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Abstract
Background COVID-19 is a novel virus that affects the upper respiratory tract, as well as the lungs. The scale of the global 
COVID-19 pandemic, its spreading rate, and deaths are increasing regularly. Computed tomography (CT) scans can be used 
carefully to detect and analyze COVID-19 cases. In CT images/scans, ground-glass opacity (GGO) is found in the early 
stages of infection. While in later stages, there is a superimposed pulmonary consolidation.
Methods This research investigates the quantum machine learning (QML) and classical machine learning (CML) approaches 
for the analysis of COVID-19 images. The recent developments in quantum computing have led researchers to explore new 
ideas and approaches using QML. The proposed approach consists of two phases: in phase I, synthetic CT images are gener-
ated through the conditional adversarial network (CGAN) to increase the size of the dataset for accurate training and testing. 
In phase II, the classification of COVID-19/healthy images is performed, in which two models are proposed: CML and QML.
Result The proposed model achieved 0.94 precision (Pn), 0.94 accuracy (Ac), 0.94 recall (Rl), and 0.94 F1-score (Fe) on 
POF Hospital dataset while 0.96 Pn, 0.96 Ac, 0.95 Rl, and 0.96 Fe on UCSD-AI4H dataset.
Conclusion The proposed method achieved better results when compared to the latest published work in this domain.

Keywords CGAN · ReLU · Softmax · Classical machine learning · Quanvolutional neural network

Introduction

COVID-19 is a global pandemic. It has rapidly become a 
severe public health-related problem worldwide. COVID-
19 is a zoonotic infection that is believed to be transmitted 
from bats to humans [1, 2]. Mild symptoms of COVID-19 
appear in 82% of the cases. Out of 93,194,922 worldwide 

COVID-19 cases, 20,014,729 led to death [3]. The major 
symptoms are cough, fever, and dyspnea. In severe cases, 
it can cause pneumonia, septic shock, failure of multi-
ple organs, and even death. The infection rate is higher in 
males compared to females. No death was reported among 
children 0–9 years old [4]. Based on the latest published 
guidelines by the Chinese government, COVID-19 diag-
nosis is confirmed through gene sequencing of the blood, 
RT-PCR of the respiratory samples, a key indicator for 
hospitalization. Currently, the low sensitivity of RT-PCR 
leads to several COVID-19 cases going unidentified which 
can in turn prohibit them from getting the proper treat-
ment [5, 6]. The COVID-19 virus is highly infectious and 
can spread quickly especially when diagnosed late. The 
delay in diagnosis and medical treatment can lead to a 
severe stage of pneumonia, and permanent lung damage 
that reduces the patient’s survival rate [7]. According to 
the World Health Organization, COVID-19 may cause per-
manent lung parenchymal damage, similar to SARS, with 
a honeycomb-like appearance. It can also cause damage to 
various organs in the human body. It is believed to spread 

 * Muhammad Sharif 
 sharif@ciitwah.edu.pk

1 Department of Computer Science, University of Wah, 
47040, Wah Cantt, Pakistan

2 Department of Computer Science, COMSATS University 
Islamabad, Wah Campus, 47040, Wah Cantt, Pakistan

3 MBBS, FCPS Diagnostic Radiology, Consultant Radiologist 
POF Hospital and Associate Professor Radiology Wah 
Medical College, Wah Cantt, Pakistan

4 Faculty of Applied Computing and Technology, Noroff 
University College, Kristiansand, Norway

5 Birla Institute of Technology, Mesra, Jharkhand, India

/ Published online: 10 August 2021

Cognitive Computation (2022) 14:1677–1688

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09926-6&domain=pdf


1 3

through infected droplets produced by coughing and exhal-
ing. Computed tomography (CT) is a non-invasive imaging 
technique for detecting lung involvement and determining 
the severity of COVID-19 [8].

Artificial intelligence (AI) approaches are commonly 
used for the analysis of medical imaging [9–23]. Deep 
learning (DL) methodologies extract high-level features 
in the form of a pipeline that learns complicated patterns. 
The inceptionv3 [24] and VGG-16 pre-trained models with 
SVM are utilized for viral, bacterial, and healthy image 
classification [25]. AI is categorized into two sub-groups 
as ML and DL. DL is an advanced form of classical ML 
[26]. DL approaches can be used to diagnose COVID-
19, its methodologies named as the recurrent neural net-
work (RNN) [27], conditional generative adversarial net-
works (CGAN) [28], autoencoder (AE) [29], and hybrid 
approaches such as RNN-CNN [30] and AE-CNN[31] 
have been used to detect COVID-19 [32, 33].

Extensive work has been carried out in the literature 
to detect COVID-19. This work has certain limitations 
in the classification of CT slices due to the limited data 
availability and the complex features analysis. Therefore, 
the main objective of this study is to construct a new 
framework to overcome the existing limitations. Hence 
an improved CGAN model is proposed for synthetic 
image creation that to improve classification accuracy. 
Next complex features analysis has been performed, that 
has not been implemented in the previous literature. The 
complicated patterns in the images have been learned 

using two proposed models trained from scratch. The first 
model is based on the convolutional neural network. It is 
constructed by the combination of the optimum struc-
ture of the layers with selected learning parameters. This 
enhances COVID-19 images classification accuracy. The 
second model is based on the quantum neural network. 
It has been constructed on a 4-qubit quantum circuit. We 
select the number of layers with optimum learning param-
eters to provide significant improvement in the learning 
of the complex patterns.

The following steps are the primary contribution of the 
proposed models:

1. A modified-CGAN model is designed with selected 
learning parameters for synthetic CT image generation/
creation. The synthetic generated images are similar to 
the real CT images. This is useful for model training/
testing that directly impacts the system accuracy.

2. The second main contribution of this research is to pro-
pose two models trained from scratch to analyze COVID-
19 CT images such as CML and QNN. The proposed 
models use selected hyperparameters and layers with 
different activation units for COVID-19 classification.

The article organization is stated as follows: “Related 
Works” covers similar work, “Proposed Architectures” out-
lines the architectures suggested, “Results and Discussion” 
addresses the experimental effects, and the conclusion is 
found in “Conclusion.”

Fig. 1  Proposed architecture
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Related Works

The worldwide pandemic is caused by COVID-19 virus [34]. 
The transfer learning models are widely used for classifica-
tion such as squeeze Net, mobileNetv2, VGG-19, VGG-16, 
ResNet-18, 50, 101, and Xception [35–40]. The DarkCovidNet 
model was developed to diagnose COVID-19 [41].

Quantum computing (QC) provides a more comprehen-
sive framework for DL when compared to the classical com-
puting (CC). QC improves the optimization of the underly-
ing objective function. It reduces the training time of deep 
learning [42–44]. The convolutional neural network (CNN) 
is a classical machine learning model suitable to process 
the images. The CNN model is based on the idea of the con-
volutional layers applied to a local convolutional instead of 
processing the full original data with global function. This 
idea is further extended in the context of variational quantum 
circuits. The major difference when compared to classical 
convolution is that a quantum circuit might produce highly 
complex kernels whose computation could be classically 
intractable [45].

In recent years, deep learning is gaining a huge success in 
medical imaging. Several machine learning approaches are 
used to predict different health issues from the radiological 
images. Several ML applications can be used to produce 
optimal outcomes, but still needs human interference to 
aid the ML decisions [46]. Machine learning is a pervasive 
approach in many fields of engineering and sciences. Due 
to the restricted architecture of classic computers, there is a 
need to move to quantum computing to develop QML. The 
purpose of this study is to find more efficient algorithms to 
manipulate and process visual information in real-time at a 
very high speed [43, 47].

Previously several classical machine learning approaches 
are used for COVID-19 classification, but still have limita-
tions. Prominent feature extraction is a challenging task. In 
this research, CML and QNN models are designed to resolve 
this issue.

Proposed Architectures

A new paradigm is suggested in this study, which com-
prises of two stages. In stage I, synthetic data is generated 
by applying a modified CGAN [48] architecture, where gen-
erator and discriminator network are trained by the optimal 
hyperparameters and are supplied to the two proposed archi-
tectures, such as CML and QNN [49], as illustrated in Fig. 1

Conditional Generative Adversarial Network

CGAN is a primary deep network that generates synthetic 
data having real imaging characteristics. A generative adver-
sarial network (GAN) is constructed by the combination 
of generator and discriminator. The generator created CT 
synthetic images that are similar to the input CT images. 
Similarly, the second network is a discriminator that is used 
to take data in the form of batches comprising of obser-
vations to perform classification. The optimum generator 
performance is achieved to maximize the discriminator loss, 
and the optimum discriminator performance is increased to 
minimize the discriminator loss. The generator creates syn-
thetic data and tricks the discriminator. The discriminator is 
trained to classify the data into corresponding classes such 
as real and synthetic images as shown in Fig. 2.

Fig. 2  Conditional adversarial network for synthetic data generation

Table 1  Hyperparameters of CGAN

Learning rate 0.0002
Num of Epochs 10,000
Minibatch-size 128
The decay of gradient factor 0.5
Squared decay gradient factor 0.999
Execution environment Auto
A factor of the flip 0.3
Validation frequency 100
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Generative Network

In this network, the projection and reshape layer is utilized to 
convert the input data into 1-by-1-by-100 arrays of the noise 
to the 7-by-7-by-128 arrays. Moreover, upsampling is per-
formed with ReLU and batch normalization. The transposed 
convolution layers are applied with a 5 × 5 filter size. Stride 
2 is used to crop the output on every edge. At the end-stage, 
tanh followed through a fully connected layer to reshape the 
output across the selected size.

Discriminative Network

The discriminator network takes images of dimension 
64 × 64 × 3 . The scalar prediction scores are returned by the 
series of convolutional, LeakyReLU, batch-normalization, 
and dropout layers. The parameters are selected for model 
training as mentioned in Table 1.

The layered architecture of CGAN with the activation 
units is depicted in Table 2.

Proposed Classification Architectures

The synthetic images are supplied to the CML and QNN 
models for COVID-19 classification.

Classical Machine Learning

The CML model is proposed for classification which com-
prises three kinds of layers such as 01 convolutional, 01 
flatten, and 02 dense layers as presented in Fig. 3.

The convolutional layers are primary building blocks in 
CNN, which maps the input images size of 128 × 128 × 3 
with 3 × 3 kernel size and output in the form of activation 
which is mathematically explained as follows:

where f denotes input images, h represents kernel size, and 
m, n symbolizes the row and column, respectively. The 

(1)
G[m, n] = (f ∗ h)[m n] =

∑

j

∑

k
h
[

j, k
]

f
[

m − j, n − k
]

Table 2  CGAN model with 
activations units

Generative network Discriminative network

Input Activation Input Activation

Input ( 1 × 1 × 100)) 1 × 1 × 100 Input(64 × 64 × 3) (64 × 64 × 3)

Project and reshape 4 × 4 × 512 Dropout (50%) (64 × 64 × 3)

Transpose convolution 5 × 5 filter size 8 × 8 × 256 Convolution 1 5 × 5 filter size (32 × 32 × 64)

Batch-normalization 8 × 8 × 256 LeakyReLU (32 × 32 × 64)

ReLU 8 × 8 × 256 Convolution 2 5 × 5 filter size (16 × 16 × 128)

Transpose convolution 5 × 5 filter size 16 × 16 × 128 Batch-normalization (16 × 16 × 128)

Batch-normalization 16 × 16 × 128 LeakyReLU (16 × 16 × 128)

ReLU 16 × 16 × 128 Convolution 3 5 × 5 filter size (16 × 16 × 256)

Transpose convolution 5 × 5 filter size 32 × 32 × 64 Batch-normalization (16 × 16 × 256)

Batch-normalization 32 × 32 × 64 LeakyReLU (8 × 8 × 128)

ReLU 32 × 32 × 64 Convolution 4 5 × 5 filter size (4 × 4 × 512)

Transpose convolution 5 × 5 filter size 64 × 64 × 3 Batch-normalization (4 × 4 × 512)

Hyperbolic Tanh 64 × 64 × 3 LeakyReLU (4 × 4 × 512)

Convolution 5 4 × 4 filter size (1 × 1 × 1)

Fig. 3  Proposed CML model
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flatten layer is applied to collapsed spatial input dimensions 
into channel dimension height × width × channel . The dense 
layer is the layer of a regular neuron of the neural network, in 
which neurons receive input from all neurons from the pre-
ceding layers and connected densely as mentioned in Eq. (2).

The ReLU and softmax activation functions are utilized 
with the number of neurons such as 13 and 02, respec-
tively. The model is trained on the hyperparameters that are 
selected after the comprehensive experiment as shown in 
Table 3.

Quanvolutional Neural Network

A new QNN contains three kinds of layers, such as 4-Qubit-
quantum layers, 03-dense layers with specified activation 
units, and drop-out layers. The quantum layer is added to 
replace the convolutional layer. The 4-bit quantum is used to 
generate the 20 × 20-dimension quantum images. The quan-
tum generated images are learned in a pipeline; then, a dense 
layer by ReLU and softmax with different activation units 
are applied. The model learning parameters are the same as 

(2)Output = activation(dot(input, kernel) + bias

the CML model (see Table 3) for the fair comparison among 
these two architectures such as CML and QNN.

Quantum Convolution  In the proposed quantum machine 
learning model, input images are divided into 2 × 2 square 
regions and embedded into the quantum circuit. The quantum 
images are generated through parametrized rotations with 
initialized the qubits in the ground state. In this process, the 
unitary might be created through the quantum variational 
circuit. Finally, the quantum system is computed by find-
ing a classical list of expectation values. These values are 
mapped into the variant channel of the output (single-pixel). 
The process is repeated into variant regions; one might scan 
the full image and create output with a multi-channel image. 
Quantum convolutional might be followed through classical 
or quantum layers. The penny lane qubit device [50, 51] is 
initialized to simulate a 4 qubits system. The related q-node 
denotes quantum circuit comprising of rotations Ry embed-
ded local layer (scaled angle by π factor) and n random circuit 
layers. In the final computational measurement, 4 expecta-
tion values are estimated. In a convolution process, the input 
images are divided into 2 × 2 square pixels and each square 
is processed through a quantum circuit. Finally, the 4 expec-
tation values are mapped into 04 channels of output (single-
pixel). The proposed quantum model is presented in Fig. 4.

Quanvolutional Neural Networks  The quantum generated 
images are transferred to QNN, where 03 dense layers are 
used by 60, 500 neurons with ReLU activation and 02 neu-
rons with softmax for features mapping. The 0.5 drop-outs 
are utilized. The proposed QNN building blocks are pre-
sented in Fig. 5.

Table 3  Training 
hyperparameters of the CML 
model

Optimizer RMSprop

Batch-Size 26
Epochs 100
Loss Sparse cat-

egorical cross-
entropy

Fig. 4  Quantum image genera-
tion
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Results and Discussion

The proposed method is evaluated on two benchmark data-
sets, in which the UCSD-AI4H/COVID-CT dataset is pub-
licly available that contains 812 COVID-19/non-COVID-19 
images of 216 patients [52, 53]. The second dataset is col-
lected from POF Hospital Pakistan, which consists of 4127 
healthy and 5421 COVID-19 affected CT images. Further-
more, synthetic images are also generated by employing a 
CGAN model. Table 4 provides a comprehensive overview 
of the datasets.

Table 4 shows the description of UCSD-AI4H/COVID-
CT and private collected dataset from POF Hospital, where 
actual images of UCSD-AI4H/COVID-CT are 406 healthy 
and 406 COVID-19. A total of 812 synthetic images are gen-
erated using the CGAN model out of which 406 healthy and 
406 COVID-19. A total of 1612 images (actual + synthetic) 
of UCSD-AI4H/COVID-CT dataset are utilized for model 
training and testing.

For the second dataset, a total of 9548 synthetic images 
are generated using the CGAN model out of 4127 healthy 
and 5421 COVID-19 cases. A total of 19,096 images 
(actual + synthetic) are utilized for model training and 
testing.

The total actual and synthetic images are supplied to the 
training and testing using 0.4 and 0.5 hold-out validation. In 
0.4 cross-validations, 60% data utilized for training and 40% 
for testing. Data is divided randomly into two subsets of 0.5 
cross-validation, one for training and the other for testing.

This study is implemented on COREI7 CPU, WINDOW-10- 
SSD,16 GB RAM, and 2070 NVIDIA GPU. Two experiments 
are performed for the proposed method evaluation. CGAN 

model performance is computed in the first experiment. Simi-
larly, in the second experiment, classification is performed on 
synthetically generated images using the CGAN model. The 
classification results are analyzed using two models such as 
CML and QNN.

Experiment #1: Synthetic Image Generation Using 
CGAN

To assess the efficiency of the modified CGAN model, syn-
thetic CT images are produced. The model is tuned to reduce 
generative loss while increasing prediction accuracy. The 
generative loss function is mathematically explained below.

The goal of the generator is to generate and supply data 
to the discriminator model as real images. The maximum 
image probability to the generator is considered real by 
reducing the negative log function.

Given discriminator output Y as.
Ŷ = �(Y) represent the input probability that belongs to 

the real class.
1 − Ŷ  denotes input probability that belongs to the gener-

ated class.
The generator loss function is expressed mathematically 

as

lossgenerator = −mean(log(ŶGenerated) where ŶGenerated 
define output discriminator that shows the probability of 
the generated synthetic images.

The discriminator’s goal is not tricked through a genera-
tor. The discriminator probability successfully increased the 

(3)The generator of the loss = −mean(log log
(

ŶGenerated

)

Fig. 5  Proposed QNN model

Table 4  Dataset descriptions

UCSD-AI4H/COVID-CT POF Hospital Pakistan

Actual images Synthetic images generated 
using CGAN

Total images
Actual + synthetic

Actual images Synthetic images generated 
using CGAN

Total images
Actual + synthetic

Healthy slices COVID-19 
slices

Healthy slices COVID-19 
slices

Healthy slices: 
406 + 406 = 812

Covid-19: 
406 + 406 = 812

Healthy slices COVID-19 
slices

Healthy 
slices

COVID-19 
slices

Healthy slices: 
4127 + 4127 = 8251

Covid-19: 
5421 + 5421 = 10,842

406 406 406 406 4127 5421 8254 10,842
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training images and minimized the negative log function. 
The discriminator loss function is expressed mathematically 
as

where ŶReal shows the output of the discriminator probability 
for input real images.

The generated images with generator loss as well as dis-
criminator prediction scores are shown in Fig. 6.

The quantitative analysis of the predicted discriminator’s 
scores and generative loss is shown in Table 5.

The synthetic generated images are presented in Fig. 7.
Some synthetic generated images concerning the class 

labels as displayed in Fig. 8.

Experiment #2: Classification Using Classical 
Machine Learning and Quanvolutional Neural 
Network Model

In Experiment #2, classification results are computed using 
a variety of measures, i.e., accuracy (AC), precision (Pn), 
Recall (Rl), and F1-score (Fe) as depicted in Tables 6, 7, 8, 
9, 10, 11, 12 and 13. In terms of confusion metrics seen in 
Fig. 9, the proposed solution output is plotted.

Discriminator of the loss = − mean
(

log log
(

ŶReal

))

− mean
(

log log
(

ŶGenerated

))

Classification Results Based on Classical Machine Learning

Tables 6, 7, 8 and 9 display the classification effects of 
the CML model on the benchmark datasets using 0.4&0.5 
cross-validation.

Results on Publically Available (Chinese Hospital Dataset)  
The classification results on UCSD-AI4H/COVID-CT 
dataset are displayed in Tables 6 and 7. Table 6 shows the 
results using 0.4 cross-validations on UCSD-AI4H/COVID-
CT dataset.

The classification results of the CML model on 0.5 cross-
validations are depicted in Table 7.

Results on Private Collected (POF Hospital Dataset)  The 
computed outcomes on POF Hospital dataset are given in 
Tables 8 and 9. The classification results of the CML model 

Fig. 6  Generated images with 
generative loss and discrimina-
tor prediction scores: a UCSD-
AI4H/COVID-CT dataset and b 
POF Hospital dataset

Table 5  Quantitative assessment of CGAN model on benchmark 
datasets

Dataset Generative loss Prediction scores 
by the discrimi-
nator

UCSD-AI4H/COVID-CT 0.017 0.835
POF Hospital 0.007 0.930

Fig. 7  Generated synthetic CT images
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Fig. 8  Synthetic images with corresponding class labels: a Non-
COVID-19. b COVID-19

Table 6  Discrimination results using CML with 0.4 hold out cross-
validation on Chinese dataset

Classes Pn Rl Fe

Non-COVID-19 0.59 0.62 0.61
COVID-19 0.36 0.33 0.35
AC 50.82
Macro avg (Ma) 50.82 50.82 50.82
Weighted avg (Wa) 50.82 50.82 50.82

Table 7  Classification results using CML with 0.5 hold out cross-
validation on Chinese dataset

Classes Pn Rl Fe

Non-COVID-19 0.90 0.83 0.86
COVID-19 0.82 0.89 0.85
AC 0.85
Ma 0.85 0.83 0.84
Wa 0.85 0.85 0.85

Table 8  Classification results using CML with 0.4 hold out cross-
validation on POF Hospital dataset

Classes Pn Rl Fe

Non-COVID-19 0.82 0.78 0.80
COVID-19 0.79 0.83 0.81
AC 0.81
Ma 0.81 0.77 0.79
Wa 0.80 0.76 0.80

Table 9  Classification outcomes using CML with 0.5 validation on 
POF Hospital dataset

Classes Pn Rl Fe

Non-COVID-19 0.89 0.89 0.94
COVID-19 0.90 0.99 0.94
AC 0.94
Ma 0.94 0.94 0.94
Wa 0.94 0.94 0.94

Table 10  Classification results using QNN with 0.4 hold out cross-
validation on Chinese dataset

Classes Pn Rl Fe

Non-COVID-19 1.00 0.90 0.95
COVID-19 0.91 1.00 0.95
AC 0.95
Ma 0.95 0.95 0.95
Wa 0.95 0.95 0.95

Table 11  Classification results using QNN with 0.5 hold out cross-
validation on Chinese dataset

Classes Pn Rl Fe

Non-COVID-19 1.00 0.91 0.95
COVID-19 0.92 1.00 0.96
AC 0.96
Ma 0.96 0.95 0.96
Wa 0.96 0.96 0.96

Table 12  Classification results using QNN with 0.4 hold out cross-
validation on POF Hospital dataset

Classes Pn Rl Fe

Non-COVID-19 0.94 1.0 0.97
COVID-19 1.0 0.94 0.97
AC 0.97
Ma 0.97 0.98 0.97
Wa 0.97 0.97 0.96

Table 13  Classification results using QNN with 0.5 validation on 
POF Hospital dataset

Classes Pn Rl Fe

Non-COVID-19 1.00 1.00 1.00
COVID-19 1.00 1.00 1.00
AC 1.00
Ma 1.00 1.00 1.00
Wa 1.00 1.00 1.00
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are mentioned in Table 8 using 0.4 cross-validations on the 
POF Hospital dataset.

In the same experiment, classification results of the CML 
model are also computed on 0.5 cross-validations as given 
in Table 9.

Classification Results based on Quanvolutional Neural 
Network

The COVID-19 classification is performed using the QNN 
model as presented in Tables 10, 11, 12 and 13 using 0.4 and 
0.5 cross-validations.

Results on Publically Available (Chinese Hospital Data‑
set)  The classification results using the QNN model on 
the UCSD-AI4H/COVID-CT dataset are mentioned in 
Tables 10 and 11. Table 10 present the classification results 
of the QNN model using 0.4 cross-validations.

The QNN model performance is also computed using 0.5 
cross-validations on the UCSD-AI4H/COVID-CT dataset 
in Table 11.

Results on Private Collected (POF Hospital Dataset)  
Tables 12 and 13 display the classification findings. The 
classification outcomes on POF Hospital dataset using 0.4 
cross-validations are depicted in Table 12.

Table 13 displays the classification findings computed 
using 0.5 cross-validations.

Results Comparison of the Proposed Classical Machine 
Learning and Quanvolutional Neural Network

The performance of the proposed CML and QNN models 
are graphically shown in Fig. 10, where classification accu-
racy is presented with quantum (QNN-model) and without 
quantum (CML-model).

Figure 10 presents the classification results using CML 
and QNN models using 0.4 and 0.5 cross-validation on the 

Fig. 9  Confusion matrix: a, b 
0.5 hold-out validation and c, d 
0.4 hold-out validation

Table 14  Comparison of the outcomes

Ref Datasets Method Results (Fe)

Yang et al. [53] UCSD-AI4H/
COVID-CT

50 residual model 0.89 AC
Horry et al. [54] VGG-16 0.79

VGG-19 0.78
Xception 0.70
Inception ResNet 0.63
Inceptionv3 0.71
NasNet large 0.64
DenseNet121 0.75
ResNet50v2 0.66

Burgos [55] Inception 0.85
Wang et al. [56] COVID-Net 0.78
Ewen and Khan 

[57]
DenseNet169 0.87

Proposed method QNN 0.96
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benchmark datasets, where the red line and blue line show 
the results of quantum (QNN model) and without quantum 
layers (CML-model) respectively.

In this article, lung CT images are classified using two 
architectures such as CML and QNN. Experimental out-
comes manifested that QNN performed better on both data-
sets as compared to the CML. The findings of the proposed 
approach are compared to the five most recent methodolo-
gies given in Table 14.

The existing methods utilized transfer learning models 
such as ResNet-50, VGG-16, VGG-19, Xception, Incep-
tion ResNet, Inceptionv3, NasNet large, DenseNet121, 
ResNet50v2, Inception, and DenseNet169 for classification. 
The existing method achieved a maximum of 0.87 Fe; how-
ever, the proposed QNN model achieved 0.96 Fe.

Conclusion

COVID-19 detection is a challenging task because of the 
limited data availability and complex images features. To 
handle this issue, a modified CGAN model is proposed for 
synthetic CT image generation. This provides accurate results 
of image classification due to a better model training/testing. 
Result classification depends on the extracted features. In this 
research, two models are proposed such as CML and QML. 
The CML model achieved maximum accuracy of 0.85 on 
the UCSD-AI4H/COVID-CT dataset and 0.95 on the POF 

Hospital dataset, while the QML model achieved maximum 
accuracy of 0.96 on the UCSD-AI4H/COVID-CT dataset 
and 1.00 on the POF Hospital dataset. Overall experimental 
results conclude that the QML model performed better as 
compared to the CML model, which proves that quantum 
machine learning provided superior performance. In the 
future, this study can be extended to classify the severity of 
the COVID-19 patients such as mild, moderate, and severe 
to increase the survival rate of the patients.
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