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Abstract

This review study presents the state-of-the-art machine and deep learning-based COVID-19 detection approaches utilizing
the chest X-rays or computed tomography (CT) scans. This study aims to systematically scrutinize as well as to discourse
challenges and limitations of the existing state-of-the-art research published in this domain from March 2020 to August 2021.
This study also presents a comparative analysis of the performance of four majorly used deep transfer learning (DTL) models
like VGG16, VGG19, ResNet50, and DenseNet over the COVID-19 local CT scans dataset and global chest X-ray dataset.
A brief illustration of the majorly used chest X-ray and CT scan datasets of COVID-19 patients utilized in state-of-the-art
COVID-19 detection approaches are also presented for future research. The research databases like IEEE Xplore, PubMed,
and Web of Science are searched exhaustively for carrying out this survey. For the comparison analysis, four deep transfer
learning models like VGG16, VGG19, ResNet50, and DenseNet are initially fine-tuned and trained using the augmented
local CT scans and global chest X-ray dataset in order to observe their performance. This review study summarizes major
findings like Al technique employed, type of classification performed, used datasets, results in terms of accuracy, specificity,
sensitivity, F1 score, etc., along with the limitations, and future work for COVID-19 detection in tabular manner for concise-
ness. The performance analysis of the four majorly used deep transfer learning models affirms that Visual Geometry Group 19
(VGG19) model delivered the best performance over both COVID-19 local CT scans dataset and global chest X-ray dataset.
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The word “novel” is used often with coronavirus to mean
that it is a new strain in the family of perilous viruses [1].
According to WHO, coronavirus belongs to a large family
of viruses ranging from common cold to unsafe diseases
(www.who.int). Such diseases can infect both humans and
animals. The coronavirus COVID-19 strain started spread-
ing in Wuhan, China, in December 2019, since then it has
become a serious health problem in the world. The corona-
virus COVID-19 strain has its place in two different corona-
viruses called Middle East Respiratory Syndrome (MERS)
and Severe Acute Respiratory Syndrome (SARS). Respira-
tory complications like pneumonia, kidney disorder, and
liquid formation in the lungs are among the symptoms of
coronavirus infection. Coronavirus (CoV) is the dangerous
I RIIT BSF Academy, Tekanpur, Gwalior, India one due to its serial interval (5 to 7.5) and reproductive rate
(2 to 3) [2]. The CoV has its roots in the single-stranded
RNA viruses (+ssRNA) family, mostly seen in animals [3,
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Table 1 Details related to the origin of CoV

Cov Year Origin Mortality rate
SARS 2002 Guangdong Province, 10%

China
MERS 2013 Saudi Arabia 34%
COVID-19 2019 Wuhan, China 2.0%

4]. These viruses have no species barriers and can cause
epidemics like MERS and SARS which were seen in the last
two decades. The SARS-CoV began in China, blew out to
twenty-four countries and caused 8000 cases and 800 deaths.
The MERS-CoV started in Saudi Arabia and reported 2500
cases and 8700 deaths. About 2% of the population are
healthy carriers of CoV and these viruses are accountable
for approximately 5 to 10% of acute respiratory infections
[5]. The virus behind COVID-19 pandemic is called Severe
Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)
[6]. The CoV details are given in Table 1.

COVID-19 is a new species discovered in 2019 that has
not been previously identified in humans. Bats have been
recognized as natural reservoirs and vectors of a variety of
viruses including coronaviruses have crossed species barri-
ers to infect humans as well as different kinds of animals,
including avian, rodents, and chiropters [7]. The CoV is so
named due to their solar corona (crown-like) appearance
when observed under an electron microscope. COVID-19
is an acute resolved disease, but it can also be deadly as
depicted in Fig. 1, based on the data from the WHO. Severe
disease onset might result in death due to massive alveolar
damage and progressive respiratory failure [8]. Respiratory
droplets of size greater than 5—10 um acts as a mode of air-
borne transmission (https://apps.who.int/iris/handle/10665/
331601). COVID-19 carries a higher growth factor than
SARS and MERS due to the fact that interaction without
safety measures can be extremely contagious and it causes

Fig.1 The top ten countries sta-
tistics related to infected cases
and deaths

M Deaths 496850 156567 247143

lighter symptoms in most cases. The top ten COVID-19
infected countries statistics in terms of infected cases and
deaths are presented with the help of Fig. 1.

Faster spreading rate is a major concern for COVID-19
pandemic and thus detecting who has the COVID-19 virus
infection at an early stage is critical [9] to curtail its spread.
Viral nucleic acid detection using real-time polymerase
chain reaction (RT-PCR) is the accepted standard diagnostic
method [10, 11]. However, this test has suboptimal sensi-
tivity and specificity and many hyper-endemic regions and
countries are not able to provide sufficient RT-PCR test-
ing for tens of thousands of suspected subjects in a short
period of time. Other concerns about RT-PCR are its pain-
fulness, lack of swabs, need of reagents, delays in produc-
ing results and substantial false-negative rate. Considering
these concerns, other approaches to diagnosis are worthy of
investigation [12]. All such approaches should be accurate,
fast, and effective tools for detecting COVID-19 infection
to provide the prerequisite for rigorous detection, contact
tracing and isolation of infected subjects at primary stage of
infection. Artificial intelligence techniques are now excep-
tionally found to be beneficial for training, forecasting, and
evaluation purposes. Neural networks are widely employed
for developing prediction models. But neural networks still
have limitations like slow convergence and learning capabil-
ity [13]. ALzubi et al. [14] demonstrated the fact that deep
learning is a beneficial technique to improve the diagnostic
pace, since it can be used for making predictions and clinical
decisions in medical system. These researches also stated
that linking medical image and diagnostic parameters is an
efficient scheme that will assist doctors to perform patients’
diagnosis utilizing big data. To assist doctors to evaluate the
COVID-19 disease and to optimize prevention and control
measures as earliest as possible, medical imaging can be
considered a vital technique to diagnose COVID-19 infec-
tions using radiological images such as X-rays or computed
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tomography (CT) scans. It has been established that anoma-
lies can be found in COVID-19 patients in chest CT scans
in the shape of Ground-Glass Opacities (GGO) [15]. Much
research has demonstrated that a system using chest CT
scans can be created for diagnosing and quantifying COVID-
19 cases [16]. To detect COVID-19, X-ray images can also
be utilized instead of CT scans. Hence, medical images like
chest X-rays (CXR) and CT images can be studied to give
comparatively instant diagnostic information by identifying
possible patterns that may lead to the automatic diagnosis
of the disease. Chest X-ray is the universally used imaging
modality in the diagnostic checkup of patients with thoracic
abnormalities, due to its fast imaging speed, low radiation,
and low cost [17], universal availability in both emergency
and hospital settings, where interpretation is often done
without expert radiologists.

Unlike laboratory tests that involve probing the patient’s
respiratory system, X-rays can be taken without the increased
risk of aerosolizing the pathogen. The X-rays may also facil-
itate the triage of patients into highest risk, high risk, and
lower risk of further complications besides indicating the
severity of disease at one or more time points. Unlike com-
puted tomography (CT) scans, chest X-rays cannot provide
3D anatomy but can differentiate pneumonia even though it
is probably understood as the most challenging plain film
to interpret correctly [18]. Accurate interpretation is vital
for patient management in the severe situation, and to help
identify clustering occurrences of COVID-19. CT, being a
noninvasive imaging approach, can portray certain charac-
teristic manifestations in the lung which are associated with
COVID-19 [19, 20]. CT can be used as an effective way for
early diagnosis of COVID-19 but CT may determine simi-
lar imaging features between COVID-19 and other types of
pneumonia, thus making it difficult to differentiate between
them. CT imaging is significantly more time consuming
than X-ray imaging, and also involves complex sanitization
procedures between switching patients. Moreover, sufficient
high-quality CT scanners may not be commonly available,
making it difficult for a timely viral pneumonia screening.
The role of medical imaging is vital for the fast diagnosis
of COVID-19 [18]. The first image based approach used in
Spain (https://healthcare-in-europe.com/en/news/imaging-
the-coronavirus-disease-covid-19.html). Hence, the combi-
nation of Al and chest imaging can facilitate the detection
of complications of COVID-19 [21].

Recent research work shows that computer vision [22],
machine learning [23-25], and deep learning [26, 27] can
be used for automatic diagnosis of different ailments in the
human body [28, 29]. The deep learning method is used as a
feature extractor that enhances classification accuracies [30].
Although radiography can be quickly performed and gener-
ally available due to commonality of chest radiology imag-
ing systems in hospitals, the interpretation of radiography

images by radiologists is still a major concern due to the
human capacity in detecting the subtle visual features pre-
sent in the images. Deep learning can discover patterns in
chest X-rays that can be missed by radiologists [31-34].
Deep learning, which has been used to detect tuberculosis in
chest X-rays, could also be used for identifying lung abnor-
malities related to COVID-19 [35] due to its high capabil-
ity of feature extraction [36—38]. This will help clinicians
in deciding the order of treatment of high-risk COVID-19
patients. Deep learning was used to detect and segregate
bacterial and viral pneumonia on pediatric chest radiographs
[39, 40]. Efforts have also been made to detect various imag-
ing features of chest CT scans [41, 42].

Deep learning (DL) is a branch of machine learning (ML)
which is inspired by the way the human brain works and
utilized for feature extraction as well as classification of
images. Main strength of DL is that it is an unsupervised
learning i.e., it can learn from unlabeled data. DL has been
vastly used in industries, self-driven cars, face recognition,
object detection, image classification, etc. [43] due to char-
acteristics like unlabeled data utilization, working without
feature engineering, prediction with high accuracy and pre-
cision. Convolutional neural network (CNN) is a DL algo-
rithm that has been used extensively in solving problems like
document analysis, different types of image classification,
pose detection, and recognizing various actions [44]. Medi-
cal imaging is one of the areas where CNN has been show-
ing encouraging results [45], and thus, convolutional neural
networks (CNNs) have been doing well in detecting several
diseases like coronary artery disease, malaria, Alzheimer’s
disease, different dental diseases, and Parkinson’s disease.
Likewise, CNN has considerable prospects for differentiat-
ing COVID-19 from non-COVID-19 infections with medical
images like chest X-rays and CTs using public databases of
chest X-rays and CTs. The chest X-rays and CT scans of
COVID-19 positive cases and normal are presented with
the help of Fig. 2.

The real motivation behind writing this review paper is to
illustrate the latest trends and development in the domain of
COVID-19 detection and classification approaches based on
deep learning. Apart from this, an analysis and comparison
is also done utilizing the five majorly used deep transfer
learning models as per the literature review for the COVID-
19 detection in the analysis and evaluation section. All these
five models are trained and evaluated on the locally devel-
oped COVID-19 CT scan dataset and two global chest X-ray
image dataset in order to observe their performance.

This state-of-the-art review paper is organized into a total
of five sections. Initially, the “Introduction” section is all
about illustrating the general introduction to the COVID-19
disease and its impact over the world in the present scenario.
The “Research Methodology” section deals with the research
methodology adopted to conduct this review study. The
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Chest X ray of diagnosed Chest X ray of diagnosed

Covid-19 positive patient Covid-19 Negative

CT scan image of
diagnosed Covid-19
positive patient

CT scan image of
diagnosed Covid-19
Negative

Fig.2 The chest X-ray and CT scan images of COVID-19 positive, normal people

“Literature Review” section deals with the brief review and
comparison of major automated deep learning and machine
learning-based COVID-19 detection approaches proposed
by the various researchers since March 2020. The “Majorly
Used COVID-19 Chest X Ray, CT Scan, and Ultrasound
Image Dataset Description” section elaborates the various
COVID-19 chest X-rays and CT scan datasets available
online for research. The “Analysis and Evaluation” section
presents an analysis and evaluation among the four majorly
used deep transfer learning models over the COVID-19 local
CT scan and global chest X-ray datasets.

Research Methodology

The presented review study aims to assess the existing
research done in the domain of deep learning application
for the detection of COVID-19 utilizing the chest X-rays and
CT scan images. Various databases e.g. IEEE Xplore, Pub-
Med, Web of Science etc. are searched exhaustively with the
specific search items. The research studies included in this
review study are based on the following selection criteria:

e Only deep learning-based approaches for the COVID-19
binary or multiclass classification are included.

e The considered research studies were limited to the
period from March 2020 to August 2021.

e The research studies utilizing either the chest X-ray or
CT scan imaging modalities are included. Other medical
imaging modalities are excluded.

@ Springer

e Only classification or detection approaches are included,
whereas prediction approaches utilizing big data are not
excluded from this study.

e Research studies which mentioned the future direction or at
least offered some narrative to improve the existing work.

After the elimination of duplicate and redundant works,
more than 50 unique studies were considered in this review
study. Table 2 below summarizes the search items employed
for the searching of research studies for the COVID-19 clas-
sification and detection.

Literature Review

Since March 2020, a substantial amount of research has been
carried out in the domain of COVID-19 detection based on
deep learning. These deep learning models are trained and
tested either using chest X-ray images or CT scan images or
sometimes both. This fact is very well proved by the Figs. 3
and 4 representing the data collected from major research
databases like PubMed and Web of Science. These two
graphs simply illustrate the number of COVID-19 detection
research studies done using either CT scan or Chest X-ray
datasets and established on deep learning, deep transfer
learning. Figures 5 and 6 demonstrate the general COVID-
19 detection approaches based on machine learning, deep
learning, and deep transfer learning whereas Fig. 7 depicts
deep learning in conjunction with traditional machine learn-
ing classifiers, also known as the hybrid models.
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Table 2 The list of research article sources and search items used

Research studies sources

Search terms

Web of science

IEEE Xplore

PubMed

Scopus

Under Advance search tab
TS =(Covid19" “and” Chest X ray” “and” Deep learning” “and” machine learning*)
TS=(Covid19" “and” CT scan” “and” Deep learning” “and” machine learning*)

“Covid19” AND “Deep learning” AND “CT scan”

“Covid19” AND “CNN” AND “CT scan”

“Covid19” AND “Deep transfer learning” AND “CT scan”

“Covid19” AND “machine learning” AND “CT scan”

“Covid19” AND “Deep learning” AND “Chest X ray” OR “X ray” or “X ray Scan”
“Covid19” AND “CNN” AND “Chest X ray” OR “X ray” or “X ray Scan”

“Covid19” AND “Deep transfer learning” AND “Chest X ray” OR “X ray” or “X ray Scan”
filter applied: journals only

Publication year: 2020 to 2021

“Covid19” AND “Deep learning” AND “CT scan” AND “machine learning”

“Covid19” AND “CNN” AND “CT scan”

“Covid19” AND “Deep transfer learning” AND “CT scan”

“Covid19” AND “Deep learning” AND “Chest X ray” OR “X ray” or “X ray Scan”
“Covid19” AND “CNN” AND “Chest X ray” OR “X ray” or “X ray Scan”

“Covid19” AND “Deep transfer learning” AND “Chest X ray” OR “X ray” or “X ray Scan”

TITLE-ABS-KEY (“Covid 19” AND “Chest X ray” AND “deep learning” AND “Machine
learning™)

(LIMIT-TO)

(PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR,

2020) AND (LIMIT-TO (DOCTYPE, “ar”))

TITLE-ABS-KEY (“Covid 19” AND “CT scan” AND “deep learning” AND “machine
learning”) AND (LIMIT-TO

(PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR,

2020) AND (LIMIT-TO (DOCTYPE, “ar”))

Deep Learning and Deep Transfer Learning-Based

Approaches

as 2 convolution layers, 3 max pooling layers, 8 fire lay-
ers, 1 global average pooling layer, and 1 output layer
softmax. This proposed model offered an accuracy of

Ucar et al. [46] proposed a fine tuned deep learning model
based on SqueezeNet and Bayesian optimization for
the screening of COVID-19 patients. This Deep Bayes-
SqueezeNet learning model takes chest X-ray images
in order to diagnose COVID-19 disease. The proposed
SqueezeNet is composed of 15 layers; 5 different layers

Fig.3 CT scan and chest X-ray
scans based COVID-19 research
studies CT scans

Chest X ray scans

100%, 98.04%,and 96.73% for the COVID-19, normal,
and pneumonia cases. Hammoudi et al. [47] proposed a
deep transfer learning-based model which is established
on InceptionResNetV?2 for the screening and diagnosis
of COVID-19 patients. Their DenseNet169 model deliv-
ered approximately 96% average accuracy for the correct

100 150 200 250 300 350

Deep learning based Covid-19 resaerch studies 2021

Deep learning based Covid-19 resaerch studies 2020

B Covid 19 research studies 2021

B Covid 19 research studies 2020
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Fig.4 Number of COVID-19
detection research studies based
on deep learning and deep
transfer learning

2021

2020
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M Deep learning based Covid-19 detection

classification of pneumonia cases using the chest X-ray
imaging modality. Rajaraman et al. [48] proposed an iter-
atively pruned deep learning model for the detection of
COVID-19 using the chest X-ray images and ImageNet
models. The results give the accuracy of 99.01% and area
under the curve =99.72%. Also, the CXR images are taken
for clear lung, bacterial pneumonia infections, and COVID-
19 pneumonia infection manifesting at peripheral opaci-
ties in the left lung. Hall et al. [49] proposed a pre-trained
CNN based on ResNet50 for screening of COVID-19 and
pneumonia patients with tenfold cross validation. Their
model achieved an overall accuracy of 89.2% and area
under the curve was 95%. Their work focuses on CXRs
which are simpler and cheaper to obtain but provide less
information than CT. Rahimzadeh et al. [50] proposed a
deep learning model based on Xception and ResNet50V2
for screening of COVID-19 patients. The proposed model
performs the multiclass classification as normal cases,
pneumonia, and COVID-19 cases. In their study both the
Xception and ResNet50V2 are used for extracting deep
features and then the softmax classifier performs the mul-
ticlass classification. Zhang et al. [51] proposed a deep

anomaly detection model for reliable and fast screening in
order to identify COVID-19 from non-COVID-19 cases.
This model is composed of three components, namely, a
backbone network, a classification head, and an anomaly
detection head. An 18-layer residual convolutional neu-
ral network pre-trained on the ImageNet dataset is used
as the backbone network. Hemdan et al. [52] conducted a
comparison study using the VGG19, DenseNet121, Incep-
tionV3, ResNetV2, Inception-ResNet-V2, Xception, and
MobileNetV2 DTL models for detection of COVID-19.
The VGG19 and Dense CNN models showed good perfor-
mances compared to other DTL models in their research
study. Wang et al. [53] proposed a DL system consisting
of three stages i.e. automatic lung segmentation, non-lung
area suppression, and COVID-19 diagnostic and prognos-
tic analysis. In this system, two DL networks were used
initially, a DenseNet121-FPN for lung segmentation in
chest CT image, and the proposed novel COVID-19Net
for COVID-19 diagnostic and prognostic analysis. This
COVID-19Net model used a DenseNet-like structure,
consisting of four dense blocks, where each dense block
had multiple stacks of convolution, batch normalization,
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Fig.5 General COVID-19 detection or classification approach based on machine learning
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and ReLU activation layers. Each dense block uses a dense
connection to contemplate multi-level image information.
Zheng et al. [54] developed a weakly-supervised deep

learning-based software system using 3D CT volumes to
detect COVID-19. In their system, the lung region was seg-
mented using a pre-trained UNet and then the segmented
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3D lung region was fed into a 3D deep neural network to
predict the probability of COVID-19 infection. Apostolopoulos
et al. [55] proposed an automated detection system based
on MobileNet V2. Different strategies were utilized in their
study, such as transfer learning with off-the-shelf-feature
extraction, transfer learning with fine tuning, and train-
ing from scratch. The training and evaluation procedure
was performed with tenfold-cross-validation. Fu et al. [56]
proposed a deep learning-based diagnostic tool using the
ResNet50 architecture to perform multiclass classification
into seven classes. The multiclass classification occurs
for COVID-19, non-COVID-19 viral pneumonia, bacte-
rial pneumonia, pulmonary tuberculosis, or and normal
lung cases. Ardakani et al. [57] presented a comparison
study using the DTL models like ResNet-101, AlexNet,
VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-
V2, ResNet-18, ResNet-50, and Xception for detection
of COVID-19 and Non-COVID-19. The best results were
delivered by the ResNet-101 and Xception models. Their
study compared the performance of radiologists in real-
time with the performance of these ten DTL models for
COVID-19 detection.

Rehman et al. [58] proposed an automated method for
the diagnosis of COVID-19 positive cases. Their model
tends to perform the multiclass classification differen-
tiating a COVID-19 from viral, bacterial, and normal
cases. Their research study compared the seven DTL pre-
trained architectures of CNN which were: (1) AlexNet
is composed of 5 convolutional layers and 3 fully con-
nected layers. (2) VGG is composed of 16 convolutional
layers and 3 fully connected layers. (3) SqueezeNet con-
tains five modules and an expanded layer. (4) GoogleNet,
composed of 9 inception models, 4 max-pooling layers,
2 convolutional layers, an average pooling layer, 2 nor-
malization layers, 1 fully connected layer, and a linear
layer. (5) Three variants of ResNet were used. ResNet18,
composed of 5 convolution blocks, each containing 2
residual blocks. Each residual block contains 2 convo-
lution layers. ResNet50 contains 5 residual blocks, each
with a convolution and identity block. The convolution
and identity blocks have 3 convolution layers. ResNet101
contains 3 convolutional, 3 residual blocks, and an iden-
tity block, (6) DenseNet contains 1 X 1 convolutional fil-
ters and max-pooling layers. (7) MobileNetv2 contains
CNN layer, inverted residual, and linear bottleneck layer.
Khalifa et al. [59] proposed a method for the detection of
COVID-19 cases based on GAN (Generative Adversarial
Network) with fine-tuned DTL models. They employed
four types of DTL models, which were: (1) AlexNet, (2)
SqueezeNet, (3) GoogleNet, (4) RestNetl18 with 8, 18,
22, 18 layers respectively and these models are chosen

@ Springer

due to the less number of layers, so that the complexity,
consumed memory, and time can be reduced. Loey et al.
[60] proposed a model based on Generative Adversarial
Network (GAN) and Deep Transfer Learning model to
analyze various deep transfer learning models such as
AlexNet, GoogleNet, and RestNet18 to detect COVID-19
disease. In their model GoogleNet achieved 100% testing
accuracy and 99.9% validation accuracy. Then Shan et al.
[61] proposed an accurate deep learning-based model for
automatic segmentation and quantification of infection
regions of COVID-19 from chest CT scans. The proposed
model utilized VB-Net segmentation to clearly segment
and quantify the infection area. The proposed model offers
an accuracy of 91.6% + 10%. Hu et al. [62], proposed an
approach based on the customized CNN architecture for
the detection of COVID-19 cases as well as for the quan-
tification of infection region from the chest CT scans.
The customized CNN architecture with five convolutional
layers performs a multiclass classification as COVID-
19, CAP (community-acquired pneumonia) and non-
pneumonic to detect COVID-19 disease accurately. Wang
et al. [63] proposed a model for the detection of COVID-
19 disease using chest X-ray images. They used Deep
learning tools like VGG-19, ResNet-50, and COVID-Net
with the accuracy of 83.0%, 90.6%, and 93.3% respec-
tively. Li et al. [64] proposed a model for the detection
of COVID-19 using 3D deep learning framework based
on CovNet. The CovNet framework consists of ResNet50
as the backbone using CT scan images as an input. They
performed three-way classification between COVID-
19, CAP (community-acquired pneumonia), and non-
pneumonia patients. Minaee et al. [65] proposed a model
for the detection of the novel coronavirus using chest X-ray
images. Four DTL models, namely ResNet18, ResNet50,
SqueezeNet, and DenseNet-121 performance, were com-
pared on a very large size dataset in their study. Among
these, the SqueezNet model offered the best result of 98%
sensitivity and 92.9% specificity. Basu et al. [66] proposed
a model for the detection of COVID-19 disease with the
help of Domain Extension Transfer Learning (DETL) and
Gradient Class Activation Map (Grad-CAM). Their study
used pre-trained DTL models like AlexNet, VGGNet, and
ResNet which offered an accuracy of 82.98%, 90.13%,
and 85.98% respectively. The proposed model performs
multiclass classification between normal, pneumonia,
other disease, and COVID-19 cases. Khalifa et al. [67]
explored a new dimension in the deep learning and deep
transfer learning application for the COVID-19 detection.
Their novel research study established on the concept of
neutrosophic set along with the application of DTL mod-
els. In their study, CXR images available in the grayscale
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domain are converted into the neutrosophic domain. The
neutrosophic domain consists of three types of images:
indeterminacy (I) images, true (T) images, and the falsity
(F) images. Then, these neutrosophic images are used for
the training of DTL models like AlexNet, GoogleNet, and
ResNet18, which in turn perform the multiclass classi-
fication. The four-way classification into normal, bacte-
rial pneumonia, viral pneumonia, and COVID-19 cases
are done. Cohen et al. [68] proposed a model for severity
score prediction of COVID-19 pneumonia using the CXR
images. Such a tool can gauge the severity of COVID-19
lung infections. Their study used a DTL i.e. DenseNet
model from the Torch X-Ray Vision Library. Their pro-
posed model can predict geographic extent score and lung
opacity score with 1.14 and 0.78 mean absolute error
(MAE) respectively. Ying et al. [69], proposed a Detail
Relation Extraction Network (DRE-Net)-based model to
detect COVID-19 disease using chest CT scan images.
Their proposed model performed the multiclass classifica-
tion and its performance was compared with other DTL
models like VGG16, DenseNet, and ResNet. The proposed
DRE-Net model offered accuracy 94%.

Wang et al. [70] devised an alternate method for the
diagnosis of COVID-19 cases, which was completely
tested in a laboratory. Due to the challenges faced in
the quality and availability of such laboratories in the
infected areas, alternatives such as devising an artificial
intelligence-based testing algorithm were proposed. This
algorithm can assist the radiologist to easily differenti-
ate between the COVID-19 positive cases and other viral
pneumonias. It studied 453 enrolled CT images and used
217 as trained dataset and rest as validation set. The
algorithm produced an accuracy of 82.9% in the inter-
nal validation and 73.1% in the external validation. Narin
et al. [71] felt the need for an automatic COVID-19 case
detection method to reduce the risk of spreading this pan-
demic disease at a widespread range. Three DTL models
as ResNet50, InceptionV3, and Inception-ResNetV?2 were
proposed for detection of COVID cases using the chest
X-ray images of suspected patients. The devised algorithm
delivered the highest accuracy 98% with the ResNet50
model, InceptionV3, and Inception-ResNetV2 achieved
97% and 87% accuracy respectively. Jin et al. [72] pro-
posed another deep learning-based Al system to increase
the rate of diagnosis of COVID-19 disease for the welfare
of society during this COVID-19 pandemic. It will enable
timely detection of infected patients and help in control-
ling the growing rates of COVID-19 cases. The algorithm
derived is a result of extensive statistical analysis of CT
scan images. The analysis was done on nearly 10,000 CT
volumes of community-acquired pneumonia (non-viral),

influenza-A/B, non-pneumonia, and COVID-19 suspected.
Xu et al. [73] proposed a model to distinguish COVID-19
pneumonia from influenza-A viral pneumonia and healthy
cases with pulmonary CT images using deep learning
techniques. Their CNN model is accompanied with Noisy-
OR Bayesian function to come up with an accuracy of
86.7% in testing of COVID-19 cases. Huang et al. [74]
developed a deep learning-based algorithm which was
focused on quantitative CT. It allows measuring the sever-
ity of COVID-19 and helps in studying the growth rate and
opacity percentage of lungs within the patient body. The
algorithm classifies patients between mild vs. moderate
vs. severe vs. critical. All the results were cross-checked
by two radiologists and the follow-up test conducted after
the diagnosis of opacity percentage of the lungs. Farooq
et al. [75] developed an automated approach for the detec-
tion and classification of COVID-19 cases by fine-tuning a
pre-trained ResNet50 architecture named COVIDNet. The
dataset used in their research study consisted of 5941 CXR
images from 2839 different patients. The classification is
done as normal, bacterial pneumonia, viral pneumonia,
and COVID-19. It comes up with an accuracy of 96.23%.
Authors now want the deduced algorithm to examine a
large dataset and prove its reliability for the noble pur-
pose. Chen et al. [76] devise a new model for the detec-
tion of COVID-19. Their study is based on high-resolution
CT scan images of the suspected coronavirus pneumonia
patients. The devised model is based on UNet + + for
image segmentation and ResNet50 for the classification to
deduce the results. The results were cross-checked by three
radiologists and it is found that the time taken for testing
the already evaluated images by radiologists is very less
compared to evaluating new images. Asnaoui et al. [77]
inspired by the achievements of the medical image analy-
sis technique and motivated to publish a research based on
the deep convolutional neural network (DCNN) architec-
tures such as VGG16, VGG19, CNN, Inception_V3, Xcep-
tion, Resnet50, Inception_Resnet_V2, DenseNet201, and
MobileNet_V2. The results were classified in two parts
as normal vs. pneumonia. To obtain the results, a total of
5856 images of chest X-ray and CT images were studied,
of which 4273 were of pneumonic patients and the rest
1583 were of normal humans. The highest accuracy was
achieved by Resnet50 and MobileNet_V2 architecture with
96.61% and 96.27% respectively. Chowdhury et al. [78]
implemented and evaluated the eight different pre-trained
models known as MobileNetv2, SqueezeNet, ResNet18,
ResNet101, DenseNet201, CheXNet, Inceptionv3, and
VGG19. The result was classified as normal vs. COVID-
19 pneumonia vs. viral pneumonia. Chest X-ray images of
423 COVID-19 patients, 1485 viral pneumonia patients,

@ Springer



Cognitive Computation

and 1579 normal patients were examined. DenseNet201
leads the results with the highest accuracy among other
models with 99.70%. Apostolopoulos et al. [79] came
up with a comparison study of various DTL models for
the detection of COVID-19 cases. The models used were
VGG19, MobileNet v2, Inception, Xception, and Incep-
tion ResNet v2. The highest three-class accuracy was
achieved by VGG19 among all the models used. Moreover,
the researchers took two datasets to devise the results of
their study. Afshar et al. [80] understood that RT-PCR is
a time consuming test, which is not desirable and includes
too much physical contact with the COVID-19 patients.
So, the authors collected the X-ray images from two dif-
ferent datasets and developed a capsule based framework
named COVID-CAPS. The COVID-CAPS framework
consists of 4 convolutional layers and 3 capsule lay-
ers. The result of the study was a binary classification
into either COVID-positive patients or COVID-negative
patients. The accuracy of the proposed work comes out
to be 95.7% with sensitivity around 90% and specificity
of about 95.8%. Butt et al. [81] realized the efficiency of
artificial intelligence in diagnosing COVID cases. It is a
clear fact that early detection of the infection will lead to
a way of reducing mortality rates. It has been noted that
radiographic patterns are far more fast and accurate in
generating results when compared to RT-PCR detection of
COVID-19 victims. Studies showed that the detection of
different types of viral pneumonia becomes an easier task
when diagnosed with the help of artificial intelligence.
A sum of 618 CT images was used to process the result,
which comes out to an accuracy of, specificity of, and
sensitivity of about 99.6%, 92.2%, and 98.2% respectively.
Ozturk et al. [82] proposed DarkNet model which was
implemented with 17 convolutional layers to come up with
accurate results. They succeeded in their task by attaining
an accuracy of 98.08% in binary classification and 87.02%
accuracy in multiclass classification.

Shah et al. [83] proposed CTnet-10 deep learning
CNN-based model to classify CT scan images into COVID-
19 and non-COVID-19. The CTnet-10 has 82.1% accuracy.
They also observed that their model is faster compared to the
RT-PCR method. They also verified DenseNet-169, VGG-
16, ResNet-50, InceptionV3, and VGG-19. Among these,
VGG-19 proved to be superior, having 94.52% accuracy.
Javaheri et al. [84] have developed a model called CovidCT-
Net using deep learning algorithms to do a binary classifica-
tion into either COVID-19 and community-acquired pneu-
monia (CAP) from CT scans. The accuracy of CovidCTNet
was 95%. The important facts about CovidCTNet are that it
was designed to work with small and heterogeneous sam-
ple sizes irrespective of CT scanning hardware and it was

@ Springer

open source. Wide pattern and imaging feature resemblance
of COVID-19 and CAP challenged the algorithm training
but achieved accuracy of CovidCTNet make it a tool to be
adapted for clinical decision. Wang et al. [85] assessed a
deep learning algorithm using CT images for screening
COVID-19 patients throughout the influenza season. To
validate their hypothesis, they used 1065 CT images, out
which 740 were COVID-19 negative and 325 were COVID-
19 positive. Their algorithm delivered 89.5% accuracy, 0.88
specificity, and 0.87 sensitivity.

Their future work will focus on linking hierarchical fea-
tures of CT images to features of other factors like genetic,
epidemiological, and clinical information for the purpose
of multi-modeling analysis. This multi-modeling analysis
will expedite enhanced diagnosis. Saad et al. [86] have used
deep feature concatenation (DFC) mechanism in two ways.
In one-way DFC does the linking of deep features extracted
from X-ray and CT images through a CNN. In second-way
DFC combines extracted features either from X-ray or CT
scan using CNN architecture along with two pre-trained
CNNss called ResNet and GoogleNet. Their proposed archi-
tecture has 3 deep layers to mitigate large time consump-
tion issues. Their first way has delivered 96.13% accuracy,
94.37% precision, 97.04% recall, and an f_score of 95.69%.
Their second way has delivered an accuracy of 98.9%, 93.6%
precision; a recall of 98.5% and 98.29% f_score when using
CT images but when X-ray images used, this second way
has got 99.3% accuracy, 99.79% precision, 98.8% recall, and
f_score of 99.3%. Serte et al. [87] proposed an Al system
to determine COVID-19 from images of a patients’ 3D CT
volume. Their Al system employed Resnet-50 deep learning
model in combination with majority voting to classify each
3D CT image into COVID-19 and normal CT image. Their
Al system also used the ResNet-18 model together with
majority voting to predict COVID-19 on a given patient’s
3D CT image. The created ResNet-50 system attained 0.90
area under curve (AUC) and 96% accuracy compared to 0.67
AUC of 3D-ResNet50. The major asset of their work was
fine-tuning and majority voting-based modeling.

Singh et al. [89] developed an ensemble model for auto-
mated COVID-19 prediction by ensembling deep transfer
learning models like ResNet152V2, VGG16, and densely
connected convolutional networks (DCCNs). They have
used chest CT scanned images for the development of their
model. Their ensemble model can do a 4-class classifica-
tion, whereas most previous models can only do a binary
or 3-class classification. They compared their model with
15 other models and demonstrated that their model out-
does prevailing models with respect to f-measure, AUC,
specificity, sensitivity, and accuracy of 1.3274%, 1.8372%,
1.8382%, 1.283%, and 1.2738% respectively. The developed
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ensemble model attained 99.2% accuracy on the training
dataset. Kedia et al. [93] created CovNet-19, an ensemble
deep convolutional neural network model using chest X-ray
images to detect COVID-19. They performed a 3-class clas-
sification i.e. COVID-19, pneumonia, normal with an accu-
racy of 98.28%, 98.33% precision, 98.33% recall, 97.15%
Matthews Correlation Coefficient (MCC) whereas accuracy
of 99.71% and 99.26% MCC was delivered for binary class
classification into Non-COVID-19 and COVID-19. F1 score
was 99% for both 3-class and 2-class classification. Elgendi
et al. [97] scrutinized 17 deep learning algorithms to figure
out the impact of geometric augmentations for COVID-19
detection. Empirical analysis was done to measure the influ-
ence of augmentation with reference to accuracy, dataset
variety, methodology of augmentation, and network size.
Their results demonstrated that Matthews Correlation Coef-
ficient (MCC) of all examined models improved after the
removal of geometrical augmentation. They carried out this
empirical analysis using MATLAB 2020a on a worksta-
tion having GPU NVIDIAGeForce RTX 2080Ti 11 GB,
RAM 64 GB, and Intel ProcessorI9-9900 K @3.6 GHz.
Ieracitano et al. [99] proposed a CAD system for differ-
entiating portable CXR images of COVID-19 pneumonia
patients from the Non-COVID-19 interstitial pneumonia
patients in an accurate manner utilizing a local unbalanced
dataset. This CAD system called CovNNet is a fuzzy
enhanced deep learning-based framework. In this approach,
CovNNet tends to extract the deep relevant features from
the images which are the results of the combination of
portable CXR images and fuzzy images. This CAD system
achieved an encouraging accuracy of more than 80% over
the local dataset. All these state-of-the-art approaches for
the COVID-19 detection and classification based on the CT
scans and chest X-ray images are summarized along with
their respective future work with the help of Table 3:

Challenges and Limitations

The challenges and limitations in the deep learning-based
COVID-19 detection or classification approaches utilizing
CT scan and chest X-ray images are as follows:

1. Regulation: During any pandemic like COVID-19,
the concerned authorities have to take a crucial role
in framing policies and etiquette-like lockdown, social
distancing in case of COVID-19. These regulations and
etiquette can stimulate scientists, researchers, citizens,
technological companies, and social organizations to
curtail obstacles to the prevent spread of COVID-19.

2. Handiness of data: Application of DL in medical imag-
ing requires large volumes of data for training of DL

models. But in the case of COVID-19, availability of
data is low. Also, checking candidness of data is dif-
ficult and requires expertise to interpret. So it will take
some time to have befitting data to DL and thus to have
widespread application of DL techniques in COVID-19
detection and classification.

3. Data privacy concerns: Privacy concerns are biggest
hurdle in collection of data like medical images that
is required for applications of Al like DL and ML for
COVID-19. Unavailability of sufficient data may result
in less accurate and questionable DL models.

Deep Learning in Conjunction with Traditional
Machine Learning Classifiers and Machine
Learning-Based Approaches

The conventional machine learning-based approaches
involves three sub-stages i.e. segmentation, feature extrac-
tion followed by the training of machine learning classifiers
with the aid of these extracted features from the segmented
region. Hence, proper manual selection of all methods
employed in these sub-stages is very important. The present
research trend in this domain involves usage of particular
deep learning architectures, especially for performing the
segmentation as well as deep feature extraction in a com-
plete automated manner. This practice of employing the var-
ious deep learning networks alongside traditional machine
learning classifiers is rendering encouraging results and can
be termed as Deep learning in conjunction with traditional
machine learning classifiers. Tang et al. [100] proposed a
chest CT images model based on Ground-Glass Opacity
(GGO) regions and Random Forest (RF) model to assess
severity in terms of severe and non-severe on COVID-19
patients which also based on quantitative measures. Using
three-fold cross validation, it shows a 93.3% true-positive
rate, 74.5% true-negative rate, 87.5% accuracy, and 91%
AUC. The major resulting thing in GGO shows that the right
lung is more affected to severity than the left lung. Barstugan
et al. [101] proposed early phase detection of COVID-19
utilizing abdominal CT images, which are acquired from
the hospitals in the Zhejiang region of China, using machine
learning methods. There are different materials used for the
statistical features of data set, such as visual dataset in differ-
ent subsets in terms of non-infected and infected. The classi-
fication is done by support vector machine (SVM). There are
different results of five subsets. Their study achieved 99.68%
accuracy in tenfold cross-validation. The machine learning
methods should be done on CT abdominal images, X-ray
chest images, and blood test results. Sethy et al. [102] pro-
posed an approach using deep learning-based methodology,
which gives benefit to practitioners that are researching on
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coronavirus patients. The models that are recommended are
Resnet50 plus SVM, which achieved an accuracy of 95.38%
for detecting COVID-19 positive patients. Their results were
based on data which is available in the repository of GitHub,
Kaggle, and Open-I as per their validated X-Ray images.
Karawi et al. [103] proposed an approach based on machine
learning techniques for analysis of chest CT scan images of
COVID-19 patients. A frequency domain algorithm known
as the Fast Fourier Transform (FFT)-Gabor scheme based
on SVM model works in real-time and gets results with high
accuracy along with low false-negative rate. This approach
was trained on a dataset of 470 CT scan images in which
275 were positive cases and 195 were negative. Ozkaya
et al. [104] proposed a hybrid model based on the SVM
classifier for classification and DTL models like Resnet50,
GoogleNet, and VGG-16 for deep feature extraction. Their
proposed hybrid method shows high performance on both
the datasets used in their research study. Alom et al. [105]
proposed the multi-task deep learning model based on
Inception Recurrent Residual Neural Network (IRRCNN)
for COVID-19 classification and NABLA-N network models
for infected lung region segmentation. These models were
tested on X-ray, abdominal CT, and full body CT images.
The results for X-Ray Images and CT Images had an accu-
racy of 86.67% and 98.78% respectively for COVID-19.
Kumar et al. [106] proposed an intelligent system based on
the ResNet152 DTL model for the deep feature extraction
and machine learning classifiers like Logistic Regression
(LR), k-Nearest Neighbour 26 (kNN 26), Decision Trees
(DT), Random Forest (RF), Adaptive Boosting (AdaBoost),
Naive Bayes (NB), and XGBoost(XGB) for binary classifi-
cation. Best results were delivered by the RF and XGBoost
Predictive Classifiers. The above mentioned state-of-the-art
approaches for the COVID-19 detection and classification
are summarized along with their respective future work with
the help of Table 4:

Challenges and Limitations

The challenges and limitations of machine learning and deep
learning in conjunction with traditional machine learning clas-
sifiers approaches for the COVID-19 detection or classification
utilizing CT scan and chest X-ray images are as follows:

e The accuracy and robustness of most of the traditional
machine learning-based approaches depends on utilizing
the accurate segmentation method followed by the efficient
feature extraction methods. Which makes the proper selec-
tion of segmentation and feature extraction methods very
important and thus affects the overall proposed approach
for the COVID-19 detection.

e There is a need of properly annotated chest X-ray and CT
scan datasets. These annotated datasets can be used to eval-
uate the segmentation accuracy and hence proved to be
important for evaluating the performance of the proposed
approach.

e Most of the traditional machine learning-based approaches
lack experimentation with various segmentation methods
and feature extraction methods. Such experimentation is
mandatory to be able to propose an efficient COVID-19
detection approach.

e There is a scope for experimenting with various deep trans-
fer learning models for performing the segmentation and
deep feature extraction, as well as with various machine
learning and ensemble learning classifiers for performing
the classification of positive COVID-19 cases.

Majorly Used COVID-19 Chest X-Ray, CT
Scan, and Ultrasound Image Dataset
Description

In the present scenario, the propellant of modern com-
puting, especially machine learning and deep learning, is
training data. This training data is available in the form of
datasets consisting of either medical images, histopatho-
logical images, biopsies images etc. All the deep learning
and deep transfer learning-based approaches are totally
depend on these training datasets. The COVID-19 detec-
tion approaches based on deep learning also require dataset
of CT scan images, chest X-ray, statistics related to a coun-
try or a region, etc.; therefore, some of the majorly used
open-source CT scan and chest X-ray dataset description are
presented in Table 5.

Analysis and Evaluation

This section presents a brief analysis and evaluation
of majorly used deep transfer learning (DTL) models
like VGG16 [113], VGG19 [114], ResNet50 [115], and
DenseNet [116] over the COVID-19 local CT scan dataset
and global chest X-ray dataset. These four DTL models were
initially fine-tuned and trained using the augmented local CT
scan and chest X-ray dataset. The objective of this compari-
son is to illustrate how these commonly used DTL models
perform on the local CT scan and global chest X-ray images
COVID-19 datasets. The description of the two datasets used
for the analysis is given below.

e Local COVID-19 CT scan dataset: An axial volumetric

chest CT scans of COVID-19 positive patients and nor-
mal people are present in this dataset. These volumetric

@ Springer
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Table 5 Majorly used open-source COVID-19 CT scan, chest X-ray, and ultrasound image dataset description

Name of dataset

Imaging modality

Size of dataset

Link

COVID-19 image data collection
[107]

COVID-CT-Dataset: A CT Scan
Dataset about COVID-19 [108]

COVID-19-CT-Seg-Benchmark
COVID-19 CT

segmentation dataset
COVID-19 CT

Segmentation dataset nr. 2
Coronacases Initiative

COVID-19 X-ray s

COVID-19 CT Lung and Infection
Segmentation Dataset [109]

SIRM

Radiopaedia

Chest X-ray images (pneumonia)

COVIDx V7A dataset

COVIDx CT-2A [110]
COVIDx CT-2B

[111]
COVID-19 Radiography Database

COVID-CT-MD [112]

Extensive COVID-19 X-ray and
CT chest image dataset

BIMCV-Covid 19+

MosMedData: COVID19_1000
Dataset

Pocovid-net

Chest X-ray images
CT scan
CT scan
CT scan

CT scan

3D CT images

CT scan and chest X-rays scans

CT scan

CT scan

CT scan and chest X-ray
Chest X-ray

Chest X-ray

CT scan
CT scan

Chest X-ray

CT scan

CT scan and chest X-ray

CT scan and chest X-ray
CT scan

Ultrasound images

468 COVID-19 positive images

349 CT images of COVID-19 from
216 patients

525 CT images of COVID-19

Axial 100 CT scan of 40 patients in
DICOM format

829 slices out of which 373 are
COVID-19 positive in in DICOM
format

2623 CT scan images

16 CT scan images and 79 chest
X-ray images of COVID-19
positive

20 COVID-19 CT scans

60 patients CT scan images

101 COVID-19 patients CT scan
and X-ray sequence

5856 chest X-ray JPEG images

Total 15600 chest X-ray images out
of whcih 1700 COVID-19 positive
images

Total 194,922 CT scan images of
3745 patients

Total 201,103 CT scan images of
4501 patients

Total 1200 COVID-19 positive,
1341 normal, and 1345 viral
pneumonia chest X-ray images

CT scans of 169 COVID-19 positive
cases, 60 viral Pneumonia, and 76
healthy cases

Total 17,099 X-ray and CT images
out which 4044 chest X-ray
COVID-19 positive images and
5427 CT scan COVID-19 positive
images

Total of 1380 chest X-ray and 163
CT scan patient studies

Total 1000 sets of chest CT scans

Total 1103 ultrasound images out
of 654 COVID-19 positive, 172
healthy, and 277

viral pneumonia images

https://github.com/ieee8023/covid-
chestxray-dataset

https://github.com/UCSD-AI4H/
COVID-CT

https://gitee.com/junmal 1/COVID-
19-CT-Seg-Benchmark

http://medicalsegmentation.com/
covid19/

http://medicalsegmentation.com/
covid19/

https://coronacases.org

https://www.kaggle.com/andrewmvd/
convid19-x-rays

https://zenodo.org/record/3757476

https://www.sirm.org/en/category/
articles/covid-19-database/

https://radiopaedia.org/articles/
covid-19-3

https://www.kaggle.com/paultimoth
ymooney/chest-xray-pneumonia

https://github.com/lindawangg/
COVID-Net

https://www.kaggle.com/hgunraj/
covidxct?select=2A_images

https://www.kaggle.com/hgunraj/
covidxct?select=2A_images

https://www.kaggle.com/tawsifurra
hman/covid19-radiography-datab
ase?select=COVID-19+Radio
graphy+Database

https://figshare.com/s/c20215f3d4
2¢98f09ad0

https://data.mendeley.com/datasets/
8h65ywd2jr/3

https://osf.io/nh7g8/
https://mosmed.ai/en/

https://github.com/jannisborn/
covid19_ultrasound

CT scans were obtained utilizing the Optima GE CT 660
machine installed at the MP MRI and CT scan center
Jabalpur, Madhya Pradesh, India, under the supervision
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of head radiologist. The 64-slice version of Optima GE
CT 660 is available in this center, making it well-suited
for cardiac and coronary angiography applications. This


https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
https://coronacases.org
https://www.kaggle.com/andrewmvd/convid19-x-rays
https://www.kaggle.com/andrewmvd/convid19-x-rays
https://zenodo.org/record/3757476
https://www.sirm.org/en/category/articles/covid-19-database/
https://www.sirm.org/en/category/articles/covid-19-database/
https://radiopaedia.org/articles/covid-19-3
https://radiopaedia.org/articles/covid-19-3
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net
https://www.kaggle.com/hgunraj/covidxct?select=2A_images
https://www.kaggle.com/hgunraj/covidxct?select=2A_images
https://www.kaggle.com/hgunraj/covidxct?select=2A_images
https://www.kaggle.com/hgunraj/covidxct?select=2A_images
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?select=COVID-19+Radiography+Database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?select=COVID-19+Radiography+Database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?select=COVID-19+Radiography+Database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?select=COVID-19+Radiography+Database
https://figshare.com/s/c20215f3d42c98f09ad0
https://figshare.com/s/c20215f3d42c98f09ad0
https://data.mendeley.com/datasets/8h65ywd2jr/3
https://data.mendeley.com/datasets/8h65ywd2jr/3
https://osf.io/nh7g8/
https://mosmed.ai/en/
https://github.com/jannisborn/covid19_ultrasound
https://github.com/jannisborn/covid19_ultrasound
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Table 6 The configuration
parameters of VGG16, VGG19,
ResNet50, and DenseNet121

DTL model parameters

Input image size

Number of layers

Learning rate

Batch size

Number of epochs to converge
Momentum

Optimizer

Dropout rate

VGG16 VGG19 DenseNet121 ResNet50
224 x224 224 x224 224 x224 224 x224
16 19 121 50
0.0001 0.00001 0.01 0.001

16 16 16 16

100 100 100 200

0.9 0.9 0.9 0.9
Adam Adam SGD SGD

0.4 0.3 0.4 0.5

machine uses the Performix 40 tube (6.3 MHU) with a
40 mm V-Res detector. This Optima GE-CT660 acquires
axial scans in sets of 2 through 64 contiguous images in
one 360° rotation. For each rotation of the gantry, the
Optima CT660 collects up to 64 rows of scan data. A
total of 2080 CT scans were taken from 86 COVID-19
positive patients (mean age of 49.5 + 19.1 years; range of
16-88 years, male 56, female 30) and 88 healthy people
(mean age of 41.5+16.8 years; range of 12-81 years,
male 48, female 40). These cases were collected from
July 2020 to January 2021. The main clinical symptoms
in these patients were cough and fever. All the CT scan
sequence are available in 16-bit grayscale DICOM for-
mat with 512*512 pixels resolution, which are converted
into the PNG format.

e Global chest X-ray dataset: As the available COVID-19
datasets are of very limited size, so in order to make
a decent size balanced dataset, the chest X-ray images
of COVID-19 positive patients and healthy people are
taken from the three different publicly available data-
sets. Around 500 COVID-19 chest X-ray images and
500 normal images were taken from the GitHub reposi-

tory by Dr. Joseph Cohen [96]. Then 220 COVID-19
positive images and 280 normal images were taken
from the COVID-19 Radiography Database (COVID-
19 Radiography Database 2020). Around 290 COVID-
19 positive images and 280 normal images are taken
from the IEEE8023/Covid Chest X-Ray Dataset [107].
This dataset consists of a total of 2070 chest X-ray
images, which are further subdivided into the training
and testing dataset.

All these CT scan and chest X-ray images are initially
preprocessed and then augmented in order to create a large
dataset for the training of these DTL models. As these
medical images are obtained directly from diverse medi-
cal devices and may include artifacts and medical symbols,
therefore, all these images are resized and cropped. The
size of these CT scan and chest X-ray images is changed
as per the input requirement of these DTL models. After
pre-processing, an augmentation of the above two datasets
are performed for the training of these DTL models in order
to avoid the over-fitting. The augmentation strategies used
in this section involve affine transformations composed of

Table 7 Performance of VGG16, VGG19, ResNet50, and InceptionV3 on the augmented local CT scan and global chest X-ray datasets

Classification rates Classification rates formulas VGG16 VGG19
Local CT scan Global chest Local CT scan Global
X-ray chest

X-ray
Accuracy (TP+TN)/ (TP+TN+FP+FN) 95.75 96.25 96 97.95
Sensitivity TP/ (TP+FN) 95.68 96.36 96.12 96.43
Specificity TN/ (FP+TN) 95.8 96.7 95.9 94.09
Precision TP/ (TP+FP) 95 95.5 96 94
Negative predictive value TN/ (TN+FN) 94.5 95.5 94 95.5
False-positive rate FP/ (FP+TN) 5.13 7.28 4.08 5.91
False discovery rate FP / (FP+TP) 5 7.5 4 6
False-negative rate FN / (FN+TP) 7.32 4.64 5.88 4.57
F1 score 2TP / 2TP+FP+FEN) 94.83 94.9 96.05 96.98

TP true positive, TN true negative, FP false positive, FN false negative
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Table 8 Performance of

ResNet50 and DenseNet121 on Classification rates ResNet 50 DenseNet121

the augmented local CT scan Local CT scan Global chest  Local CT scan Global

and global chest X-ray datasets X-ray chest

X-ray

Accuracy 92.75 94.5 94.25 94
Sensitivity 90.7 91.75 92.88 91.42
Specificity 91.8 89.32 91.64 91.58
Precision 92.5 91.9 92.5 91.5
Negative predictive value 91 93 93 94.5
False-positive rate 12.2 10.68 9.36 8.42
False discovery rate 12.5 11 9.5 8.5
False-negative rate 10.2 8.25 8.12 7.58
F1 score 91.61 92.36 92.18 92.96

vertical and horizontal flip (0% + 10%), scaling (0% +20%),
shearing (0° + 10°), and rotation (0° + 10°).

The algorithm for the analysis and evaluation is as
follows:

Input COVID-19 CT scan and chest X-ray images or Nor-
mal CT scan or chest X-ray images.

Training and validation accuracy
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Output The trained VGG16, VGG 19, ResNet50, and
DenseNet models for the detection of COVID-19 positive cases.

Steps

e All the chest X-ray and CT scan images are preprocess

for the elimination of artifacts, noise, and symbols.
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Fig.8 The training and validation graphs of DTL models on Local CT scan dataset a VGG16, b VGG19, ¢ ResNet50, and d DenseNet-121
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Fig.9 The ROC curve of DTL models on Local CT scan dataset a VGG16, b VGG19, ¢ ResNet50, and d DenseNet-121

e Utilizing the affine transformations as an augmenta-
tion method consist of rotation (0° + 10°), shearing
(0° £ 10°), vertical and horizontal flip (0% + 10%), and
scaling (0% +20%) of both the two datasets are done.

e Resize these CT scan and chest X-ray images to the size
of 224-by-224-by 3 for the training of VGG16, VGG 19,
DenseNet121, and ResNet50 DTL models.

e The fine tuning and training of these four DTL models
over the augmented datasets.

e The VGG 16 and VGG19 models tends to converge at
100 epochs.

e The DenseNet121 and ResNet50 tends to converge at 200
epochs.

e Simulation and evaluation of these DTL models over the
20% augmented dataset which is reserved for the validation.

Initially, all the four DTL models are taken with simi-
lar settings, and then, in order to get the optimum perfor-
mance from these DTL models, hyper parameter tuning is
done during the training. The various combinations of the

learning and dropout rate along with the two different opti-
mizers were tried out in order to get the optimal configura-
tion parameters of these four DTL models offering the best
performance. The VGG16, VGG19, DenseNet-121, and
ResNet50 DTL models’ optimal configuration parameters
are illustrated with the help of Table 6 after performing a
number of experiments. All the four deep transfer learning
models were trained and evaluated with different learning
and dropout rates along with the two different types of opti-
mizers, i.e. Adam and Stochastic gradient descent (SGD)
[117] for the weights adjustment. Both the VGG16 and 19
models give best performance with the Adam. Similarly, the
DenseNet 121 and ResNet50 models with SGD optimizer
tend to give better performance. The number of epochs
required to converge also varies from model to model. As
the VGG 16, VGG 19, and DenseNet121 tend to converge
at 100 epochs, and after that, their accuracies are not at all
improving. Similarly, the ResNet 50 tends to converges at
200 epochs. The dropout method [118] is utilized in order
to avoid the problem of over-fitting.
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Fig. 10 The training and validation graphs of DTL models on global chest X-ray dataset a VGG16, b VGG19, ¢ DenseNet-121, and d ResNet50

The training and validation ratio for the two augmented
datasets are 80:20, which means 20% is used for validation
and rest 80% for training. The performance of these four
DTL models is illustrated with the aid of Tables 7 and 8
using the statistical parameters like accuracy, sensitivity,
specificity, precision, and F1 score. The training and vali-
dation graphs, as well as the Receiver Operating Charac-
teristic Curve (ROC) of all the four DTL models on the
Local CT scan dataset, are presented with help of Figs. 8
and 9, whereas the training and validation graphs and the
ROC of all the four DTL models on the global chest X-ray
dataset are presented with the help of Figs. 10 and 11.

Now the computational and architectural complexity of
these four VGG16, VGG19, DenseNetl121, and ResNet50
models along with the average accuracy are also compared
with the aid of Table 9. The architectural complexity is
normally measured in terms of the number of learnable
parameters, whereas the architectural complexity of these
four models is expressed in terms of FLOPs (floating-point
operations per second).

@ Springer

The classification performance of VGG19 deep trans-
fer learning model on both the augmented datasets of
COVID-19 is better in comparison to DenseNet121,
VGG16, and ResNet50 DTL models. But considering the
computational as well as architectural complexities, it is
the VGG16 model offering the optimum computational
and architectural complexities with decent classification
performance as well.

As VGG16 delivers the best classification performance
over both the chest X-ray and CT scan datasets. The Gra-
dient weighted Class Activation Mapping (Grad-CAM)
explainability technique [119] is used in order to visu-
ally interpret as well as to demonstrate the effectiveness
of this DTL model. This Grad-CAM is applied to the
last convolutional layer of our VGG19 model in order
to verify and explain the output result delivered by the
VGG19 as COVID-19 and normal case. Some of the CT
scan and chest X-ray test case output results delivered by
the VGG19 along with Grad-CAM are presented with the
help of Fig. 12.
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Fig. 11 The ROC curve of DTL models on global chest X-ray dataset a VGG16, b VGG19, ¢ DenseNet-121, and d ResNet50

Table 9 Parameters, FLOPs,

. Architectures (models) Local CT scan Global chest X-ray

and testing accuracy

comparison of the VGG16, Parameters FLOPs (G) Accuracy Parameters FLOPs (G) Accuracy

VGG19, DenseNet121, and (millions) (millions)

ResNet50 models on the

augmented local CT scan and VGG16 18.31 154 95.75 19.10 16.2 96.25

global chest X-ray datasets VGG19 21.2 18.10 96 22.14 19.28 97.95
DenseNet121 6.62 27.75 94.25 6.90 28.14 94
ResNet50 23.45 42.14 92.75 23.55 42.79 94.5
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Fig. 12 VGG19 along with
Grad-CAM visualization of
some of the CT scan and chest
X-ray test cases of COVID-19
positive patients

Chest X ray of diagnosed
Covid-19 positive patient

Conclusion and Future Work

This methodical review presented a comprehensive analy-
sis of the state-of-the-art deep and machine learning-based
approaches for COVID-19 detection. A decent number of
CT scan and chest X-ray datasets, which are available
post-March 2020 were presented also in this study. Recent
deep learning approaches utilizing chest X-ray images, CT
scans, and ultrasound images certainly offer a low cost,
rapid, automatic approach and do not require physical
contact by medical staff for COVID-19 detection. This
study discussed challenges and limitations also. Recently,
some COVID-19 ultrasound scan datasets also became
available for research. A good number of deep learning
architectures are still left to be trained and tested on these
datasets, which might offer more accurate results. Hence,
further research studies should be conducted with objec-
tives to test deep learning models on large size datasets of
chest X-ray images, CT scans, and ultrasound images, and
validate the results with radiologist’s observations. This
is obligatory to propose an acceptable real-time applica-
tion for automatic detection of COVID-19 using imaging
modalities. Deep learning approaches to detect COVID-
19 could be improved, if more clinical information can
be collected from images comprising multiple disease
symptoms. Currently, major deep learning approaches
focus only on the posterior-anterior (PA) view of X-rays.
Hence, it cannot differentiate other views of X-rays such
as anterior—posterior (AP), lateral, etc. Further research
studies can consider these factors. Future deep learning
models must seek to distinguish COVID-19 cases from
other similar viral cases, e.g. SARS, MERS, and from vari-
eties of common pneumonia.

Future research studies can primarily focus on develop-
ment of hybrid models utilizing deep learning architectures
for segmentation and feature extraction purpose along with
machine learning classifiers for binary or multiclass COVID-
19 classification, since these hybrid models does not require

@ Springer

VGG19 along with
Grad-CAM output

CT scan image of
diagnosed Covid-19
positive patient

VGG19 along with
Grad-CAM output

large size dataset. Deep learning approaches lack transparency
and interpretability since it is impossible to determine which
imaging features are being considered to determine the out-
put. Even the heat-map that is used to visualize the essential
regions in the scans cannot determine which unique features
are used to establish the output. A substantial overlap exists
between how the lung reacts to various offends and appear-
ance of diseases in the lung that depend on host factors, e.g.
age, drug reactivity, immune status, underlying comorbidities.
Hence, multidisciplinary models may be required because no
single method can differentiate all lung diseases form imaging
appearance on chest X-rays and chest CT scans. Future deep
learning models must also consider determining severity degree
of COVID-19 besides detecting it in order to monitor and treat
patients effectively.
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