of EEG signals and 
implemented an autoencoder neural network. They achieved 
an accuracy greater than 80% on the DEAP dataset. Salama 
et al. [21] implemented a 3D-convolutional neural network 
(CNN) model to recognise emotion in the DEAP data-
set. They achieved an accuracy of 87.44% and 88.49% for 
valence and arousal dimensions, respectively.

By implementing shallow depth-wise parallel CNN, 
Zhan et al. [22] achieved an accuracy of 84.07% and 82.95% 
on arousal and valence, respectively, on the DEAP data-
set. Allghary et al. [23] achieved an accuracy of 85.65%, 
85.45%, and 87.99% on arousal, valence, and liking, respec-
tively. They proposed an LSTM model for emotion clas-
sification on the DEAP dataset. Wichakam et al. [24] used 
the band power feature and SVM model to classify emotion 
on the DEAP dataset. They reached an accuracy of 64.9% 
for valence and 66.8% for liking. They selected 10 channels 
for the recognition task and demonstrated that increasing 
the number of channels to 32 does not improve the per-
formance. Parui et al. [25] proposed the XGBoost classi-
fier model. They extracted several features from the EEG 
signals from the DEAP dataset and optimised them. The 
model achieved accuracies of 75.97%, 74.206%, 75.234%, 
and 76.424% for the four dimensions, respectively.

Aggarwal et al. [26] combined XGBoost and LightGBM 
models for emotion recognition on the DEAP dataset. They 
achieved an accuracy of 77.1% for the valence dimension. 
Bagzir et al. [27] decomposed EEG signals into gamma, 
beta, alpha, and theta bands by applying DWT to extract the 
frequency spectrum characteristics of each frequency band. 
Then, a KNN, an SVM, and an artificial neural network 
were used for classification. The model achieved accuracies 
of 91.1% and 91.3% on valence and arousal, respectively.

Few recent works have developed robust models and 
tested them on multiple datasets. Siddharth et  al. [28] 

developed a multi-modal emotion recognition model by fus-
ing the features from different modalities and then classify-
ing them. They have evaluated their model on multiple data-
sets like DEAP [15], AMIGOS [16], MAHNOB-HCI [29], 
and DREAMER [30] datasets. Ante Topic et al. [31] used 
holographic feature maps; they also selected optimal chan-
nels by implementing ReliefF and neighbourhood compo-
nent analysis (NCA). The holographic feature maps were fed 
as input to CNN, and finally, the output of CNN was passed 
to the SVM classifier. They have evaluated their model on 
DEAP [15], AMIGOS [16], SEED [32], and DREAMER 
[30] datasets. They have got highest accuracies on the 
DREAMER dataset, which is 90.76%, 92.92%, and 92.97%, 
respectively, on valence, arousal, and dominance dimen-
sions. Singh et al. [33] extracted spectrogram features from 
14 EEG channels and used a CNN model to classify emo-
tions on the AMIGOS dataset. The model achieved 87.5% 
and 75% accuracy on valence and arousal dimensions. Garg 
et al. [34] used FFT and wavelet transform to extract features 
from EEG signals and implemented a deep neural network 
(DNN) model for emotion recognition. On the AMIGOS 
dataset, the method achieved 85.47%, 81.87%, 84.04%, and 
86.63% for valence, arousal, dominance, and liking. Zhao 
et al. [35] used a 3D CNN model to recognise emotions 
from EEG signals on DEAP and AMIGOS datasets. They 
evaluated two-class (low/high arousal, low/high valence) and 
four-class (HAHV, HALV, LAHV, LALV) classifications. 
The model achieved 96.61%, 96.43% for the two-class clas-
sification task; 93.53% for the four-class classification on 
the DEAP dataset; 97.52%, 96.96% for the two-class clas-
sification task; and 95.86% for the four-class classification 
task on the AMIGOS dataset.

Motivation and Research Gap

Over the past years, the research works have notably 
improved performance/accuracy  for the task of EEG-based 
emotion recognition [36, 37]. However, most of the exist-
ing works have a few common drawbacks. Firstly, most 
models have been tested on a particular dataset only. Such 
models can be data-dependent and may not be robust. Sec-
ondly, almost all existing works have been performed in 
either subject-independent or subject-dependent condi-
tions. There is a lack of research work that focuses on both 
approaches simultaneously. Thirdly, most of the work done 
for EEG-based emotion recognition focuses on machine 
learning-based models. Some of the researchers have devel-
oped customized deep learning models for solving this 
problem. However, these models are simplistic such that 
they are unable to deal with the complexity of the problem 
resulting in low classification accuracy. Keeping in mind 
the above mentioned gap, this work motivates to propose a 
fuzzy ensemble-based deep learning model (by ensembling 
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three different complementary deep learning models such 
as a hybrid of CNN and LSTM models, a hybrid of CNN 
and GRU models, and ID-CNN model) for solving EEG-
based emotion recognition problem. It is to be noted that 
this fuzzy-based approach has been applied for the first 
time in this domain. The work also attains satisfactory clas-
sification results for AMIGOS dataset, a benchmark largest 
dataset in this domain. The most highlighting aspect of this 
work is that the proposed work achieves impressive results 
for both subject-independent as well as subject-dependent 
cases. Additionally, the work has also been tested on both 
valence and arousal dimensions.

Datasets

The proposed model has been implemented on two datasets 
— DEAP [15] and AMIGOS [16], both developed by the 
Queen Mary University of London, UK.

The DEAP dataset consists of EEG signals of 32 sub-
jects. Each subject watched 40 music videos of 1-min 
duration containing different emotions, while their EEG 
was recorded. Each subject also rated the level of valence, 
arousal, liking, and dominance for each video. The data is 
stored in 32 files, one for each participant. Each file consists 
of a total of 40 channels, out of which 32 channels contain 
EEG data. The data is pre-processed and available in both 
Python (.dat) and MATLAB (.mat) formats. Our experiment 
is conducted using the .dat files. The dataset also contains 
frontal face video recordings for 22 subjects which can be 
used for the multi-modal emotion recognition task.

The AMIGOS dataset can be used for a multi-modal 
study of mood and affective responses of individuals to dif-
ferent videos. The dataset consists of EEG, electrocardio-
gram (ECG), and galvanic skin response (GSR) recordings 
of 40 participants while they watched 16 videos. The experi-
ment was performed both individually and in groups. Each 
subject assessed different parameters like valence, arousal, 
and familiarity. Video recordings of frontal entire body and 
depth are also available. The EEG signals are pre-processed 
and available in both Python and MATLAB format. For our 
experiment, we have used the python files.

Methodology

Datasets

This work has utilised two standard benchmark data-
sets to validate the proposed method. These datasets are 
described in the following subsections.

DEAP Dataset

The dataset contains EEG recordings of 32 channels, of 
which 14 channels were selected for our experiment. The 
selected channels are Fp1, AF3, F3, F7, T7, P7, Pz, O2, 
P4, P8, CP6, FC6, AF4, and Fz [38]. Valence and arousal 
dimensions have been considered for our study. The labels 
of both the dimensions had continuous values between ‘1’ 
and ‘9’. The labels for each dimension were categorised 
into two classes — high and low. We used to label ‘1’ 
for high and label ‘0’ for low. So, any value below ‘5’ 
has been labelled ‘0’, and any value above ‘5’ has been 
assigned label ‘1’.

Pre‑processing Fast Fourier transform (FFT) has been 
implemented to extract features from the EEG signals. Sev-
eral studies have shown that FFT gives better performance 
than traditional feature extraction methods [39, 40]. FFT 
transforms a signal from the time domain to the frequency 
domain. Since there is a probability of quick detection of 
emotions, the raw signals were segmented into 2-s temporal 
windows with 1-s overlap. The FFT is computed for each 
such segment of raw data. The frequency bands considered 
in the present work are 4–8 kHz, 8–12 kHz, 12–16 kHz, 
16–25 kHz, and 25–45 kHz.

AMIGOS Dataset

The dataset contains EEG recordings of 40 subjects, out of 
which some subjects did not participate in both short and 
long video experiments. To maintain consistency in the data, 
we have chosen only those subjects who have watched both 
long and short videos. Out of 17 channels, we have selected 
14 channels that contained EEG data– AF3, F3, F7, FC5, T7, 
P7, O1, O2, P8, T8, FC6, F4, F8, and AF4.

Pre‑processing The pre-processing is done similarly as the 
DEAP dataset. Raw data is broken into segments, and the 
FFT features are extracted with the same frequency bands 
used for the DEAP dataset. The valence and arousal labels 
are classified into two classes. If the value is greater than ‘5’, 
the assigned label is ‘1’; else ‘0’.

Candidate Models

Hybrid of CNN and LSTM Models

Our first candidate model is a hybrid of CNN and LSTM 
models. The CNN layers extract spatial features from the 
signals, and the LSTM part extracts temporal features. 
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Fully connected layers follow the LSTM layers, and then 
the final prediction is obtained. All the model hyperpa-
rameters have been summarised in Table 1.

Hybrid of CNN and GRU Models

The second model implemented, in this work, is similar 
to the first one; however, GRU layers have been used in 
place of LSTM layers. The GRU has a simplified structure 
than the LSTM model, and it usually takes lesser time to 
train. All the model parameters have been summarised in 
Table 2.

1D‑CNN Model

The third model consists of 1D-CNN layers followed by 
fully connected layers. Numerous researches have proven 
that CNN is very effective in feature extraction tasks from 
images and other data. Hence, we have chosen CNN as 
our feature extraction, followed by dense layers to get the 

predictions. All the model parameters have been summarised 
in Table 3.

Proposed Model

This paper proposes an ensemble learning approach for emo-
tion detection from EEG signals. We have trained three indi-
vidual models and combined them using the fuzzy ensemble 
technique and max voting ensemble. Each model has been 
trained individually for 50 epochs for both datasets before 
combining them. For all the models, adam optimiser has been 
used with a learning rate of 0.001. For the subject-independent 
approach, the entire data is split into train, test, and valida-
tion set in the ratio of 60:20:20. We have also tried with other 
ratios, but this was the optimal split; hence, the 60:20:20 ratio 
has been finalised. For the subject-dependent approach, the 
model is trained and tested separately for each subject, and 
then we take the average of the results. For each subject, the 
data was split into train, test, and validation sets in the ratio 
60:20:20. The proposed model is illustrated in Fig. 3.

Table 1  Hyperparameters of the first candidate model

Layer 1: 1D convolutional layer
     Number of units 64
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 2: 1D convolutional layer
     Number of units 128
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 3: 1D convolutional layer
     Number of units 256
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2

Layer 4: LSTM layer
     Number of units 256

Layer 5: LSTM layer
     Number of units 128

Layer 6: LSTM layer
     Number of units 64

Layer 7: dense layer
     Number of units 32
     Activation ReLU

Layer 8: dense layer
     Number of units 1
     Activation Sigmoid

Table 2  Hyperparameters of the second candidate model

Layer 1: 1D convolutional layer
     Number of units 64
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 2: 1D convolutional layer
     Number of units 128
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 3: 1D convolutional layer
     Number of units 256
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2

Layer 4: GRU layer
     Number of units 256

Layer 5: GRU layer
     Number of units 128

Layer 6: GRU layer
     Number of units 64

Layer 7: dense layer
     Number of units 32
     Activation ReLU

Layer 8: dense layer
     Number of units 1
     Activation Sigmoid
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Fuzzy Ensemble Using Gompertz Function

The proposed ensemble method generates fuzzy ranks of 
the different models using the Gompertz function. It fuses 
the decision scores adaptively from those models to make 
the combined prediction on the test set. In the hard voting 
ensemble, all the models are given the same priority, which 
can be a disadvantage if there is a weak classifier. However, 
this disadvantage is overcome to some extent in this fuzzy 
approach as weightage is assigned dynamically based on the 
confidence measure. This approach has been applied to other 
problems in previous studies [41–44]. The Gompertz func-
tion has been applied extensively for studying COVID-19 in 
recent years [41, 45–47]. In our study, we have implemented 
the re-parameterised Gompertz function for modelling our 
fuzzy ensemble.

Algorithm: For each model, we get individual confidence ( c ), 
which is normalised to get a normalised confidence value.

Let there be x candidate models and n number of classes. 
In our case, x is 3, and n is 2.

These confidence scores are used for calculating the 
fuzzy rank using the Gompertz function.

Lower the value of rank indicates better confidence 
scores. Let Mj denote the top M ranks for a particular class 
c . If the rank does not belong to the top M ranks, then two 
penalty values are calculated, P1j

i
 and P2. P1 is calculated 

by putting cj
i
= 0 in Eq. (2), and P2 is 0. Next, we calculate 

two more factors, the rank-sum ( Sj ) and the complement of 
confidence score factor ( Fj ) in the following way:

(1)
∑n

i=1
c
j

i
= 1.0 ∀j ∈ 1, 2, ..x

(2)
r
j

i
=1 − exp{−exp exp

(

−2.0 ∗ c
j

i

)

∀i ∈ 1, 2.., n,∀j ∈ 1, 2, .., x

Table 3  Hyperparameters of the third candidate model

Layer 1: 1D convolutional layer
     Number of units 64
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 2: 1D convolutional layer
     Number of units 128
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Dropout 0.2

Layer 3: 1D convolutional layer
     Number of units 256
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2

Layer 4: 1D convolutional layer
     Number of units 512
     Kernel size 3
     Activation ReLU
     Pooling: max pooling Size = 2
     Flatten

Layer 7: dense layer
     Number of units 512
     Activation ReLU

Layer 8: dense layer
     Number of units 256
     Activation ReLU

Layer 7: dense layer
     Number of units 128
     Activation ReLU

Layer 8: dense layer
     Number of units 1
     Activation Sigmoid

Fig. 3  Schematic diagram of our proposed ensemble learning approach for emotion detection from EEG signals



Cognitive Computation 

1 3

Sj =

x
∑

j=1

r
j

i
if r

j

i
∈ Mj

(3)Sj =
∑x

j=1
P1r

i
otherwise

Fj = 1∕x

x
∑

j=1

c
j

i
if r

j

i
∈ Mj

(4)Fj = 1∕x
∑x

j=1
P2c

i
otherwise

Table 4  Comparison of 
performance of different models 
for the subject-independent 
approach on the DEAP dataset

The bold values signify the highest accuracies achieved by the proposed Gompertz fuzzy ensemble model

Models Valence Arousal

Accuracy score F1 score Accuracy score F1 score

1D-CNN + LSTM 90.09 90.98 91.39 92.61
1D-CNN + GRU 89.18 90.11 90.21 91.57
1D-CNN only 87.9 88.98 88.56 90.22
Gompertz Fuzzy Ensemble 90.84 91.65 91.72 92.9

Fig. 4  Graphs showing the variation of training as well as validation accuracies with different epoch sizes for valence dimension on DEAP data-
set for a model 1 (1D CNN + LSTM model), b model 2 (1D CNN + GRU model), and c model 3 (1D CNN only)
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Here, P1r
i
 and P2c

i
 are defined as the penalty terms 

imposed on pattern class i , if it does not belong to the top M 
class ranks. The final score (SCj) is the product of Sj and Fj

Finally, the resultant class ( c ) is the class with a mini-
mum SCj value which gives the final decision score of the 
proposed ensemble model.

Results

All programs have been run on the Google Colab platform. 
The GPU utilised for running the programs is Tesla T4 pro-
vided by the platform. The performance metrics used for 

(5)SCj = Sj × Fj

Fig. 5  Confusion matrix obtained from the proposed fuzzy ensemble 
model for valence dimension on DEAP dataset

Fig. 6  Graphs showing the variation of training as well as validation accuracies with different epoch sizes for arousal dimension on DEAP data-
set for a model 1 (1D CNN + LSTM model), b model 2 (1D CNN + GRU model), and c model 3 (1D CNN only)



Cognitive Computation 

1 3

evaluating our model are accuracy and f1-score; they have 
been defined as follows:

DEAP Dataset

Subject‑Independent Approach to DEAP Dataset

The evaluation metrics for different models on the DEAP 
dataset for the subject-independent approach have been 
summarised in Table 4. It can be seen that the ensemble 
model outperforms the individual models.

Valence Dimension The variation of training and valida-
tion accuracies with epochs for the different models has 
been shown in Fig. 4. It can be observed from the following 
curves that both training and validation accuracies increase 
with epoch rapidly in the beginning, then the rate of increase 
decreases, and it almost flattens near 200 epochs, which 
indicates that the model has been trained.

(6)Accuracy =
True Postive + True Negative

True Postive + True Negative + False Positive + False Negative

(7)F1 − score =
Recall−1 + Precision

−1

2

The confusion matrix obtained by the proposed fuzzy 
ensemble model is represented in Fig. 5. From Fig. 5,  it can 
be seen that the ratio of wrong predictions to correct predic-
tions is approximately 10% for both high and low valence.

Arousal Dimension The variation of training and validation 
accuracies with epochs for the three candidate models have 
been shown in Fig. 6. It can be observed from Fig. 6 that the 
accuracy has become more or less stable near 200 epochs 
which indicates the training has been completed.

The confusion matrix obtained by the proposed fuzzy 
ensemble model is represented in Fig. 7. From Fig. 7, it can 
be seen that the misclassification rate is slightly higher for 
low arousal as compared to high arousal.

Subject‑Dependent Approach to DEAP Dataset

For the subject-dependent approach, we have taken the aver-
age of our test results for each of 32 subjects, and those 

average test results for the different models have been pre-
sented in Table 5. In this approach, the ensemble model 
outperforms the individual models for both the arousal and 
valence dimensions.

AMIGOS

Subject‑Independent Approach

The evaluation metrics for different models on the DEAP 
dataset for the subject-independent approach have been 
summarised in Table 6. The ensemble model surpasses the 
accuracies achieved by the individual models, and we have 
obtained state-of-the-art accuracies for both valence and 
arousal dimensions.

Valence Dimension The variation of training and validation 
accuracies with epochs for the three different candidate mod-
els has been shown in Fig. 8. From the graphs shown in 
Fig. 8, it can be observed that the accuracy increases sharply 

Fig. 7  Confusion matrix produced by the proposed fuzzy ensemble 
model for arousal dimension on DEAP dataset

Table 5  Comparison of 
performance of different models 
for the subject-dependent 
approach on the DEAP dataset

The bold values signify the highest accuracies achieved by the proposed Gompertz fuzzy ensemble model

Models Valence Arousal

Accuracy score F1 score Accuracy score F1 score

1D-CNN + LSTM 94.11 94.41 94.39 94.64
1D-CNN + GRU 94.53 94.78 94.84 95.06
1D-CNN only 94.45 94.7 94.68 94.88
Gompertz Fuzzy Ensemble 95.78 95.99 95.97 96.14
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initially, and then the curve becomes flat near 50 epochs. 
Hence, the models are not trained for further epochs.

The confusion matrix outputted by the proposed fuzzy 
ensemble model for valence dimension  is represented 
in Fig. 9. It can be observed from Fig. 9 that the ratio of 

incorrect predictions to correct predictions for low valence 
is around 0.024 and that of high arousal is about 0.006.

Arousal Dimension The variation of training and validation 
accuracies with epochs for the different candidate mod-
els has been shown in Fig. 10. The training and validation 

Table 6  Comparison of 
performance of different models 
for the subject-independent 
approach on the AMIGOS 
dataset

The bold values signify the highest accuracies achieved by the proposed Gompertz fuzzy ensemble model

Models Valence Arousal

Accuracy score F1 score Accuracy score F1 score

1D-CNN + LSTM 96.05 96.92 93.21 93.74
1D-CNN + GRU 96.59 96.90 97.03 96.19
1D-CNN only 97.00 97.44 97.34 96.60
Gompertz Fuzzy Ensemble 98.73 99.00 98.39 98.53

Fig. 8  Graphs showing the variation of training as well as validation accuracies with different epoch sizes for valence dimension on AMIGOS 
dataset for a model 1 (1D CNN + LSTM model), b model 2 (1D CNN + GRU model), and c model 3 (1D CNN only)
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accuracies reached a more or less constant value at 50 
epochs for each model; hence the models were trained for 
50 epochs only.

The confusion matrix  produced by the proposed fuzzy 
ensemble model for arousal dimension is represented in Fig. 11. 
The misclassification percentage for low arousal is approxi-
mately 1.5% and that of high arousal is approximately 1.7%.

Subject‑Dependent Approach

For the subject-dependent approach, we have taken the 
average of our test results for each of 32 subjects, and 
those average test results for the different models have Fig. 9  Confusion matrix obtained by the proposed fuzzy ensemble 

model for valence dimension on AMIGOS dataset

Fig. 10  Graphs showing the variation of training as well as validation accuracies with different epoch sizes for arousal dimension on AMIGOS 
dataset for a model 1 (1D CNN + LSTM model), b model 2 (1D CNN + GRU model), and c model 3 (1D CNN only)
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been presented in Table 7. It is evident from Table 7 that 
the proposed fuzzy ensemble-based deep learning model 
has given better results  in case of both valence as well as 
arousal dimensions.

Comparison to Existing Works

The performance of our model has been compared to previ-
ous models in Table 8. It can be observed from Table 8 that 
our proposed fuzzy ensemble-based deep learning model has 
outperformed almost all the existing models for both DEAP 
and AMIGOS datasets.

Fig. 11  Confusion matrix obtained by the proposed fuzzy ensemble 
model for arousal dimension on AMIGOS dataset

Table 7  Comparison of 
performance of different models 
for the subject-dependent 
approach on the AMIGOS 
dataset

The bold values signify the highest accuracies achieved by the proposed Gompertz fuzzy ensemble model

Models Valence Arousal

Accuracy score F1 score Accuracy score F1 score

1D-CNN + LSTM 97.12 91.10 95.22 94.53
1D-CNN + GRU 98.21 91.76 97.05 97.03
1D-CNN only 97.37 92.86 96.56 96.44
Gompertz Fuzzy Ensemble 99.38 93.87 98.66 98.54

Table 8  Performance comparison of our fuzzy ensemble-based deep learning model with some state-of-the-art deep learning models proposed 
by previous researchers

The bold values signify the highest accuracies achieved by the proposed Gompertz fuzzy ensemble model

Author Dataset Model Valence accuracy Arousal accuracy

Koelstra et al. [15] DEAP PSD + Naïve Bayes 0.6200 0.5760
Dabas et al. [18] SVM, Naïve Bayes 0.5890 0.7806
Salama et al. [21] CNN 0.8744 0.8849
Zhan et al. [22] CNN 0.8295 0.8407
Allghary et al. [23] LSTM 0.8545 0.8565
Parui et al. [25] XGBoost 0.7597 0.74206
Bagzir et al. [27] DWT + KNN, SVM, ANN 0.9110 0.9130
Siddharth et al. [28] CNN + Extreme Learning Machine 0.7109 0.7258
Ante Topic [31] R-HOLO-FM + CNN + SVM 0.8326 0.8385
Zhao et al. [35] 3D CNN 0.9643 0.9661
Proposed (Subject Independent) Fuzzy Ensemble 0.9084 0.9172
Proposed (Subject Dependent) Fuzzy Ensemble 0.9578 0.9597
Miranda et al. [29] AMIGOS PSD,SPA + SVM 0.5760 0.5920
Siddharth et al. [28] CNN + Extreme Learning Machine 0.8302 0.7913
Ante Topic [31] R-HOLO-FM + CNN + SVM 0.8854 0.9151
Singh et al. [33] Spectrogram + CNN 0.8750 0.7500
Garg et al. [34] Wavelet energy + DNN 0.8547 0.8187
Zhao et al. [35] 3D CNN 0.9696 0.9752
Proposed (Subject Independent) Fuzzy Ensemble 0.9873 0.9839
Proposed (Subject Dependent) Fuzzy Ensemble 0.9938 0.9866
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Conclusion

This paper proposes a fuzzy ensemble-based deep learning 
approach to classify emotion from EEG signals. Emotion rec-
ognition from EEG signals is a very challenging task [48], 
and getting accurate predictions is crucial as it has applica-
tions in the medical domain [49, 50]. The proposed model 
has achieved state-of-the-art results on the benchmark AMI-
GOS dataset, which is the largest dataset in this domain. The 
proposed model achieved accuracies of 98.73% and 98.39% 
on the valence and arousal dimensions, respectively, for the 
subject-independent setup, while for the subject-dependent 
setup, the accuracies attained are 99.38% and 98.66%, respec-
tively, on the valence and arousal dimensions. Our model has 
also achieved satisfactory results for both subject-dependent 
and subject-independent approaches on the standard DEAP 
dataset. For the subject-independent approach, we have 
obtained accuracies of 90.84% and 91.72%, respectively, 
on the valence and arousal dimensions. For the subject-
dependent approach, the accuracies obtained are 95.78% and 
95.97% on the valence and arousal dimensions, respectively. 
It is to be noted that the running time of the proposed fuzzy 
ensemble-based model are found to be approximately 446 s 
for the DEAP dataset and 759 s for the AMIGOS dataset. 
This proves that our proposed model produces results while 
utilising significantly lesser time. It is true that the Gompertz 
function is difficult and mathematically expensive as we need 
to calculate the fuzzy measure for each individual candidate 
model as well as groups of models. Sometimes, ensembling 
is also found to be expensive in terms of both time and space. 
Even ensemble methods reduce the model interpretability 
due to increased complexity. However, the proposed ensem-
ble model produces impressive accuracies for both subject-
dependent and subject-independent cases. This is the most 
highlighting part of the present approach. One important 
limitation of the present work is that our proposed model has 
been designed for inputs taken from EEG signals only and 
so the model may not perform well for multi-modal inputs.

In the future, we would like to develop a multi-modal 
model for emotion recognition by combining EEG signals 
and video recording as inputs. Due to resource constraints, 
we could not develop the multi-modal model in this paper. 
Also, future work could focus on converting EEG signals to 
the image domain and then training classifiers for emotion 
recognition. This will reduce the input size, and hence model 
efficiency will increase.
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