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Abstract
The interpretation of biological data such as the ElectroCardioGram (ECG) signal gives clinical information and helps to assess  
the heart function. There are distinct ECG patterns associated with a specific class of arrhythmia. The convolutional neural  
network, inspired by findings in the study of biological vision, is currently one of the most commonly employed deep  
neural network algorithms for ECG processing. However, deep neural network models require many hyperparameters to 
tune. Selecting the optimal or the best hyperparameter for the convolutional neural network algorithm is a highly challenging 
task. Often, we end up tuning the model manually with different possible ranges of values until a best fit model is obtained. 
Automatic hyperparameters tuning using Bayesian Optimization (BO) and evolutionary algorithms can provide an effective 
solution to current labour-intensive manual configuration approaches. In this paper, we propose to optimize the Residual  
one Dimensional Convolutional Neural Network model (R-1D-CNN) at two levels. At the first level, a residual convolu-
tional layer and one-dimensional convolutional neural layers are trained to learn patient-specific ECG features over which  
multilayer perceptron layers can learn to produce the final class vectors of each input. This level is manual and aims to limit 
the search space and select the most important hyperparameters to optimize. The second level is automatic and based on our 
proposed BO-based algorithm. Our optimized proposed architecture (BO-R-1D-CNN) is evaluated on two publicly avail-
able ECG datasets. Comparative experimental results demonstrate that our BO-based algorithm achieves an optimal rate of  
99.95% for the MIT-BIH database to discriminate between five kinds of heartbeats, including normal heartbeats, left bundle 
branch block, atrial premature, right bundle branch block, and premature ventricular contraction. Moreover, experiments 
demonstrate that the proposed architecture fine-tuned with BO achieves a higher accuracy tested on the 10,000 ECG patients  
dataset compared to the other proposed architectures. Our optimized architecture achieves excellent results compared to previous  
works on the two benchmark datasets.

Keywords One-dimensional deep neural network classifiers · CNN architecture · Residual network · Bayesian 
optimization · ECG arrhythmia classification

Introduction

The ECG is a non-invasive electrical recording of the heart. 
The signal provides a useful information about heart health 
and can tell more about individuals such as gender, age, biom-
etry and emotion recognition. Researchers have explored  
this peripheral physiological signal to extract useful mark-
ers for future outcome research [1]. Several research works 
have been achieved in ECG analysis [2]. Challenges have 
been raised to provide an accurate ECG beats classification. 
In recent years, Deep Neural Network (DNN) is becoming 
increasingly an important research area. The structure of DNN  
tries to emulate the structure of human brain given a bulky 
dataset, fast enough processors and a sophisticated algorithm 
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by constructing layers of artificial neurons that can receive  
and transmit information. The DNN offers accurate results with  
more training data. It is useful for unstructured data. Com-
plex problems can be solved with a greater number of hidden  
layers. This structure makes possible to continuously adjust 
and make inferences. It outperforms the traditional machine 
learning in several applications such as the ElectroCardioGram  
(ECG) [3], ElectroEncephaloGraphy (EEG) [4] classifica-
tion, more recently industry 4.0 [5] and COVID-19 detec-
tion [6,  7]. Recent researches provide many successful  
algorithms in DNN. The Convolutional Neural Network 
(with the acronyms CNN) is currently one of the com-
monly employed DNN algorithms for image recogni-
tion including detection of anomalies on ECG. Ebrahimi  
et al. [8] revealed that the CNN is dominantly found as  
the appropriate technique for feature extraction, observed  
in 52% of the studies about explainable DNN methods 
for ECG arrhythmia classification. The idea of CNN  
comes from the biological visual cortex. The cortex consists 
of small regions that are sensitive to specific areas of the 
visual field. Similarly, the CNN based on small regions inside 
of an object that perform specific tasks. The algorithm is a 
hierarchical neural network. It gets the input and processes it 
through a series of hidden layers. It is organized to automati-
cally learn spatial hierarchies of features through backpropa-
gation by employing different blocks, like convolution layers 
and pooling layers. The One-Dimension Convolutional Neu-
ral Network (1D-CNN) is a distinguished variant of CNN. It is  
typically used for the time series input with one direction x that  
represents the time axis. While they have achieved excellent 
results in working with a variety of hard problems [9, 10], the  
CNNs are usually exposed to overfitting or underfitting prob-
lems. Hence, the model fails to predict the output of unseen  
data or even the output of the training data. In fact, the noise 
introduced to the input signal slows the learning process. Vari- 
ous types of artifacts could lead to noisy ECG signals such 
as baseline wander, drift, powerline interference and muscle 
artifacts. The noisy signals lead to produce high false alarm 
rates thus the misclassification of ECG beats and misdiagno-
sis of cardiac arrhythmias. In addition, the ECG signals are  
non-stationary. Furthermore, the high number of parameters  
especially in fully connected layers makes the network prone 
to overfitting. Several previous works have proposed methods 
to boost classification results based on CNN hyperparam-
eters and regularization. Regularizing the network structure 
or designing specific training schemes for stable and robust 
prediction is considered among the hottest topic for efficient  
and robust pattern recognition in the DNN [11]. A com-
plex model may achieve a high performance on training  
data since all the inherent relations in seen data are memo-
rized. However, the model is usually unable to perform well 
for unseen data including validation and test data. In order to  
solve this issue, different regularization methods were applied  

in the literature. Xu et al. [12] proposed SparseConnect to 
alleviate overfitting by sparsifying regularization on dense 
layers of CNNs. However, they raise, furthermore, the com-
plexity of the model which in turn put the model harder to 
optimize. In our work, we choose to randomly dropping 
few nodes. Unlike conventional methods of tuning based on 
manual tries to choose the best hyperparameter value, our 
work proposes to use BO to select an optimal configuration  
of the dropout rate and the number of convolutional layers. In our  
proposal, two-level process has been established for building 
a robust Residual 1D-CNN (R-1D-CNN). The level one has 
the potential of reducing the search space of hyperparameters.  
The second level allows to test some configurations of the 
model. The innovative contributions associated with this work  
can be described as follows: 

1. We build a novel BO-R-1D-CNN architecture to detect 
features of the ECG automatically. The proposed model of  
biological vision presents good performance.

2. To solve the overfitting issue and give robust classification 
results in real time through automatic hyperparamters tun-
ing, we develop an algorithm based on BO.

3. We further explore two datasets for experimental study. Our 
proposal outperforms another technique of optimization and 
almost the previous works in ECG classification, which dis-
plays the performance of our proposed architecture.

The rest of this paper is organized as follows: In the “Back-
ground’’ section, we outline a short background of the CNN 
and the BO technique. In the “Methods’’ section, the proposed 
architecture is detailed. The demonstration and performance 
of the proposed architecture are indicated in the “Results’’ 
section. At last, the “Conclusion’’ section concludes the  
paper and highlights the future work.

Background

Convolutional Neural Networks

Much of the current research on DNN has focused on 
improving and validating existing DNN algorithms rather 
developing new algorithms. The CNN is one of the com-
monly employed DNN algorithms. A CNN learns dif-
ferent levels of abstraction about an input. The  CNN  
performs well in image processing, including image rec-
ognition and image classification thanks to its hierarchi-
cal layers. The hierarchical property allows to increasingly  
learn a complex model. For instance, the model learns  
in the first time basic elements, then it learns later their  
parts. Another advantage of CNN is the automatic extraction 
of features with minimal pre-processing operations [13]. The 
input of CNN is an array of pixels in the format of HxWxD 
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where H = Height, W =Width and D = dimension. The HxW 
constitutes the feature map and D is the number of channels. 
A grey image of size 32x32 pixels is represented by an array 
32X32X1 while an RGB image of the same size is represented  
by an array of 32X32X3. The structure may include convolu-
tional layers hence its name, pooling layers, Rectified Linear 
Unit (ReLU) layers and fully connected layers.

• Convolutional layer: the main layer of CNN. It consists 
of a set of filters that exploits the local spatial correla-
tion assuming that near pixels are more correlated than 
distant pixels. The size of the filter defines the size of 
each feature map and its depth defines the number of 
feature maps. All local regions share the same weights 
called weight sharing. Mathematically saying, a convo-
lution acts as a mixer, mixing two functions to obtain a 
reduced data space while preserving the information. The 
model involves training a multilayer architecture without 
the explicit need of handcrafted input features and is able 
to extract automatically the features such as edge, blur 
and sharpen. It helps to remove noise.

• Pooling layer: common use is the max-pooling, which 
implements a sliding window. The max-pooling opera-
tion slides over the layer and takes pixels of the maxi-
mum value of each region with a step of stride vertically 
and horizontally.

• ReLU: is a non-linear activation function. It performs a 
threshold operation. The output takes the same value as the 
input for the positive values and zero otherwise. The func-
tion is used by default for many DNN algorithms since it 
performs well and avoids a vanishing problem.

• Fully connected or dense layer: in a fully connected layer, 
every neuron is connected to every neuron in the next layer. 
A model may contain one or more fully connected layer. 
The dense layer can be the last layer for the classification.

Based on the input, different convolutional dimensions can  
be used. A 1D-CNN is typically used for the time series input with 
one direction x that represents the time axis. Common uses of  
1D-CNN are proposed for ECG data classification and anom-
aly detection [14]. A 2D-CNN performs well for image recogni-
tion and classification as the input is an image of 2 dimensions.  
The convolution is calculated based on two directions (x,y).  
With the increasing number of dimensions, a 3D-CNN applies a 
three-dimensional filter. The filter moves in three directions (x,  
y, z). The model is helpful in drug discovery [15].

Bayesian Optimization

The effective use of machine learning algorithms is associ-
ated with hyperparameters tuning. They adjust the model to 
a specific database and avoid ongoing training costs. To get 

up speed on hyperparameters tuning, BO can be used. The 
technique is based on Bayes’ theorem [16] to select the best 
configuration of hyperparameter values. The Bayes’ theorem 
consists of calculating the conditional probability of an event.  
The Bayes’ theorem uses prior probability distributions to be able  
to produce posterior probabilities. A prior probability could be 
the probability of an event before new knowledge is collected. 
The probability of A conditional on B is defined as Eq. 1.

Where:

P(A) = The probability of A occurring
P(B) = The probability of B occurring
P(A | B) = The probability of A given B
P(B | A) = The probability of B given A
P(A 

⋂

 B) = The probability of both A and B occurring

The BO provides a global optimal solution. By limiting the 
hyperparameters search space on ranges of values, the algorithm 
develops a probabilistic model of the objective function named 
the surrogate function. Mathematically saying, the algorithm is 
interested in solving Eq. 2:

This optimization method takes into account the problem of 
noise present in the evaluations of Eq. 3

where f is a black box and computationally expensive to evaluate.
Starting from default parameters, e.g. parameter ranges that 

are used in the literature, the performance evaluation calculated  
using a numeric score or a cost such as the accuracy rate. The aim  
is selecting a best configuration that maximizes or minimizes 
the cost. The best result achieved by a couple of hyperparam-
eters would be used to construct the tuned model. Hence, the 
hyperparameters are assigned. For more details about hyper-
parameter optimization for machine learning models based  
on BO, please see [17]. The Table 1 presents different approaches  
worked on 1D-CNN and optimized by BO. The table presents 
mainly the selected hyperparameters, their search space and the 
obtained optimal values that are used in BO.

Methods

CNNs have been widely employed to improve the performance  
of ECG heartbeat classification [21]. Therefore, the pro-
posed classifier is based on a CNN model. The first setting of 

(1)P(A ∣ B) =
P(A

⋂

B)

P(B)
=

P(A) ∗ P(B ∣ A)

P(B)

(2)x∗ = argmin
x

f (x)

(3)y = f (x)
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hyperparameters is done manually. The process is iterative to 
accomplish an acceptable rate of accuracy. We add layers and 
nodes to the model gradually. The increasing layer number made 
the manual optimization harder. This configuration is given to 
the optimization algorithms as the default parameters and runs 
as the first iteration. By optimizing the neural network loss, the 
smoothing parameters are optimized to perform the prediction 
task. A novel BO-R-1D-CNN architecture is presented in our 
work. The optimization method is described below.

First Level: Architecture Building 
and Hyperparameters Selection

The primary hyperparameters employed for evaluation are  
the drop rate, the number of hidden layers, the learning rate and  
the Adam decay as they are more sensitive to variations in the 
classification performance. They are also widely used in many 
machine learning tasks [22]. In Table 2, a sample of models 
with different hyperparameters values by a large margin is 

Table 1  One-dimensional CNN optimized by BO

Method Year DataBase Search Space Ranges Optimal n Epochs Accuracy (%)

Value Baseline Optimal

[18] 2020 Landslide data Number of filters 4–512 117 25 63 80.50 83.50
Sequence length [3, 5, 10, 12] 10
Batch size 4–128 16
Activation function [ReLU, Linear, ELU

Tanh, ELU,
Sigmoid]

optimization method [SGD, Adam, Adagrad
Adamax,Adadelta,
Adagrad, RMSprop,
Nadam]

Neurons in 4–512 240
hidden layers
Dropout rate 0–0.8 0.66

[19] 2020 Acceleration signals Learning rate e
−5–e−2 e

−5 150 54 84.75 93.53
Batch size 16–64 17
Epoch 20–60 54
Layer number 1–5 4
Conv1 filter number 6–16 10
Conv1 filter size 3–11 4
Conv2 filter number 12–32 27
Conv2 filter size 3–11 11
Conv3 filter number 24–64 24
Conv3 filter size 3–11 10
Conv4 filter number 48–128 66
Conv4 filter size 3–11 3
Conv5 filter number 96–256 -
Conv5 filter size 3–11 -

[20] 2021 UrbanSound8K dataset Number of filters 16–512 158 25 50 92.4 94.4
Kernel size [2, 4, 6–12] 3
Batch size 16–256 64
Activation function [ReLU, Linear,

Sigmoid, Tanh] -
optimization method [Adam, EAG, Adam

RMSprop, Nadam,
Adamax, Adadelta,
Adagrad]

Dropout rate 0–0.5 0.266
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displayed. The performance of the tested models is presented. 
In the iteration No. 3 where the classification performance 
is good in some parts, the F1 score of the proposed method 
is 80.94% while the accuracy and the recall are 86.06% and 
86.06% respectively. Until this iteration, the different hyper-
parameters have been fixed except the number of hidden  
layers. As the network becomes deeper, residual connection 
[23] is introduced. Hence, a new level of depth is appeared in 
iteration No. 4. Deep residual learning comes with the ben-
efit of solving the issue involved with vanishing/exploding  
gradients as well as the degradation problem. The residual network  
achieves this by employing skip connections, or shortcuts to 
leap across a number of layers. The number of residual blocks 
in our architecture is fixed to one after some trials. The skip 
connection is located in the position displayed as a residual 
block in Fig. 1. This new architecture allows an efficient train-
ing by including skip connections. In iteration No. 5, it is clear 
that the selected dropout rate hyperparameter has influence 
with the whole fixed hyperparameters. Moreover, the perfor-
mance of the proposed method is more consistent with learn-
ing rate 0.001 than 0.000004 as displayed in iteration No. 6. 
The accuracy of iteration No. 7 is generally good throughout 
the records, therefore the corresponding values are selected.

Second Level: Architecture Optimization

To enhance the architecture performance and avoid an over-
fitting problem, we choose to use the BO. The last is  
made using Bayesian inference and Gaussian process (GP). This 
approach is an appropriate algorithm to optimize hyperparam-
eters of classification. By choosing which variables to optimize,  
and specifying the ranges to search in, the algorithm selects the 
optimal values. The GP is a well-known surrogate model for BO 
employed for approximating the objective function. It performs 
well in small dimensional spaces specifically when the number  
of features meets five features. The Table 3 illustrates the selecting  
hyperparameters, their type and their ranges. A DNN  
model is constructed according to the first level, and the  
most likely point to be maximized by the acquisition function is  
identified. Some hyperparameters that are very responsive to 

changes are chosen at the first level such as the learning rate. The  
BO enables fine-tuning of the model through the regularization of the  
penalty and determining the optimal number of layers.

Results

Setup

We used the python and its data science library to implement 
our algorithms. We implemented the algorithms using the 
Keras of TensorFlow library version 2.5 on a Tesla P100 GPU 
and 25 GB that are provided by Google Colaboratory Note-
books. The training set contains 70% of randomly selected 
beats and the rest is divided into test and validation sets. Each 
set contains 50% of the remained beats.

Database

Our proposed model is trained on two publicly available data-
sets: (1) The MIT-BIH dataset [24] that includes 48 ECG 
recordings of 30 min duration of 47 subjects and 250 sam-
pling rate. Each record is annotated by specialists and can be 
utilized as ground truth for training, validation and the test. 
The collected data is preprocessed. We build a new dataset 
that consists of 82813 segments. For beat segmentation, we 
consider a fixed window multiple of frequency. The raw ECG 
signal doesn’t require any pre-filtering technique or a feature 
extraction step as used in traditional machine learning algo-
rithms. The database is relatively noise free. Furthermore, 
the CNN is robust to the noise and features are automatically 
extracted during the learning process. (2) The second dataset 
is 10,000 ECG patients dataset [25]. This dataset consists of 
10646 subjects of 10 s duration and 500 Hz sampling rate.

Performance

The performance of our proposed model was evaluated using sev-
eral experiments. In the beginning, experiments are used to build  

Table 2  Random search of 
hyperparameters values

The hyperparameters achieving the best performance are written in bold font

Iteration Drop Number of Learning Adam Classification performance (%)

rate hidden layers rate decay Accuracy F1 score Recall Precision

1 0.1 7 0.001 0.0 82.88 77.34 82.88 72.52
2 0.1 19 0.001 0.0 85.30 79.51 85.30 76.34
3 0.1 33 0.001 0.0 86.06 80.94 86.06 76.69
4 0.1 41 0.001 0.0 97.68 96.89 97.56 96.23
5 0.03 41 0.001 0.0 99.15 98.9 98.79 98.7
6 0.1 41 0.000004 0.0 72.6 71.79 72.6 71
7 0.01 41 0.001 1e-5 99.7 99.35 99.02 98.69
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Fig. 1  Overall structure of our proposed architecture — level 1
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an architecture to fit the MIT-BIH dataset and achieved 99.70%. Fig-
ures 2 and 3 illustrate the accuracy and the loss obtained during the  
training phase. The model runs 100 epochs with early stopped 
enabled. While the size of the input vector and the number of the 
hidden layers is large, the model converges in an extremely small 
time (8 epochs).

However, the gap between the validation and the train-
ing is significant.

At level two, we introduce the BO. A form of pseudo- 
code is written to provide precise descriptions of what the BO  
does. The pseudo-code is presented in Algorithm 1. The 
performance of the algorithm has increased. The BO pro-
duced an improvement right after the 13th iteration. The 
numerical experiments are showing that the resulting accu-
racy for the optimization with a finite budget outperforms 
the accuracy of the baseline model.

Finally, we build the optimized model for the test. Figures 4  
and 5 illustrate the accuracy and loss obtained during the  
training phase. The training accuracy and training loss are  
respectively close to the validation accuracy and validation  
loss at second level. The confusion matrix is displayed in  

Table 3  Hyperparameters end up being run optimization

Hyperparameter Type Ranges

Low High

Drop Rate Real 1e-2 1e-1
Number of Dense Layers Integer 1 6
Number of Convolutional Layers Integer 1 6
Learning Rate Real 1e-3 1e-1
Adam Decay Real 1e-6 1e-5
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Fig. 2  Training and validation accuracy at level one

Fig. 3  Training and validation loss at level one

Table 4  Performance classification using different optimization tech-
niques

Dataset Performance Without 
optimization

With 
Bayesian

With PSO

MIT-BIH Accuracy 99.7 99.95 99.8
Recall 99.02 99.23 99.06
F1 score 99.35 99.58 99.42

10,000 
Patients

Accuracy 98.33 99.92 99.27

Recall 98.04 99.22 99.15
F1 score 98.18 99.4 99.2

Fig. 4  Training and validation accuracy — optimized model

Fig. 5  Training and validation loss — optimized model

Fig. 6  Normalized confusion matrix for identification of five classes
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Fig. 6. Typically, the diagonal elements present the rate of  
items that are well predicted. Off-diagonal items are misla-
belled. The proposed BO-R-1D-CNN properly predicted ECG  
signals of five distinct classes with a high accuracy of 99.95%. 
By reviewing the individual performance ratios of the dif-
ferent classes, we notice that the minimum recognition rate  
belongs to Left bundle branch block class (L) with 98%. The 
highest recognition performance is in the Atrial premature  
(A) and Normal (N) classes with 100%. The Right bundle  
branch block (R) and the premature Ventricular contraction  
(V) achieve 99%. The remainder of experiments aims at test-
ing the model on different benchmark datasets and using two  
different optimization techniques. Other metrics are used to  
evaluate the classification performance. The Recall, the Preci-
sion and the F1 score can be calculated respectively by Eqs. 4–6

The Table 4 displays the achieved results. According to the table,  
the BO outperforms the PSO. The model fits well for  
MIT-BIH and 10,000 patients databases.

Discussion

Both of our architectures at level one and level two present  
novelties. We demonstrate that the proposed R-1D-CNN archi-
tecture, fine-tuned by the BO method is efficient compared to the  
state-of-the-art architectures. In our experiments, we exploit  
the BO-R-1D-CNN to classify the ECG signal of two databases.  
The Table 5 displays the classification accuracy of different 
architectures. A prior study has shown that ECG signals have 

(4)Sensitivity (%) = Recall =
TP

TP + FN
× 100

(5)Precision (%) =
TP

TP + FP
× 100

(6)
F1 (%) =

2 ∗ Precision ∗ Recall

Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

× 100

been successfully learned by the AutoEncoder Long Short-Term  
Memory (AE-LSTM) [26]. Other recently developed convo-
lutional architectures have been trained on similar databases. 
Nevertheless, our proposal achieves the highest accuracy.

Compared to the previous works on the MIT-BIH database, the  
CNN architecture provides an automatic extraction of features 
and does not require a pre-selection feature step. Hence, it  
is more generic. The computational complexity of the convo-
lutional layer is o(knd2) [31] with n represents the sequence  
length, d is the representation dimension and k is the kernel  
size of convolutions. These attractive features may facilitate  
the application of the model in more real-time context, such  
as the Internet of Things (IoT) data analysis.

Conclusion

In this paper, we address optimization challenges for the 
R-1D-CNN model and propose a novel architecture for 
ECG analysis. In addition, we develop an algorithm based 
on BO to produce robust classification results in real time 
through automatic hyperparameters tuning. Comparative 
experimental results performed on two publicly available 
ECG Datasets demonstrate that our BO-based algorithm can 
outperform the state-of-art approaches. The BO achieves for 
instance an optimal rate of 99.95% for the MIT-BIH data-
base. In the future, we plan to test the algorithms on other 
databases, especially for a dialysis application. We will also 
introduce other type of layers and classifiers to manage and 
optimize the complexity of the network.
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Table 5  Classification accuracy 
of different architectures

Note that the bold font highlights the performance of the proposed model

Reference Year Database Architecture + Classifier Accuracy (%)

[26] 2019 MIT-BIH Autoencoder + LSTM 99
[27] 2020 MIT-BIH Bidirectional LSTM 99.64
[28] 2021 MIT-BIH GAN+LSTM 99.2
[29] 2021 10,000 Patients CNN 98
[30] 2022 MIT-BIH Improved deep 88.99

residual CNN
The proposed 2022 MIT-BIH R-1D-CNN > 99.9

and
BO-R-1D-CNN 10,000 Patients
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Availability of Data and Materials The ECG signals are obtained from 
the MIT-BIH arrhythmia database and the 12-lead electrocardiogram 
database for arrhythmia research covering more than 10,000 patients. 
All the databases are public and available online: Link to the MIT-BIH 
arrhythmia database: https:// physi onet. org/ conte nt/ mitdb/1. 0.0/. The 
original publication is referenced by [24]. Link to the 12-lead electro-
cardiogram database: https:// doi. org/ 10. 6084/ m9. figsh are.c. 45604 97. 
v2. The original publication is referenced by [25].
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