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Abstract
Facial expression recognition has seen rapid development in recent years due to its wide range of applications such as 
human–computer interaction, health care, and social robots. Although significant progress has been made in this field, it is 
still challenging to recognize facial expressions with occlusions and large head-poses. To address these issues, this paper 
presents a cascade regression-based face frontalization (CRFF) method, which aims to immediately reconstruct a clean, 
frontal and expression-aware face given an in-the-wild facial image. In the first stage, a frontal facial shape is predicted by 
developing a cascade regression model to learn the pairwise spatial relation between non-frontal face-shape and its frontal 
counterpart. Unlike most existing shape prediction methods that used single-step regression, the cascade model is a multi-
step regressor that gradually aligns non-frontal shape to its frontal view. We employ several different regressors and make a 
ensemble decision to boost prediction performance. For facial texture reconstruction, active appearance model instantiation is 
employed to warp the input face to the predicted frontal shape and generate a clean face. To remove occlusions, we train this 
generative model on manually selected clean-face sets, which ensures generating a clean face as output regardless of whether 
the input face involves occlusions or not. Unlike the existing face reconstruction methods that are computational expensive, 
the proposed method works in real time, so it is suitable for dynamic analysis of facial expression. The experimental validation 
shows that the ensembling cascade model has improved frontal shape prediction accuracy for an average of 5% and the 
proposed method has achieved superior performance on both static and dynamic recognition of facial expressions over 
the state-of-the-art approaches. The experimental results demonstrate that the proposed method has achieved expression-
preserving frontalization, de-occlusion and has improved performance of facial expression recognition.

Keywords Face frontalization ·  Facial expression recognition · Cascade regression · Facial analysis · Person-independent 

Introduction

Facial expression recognition (FER) has a wide range of 
applications including human–computer interaction (HCI) 
[38, 6], animation [1, 36, 21] and security [24]. Healthcare 
is one of the most important applications of FER. FER-
based research has been conducted on traditional mental 

care of Autism Spectrum Disorder (ASD) and Parkinson 
patients who has difficulty in recognizing and performing 
affective facial expressions. Recently, researchers in this 
field has started to care more about the healthcare cases in 
recognizing the state of pain, fatigue/confusion, boredom/
stressful, sleepiness, inattention and facial palsy [19].

Considerable FER performance has been achieved by 
using deep learning technologies [32, 48]. Currently, most 
existing FER approaches focus on static facial images 
processing [10]. However, facial expressions are inherently 
dynamic actions which can be better described as several 
sequential pieces of facial motions in a time interval. 
Although static FER methods have achieved impressive 
results, they completely ignored discriminative features 
conveyed by subtle facial muscle movements. Dynamic FER 
on the whole image sequence is more natural and reasonable.

The aim of dynamic FER is to predict facial expression 
categories from an image sequence. A common sequence 
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of the expression evolutionary process often evolves initial 
neutral state, onset, apex phase, offset and final neutral 
state. The existing dynamic facial feature descriptors 
can be classified into two categories: low-level feature 
representation and high-level motion-aligned representation. 
The best known low-level feature representations are LBP-
TOP [47] and LPQ-TOP [15] which capture the local 
gradient features over both spatial neighborhoods in one 
frame and temporal neighborhoods between adjacent frames. 
Recent research on deep learning FER methods [13, 33, 
46] often combines Convolutional Neural Network (CNN) 
with Long-Short Term Memory (LSTM) to capture both 
spatial and temporal facial features. Although deep learning 
methods could extract features from very deep levels, they 
still follow the end-to-end protocol without specifically 
considering time-alignment. High-level semantic methods 
aim to derive a meaningful facial motion representation in 
which temporal alignment is often presented to different 
sequences with different time intervals into a uniform 
temporal space (five states of the expression evolutionary 
process) [9]. As both categories address the problem of 
temporal modelling, they have been proved to be effective 
on the posed facial expression data sets but poor on 
unconstrained image sequences where there are large head-
pose changes and occlusions. Currently, there is no attempt 
that focuses on head-pose normalization for dynamic facial 
expression recognition.

Intuitively, the problem of head-pose changes and occlusions 
from unconstrained facial images can be well normalized 
through face frontalization [8, 49]. The main objective of generic 
face frontalization is to automatically recover the non-frontal 
face to its frontal view. Traditional face frontalization methods 
often include two key components: frontal face-shape estimation 
and frontal face-texture fitting. Frontal shape estimation 
localizes facial key point positions and aligns them to the frontal 
positions. The objective of frontal shape estimation is to align 
the non-frontal facial landmarks to their frontal positions. The 
task of texture fitting is to fit textures to the predicted shape 
by texture warping and rectification. It has been reported that 
frontal shape estimation is quite challenging. The mainstream 
approaches focus on hard frontalization that an unmodified 
frontal shape template (often made in neutral) is used as the 
reference and facial textures of all the query faces will be fitted 
to the template [50]. By this strategy, the reconstructed faces 
usually lose facial expression-related information. Recent face 
frontalization methods are mainly based on deep generative 
models, especially generative adversarial network (GAN). Most 
GAN-based methods [37, 45] use a structure of an encoder-
decoder network connecting to a CNN-like classification 
network to simultaneously generate a face and identify whether 
it is in frontal view or not. Obviously, there is no need for these 
kinds of generative methods to consider shape alignment, which 
may also lose subtle expression cues in the generated faces. 

There are only a few approaches so far that are able to achieve 
expression preserving face frontalization.

In this paper, a novel cascade regression-based face 
frontalization (CRFF) method is proposed for dynamic 
analysis of facial expressions. The key issue is how to predict 
the frontal position of key facial points given a detected non-
frontal shape. Inspired by the idea of Supervised Decent 
Method (SDM) [20, 42] and residual neural network [11], 
we propose a novel cascade regression model for 2D frontal 
shape estimation. To begin with, a set of facial images in 
different viewpoints is collected and each non-frontal face 
is associated with its frontal counterpart. Several regression 
approaches are chosen to learn the pairwise relations 
between the non-frontal shape and frontal shape. It is 
obvious that pairwise changes in head-pose, expressions 
and individual differences are nonlinearly coupled in 2D 
shapes. Thus, one step regression is not able to well model 
this relation. As is shown in Fig. 1, we propose an adaptive 
cascade regression model in which the input is designed 
to be mapped to the difference between target and input 
instead of directly being mapped to the target, so that the 
non-frontal shape can be gradually approximated to its 
frontal shape. In the training stage, the cascade regression 
model aims to minimize the difference between the predicted 
facial shape and groundtruth position. During testing, the 
cascade regression model will be used as a frontal face-
shape predictor that estimates the key point positions in 
frontal view. The obtained frontal shape will be viewed as 
the based mesh which is used to feed the texture fitting in the 
next step. For texture-fitting, we employ active appearance 
model (AAM) instantiation [3, 22] to reconstruct the facial 
appearances. To remove occlusions, AAM model is trained 
on manually selected clean-face sets, which ensures that 
the AAM model only learns how to generate a clean face. 
Therefore, the output of the AAM model is expected to 
be always clean faces regardless of whether the input face 
involves occlusions or not. The reconstructed face will be: 
(a) in frontal view, (b) remaining deformations of detailed 
facial expressions, (c) no occlusions. The contributions of 
the paper can be summarized as follows:

1) We propose a cascade regression-based face frontali-
zation (CRFF) approach for head-pose normalization. Dif-
ferent from computationally expensive 3D solutions which 
suffer from the one-minute-per-frame problem, this method 
is based on 2D face reconstruction and works in real time.

2) Different from the existing 2D face frontalization 
methods that usually ignore facial deformation containing 
expression information, the proposed frontalization method 
is expression-aware. The vivid expression changes are 
preserved and the occlusions are effectively removed.

3) The experiment shows that dynamic FER accuracy 
can be improved by using our expression-preserving face 
frontalization method.
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The rest of this paper is organized as follows. Section 2 
surveys the state-of-the-art FER and face frontalization 
methods. Section 3 presents the detailed implementation of 
the proposed method. We conduct qualitative experiment 
and quantitative visualization in Section 4. Finally, we 
summarize this paper with a discussion of contribution and 
future work in Section 5.

Related Works

Facial Expression Recognition

The main focus of this paper is on traditional mental care 
based on recognition of facial expressions of emotions. 
Dynamic FER models capture spatiotemporal features which 
represent a range of frames within a time interval. As is 
mentioned above, the existing methods can be divided into 
low-level feature-based and motion-based approaches.

Low-level spatiotemporal representations can be seen 
as an extension of low-level spatial representations. Shape 
features are described by tracked fiducial facial points. The 
location of each pint, as well as the length and angle of 
pairwise points connection, forms the basic shape features. 

Till now, shape representations are less common because it 
has been reported and well validated that appearance models 
outperform shape models [30]. Appearance representation 
are the mainstream for dynamic FER. LBP-TOP is a popular 
method that extracts Local Binary Pattern (LBP) features 
from Three Orthogonal Planes (TOP) [47]. Many existing 
works on dynamic FER are based on LBP-TOP [23, 40]. 
The original LBP features extracted from a single spatial 
plane are extended to two more spatiotemporal planes, which 
enable extracting gradient features between frames. LPQ-
TOP follows the same principle and is used in Action Unit 
(AU) recognition [15].

Obviously, low-level features do not consider the specific 
knowledge in the facial expression domain. Recent research 
focuses more on capturing high-level semantic features 
represented by facial motions. It is commonly accepted that 
the facial expression process of human beings includes five 
states: initial neutral, onset, apex, offset and final neutral. 
This standard process can be seen as a template and motion-
based methods are actually a time alignment strategy that 
normalizes the input sequence to the five reference states. 
Koelstra et al[47] used free-form deformations (FFD) [28] 
based non-rigid registration to capture motions for AU 
recognition. Guo el al.[9] used diffeomorphic transformation 

Fig. 1  Diagram of proposed face frontalization
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for time alignment and proposed atlas construction to capture 
facial appearance movements. Wang et al. [41] assumed 
each local facial points movement as a local facial event 
and learned the motion dependency by modelling temporally 
overlapping facial events and their temporal relations by an 
interval temporal Bayesian network. In [17], a universal 
manifold model (UMM) is learned to statistically unify 
each input video (modelled as spatiotemporal manifold via 
low-level features) to the standard expression evolutionary 
process.

All the methods mentioned above only address the 
problem of temporal state alignment, but ignore spatial 
texture alignment. If the subjects of the video clips move 
their head frequently, the appearance changes caused by 
head-pose will be much larger than subtle expressions 
changes. This is why most dynamic FER methods perform 
well on the posed expression data sets but poor on the 
unconstrained image sequences. A well designed dynamic 
descriptor should consider both time alignment and facial 
appearance normalization. The problem of facial appearance 
normalization for suitable expression registration is quite 
challenging that has not been addressed yet.

Face Frontalization

Recently, face frontalization has attracted wide attentions 
due to its effectiveness in facial analysis[29, 39]. It is 
commonly accepted that more robust features can be 
captured from the frontal face rather than the profile face. 
Thus, the main objective of face frontalization is to recover 
the frontal faces from non-frontal viewpoints. This is a 
comprehensive research topic which is often associated with 
face alignment, face deformation and texture rectification.

If a facial image is captured from the non-frontal view, 
one half side of the face contains abundant facial texture 
while the other side is occluded. Direct interpolation 
will cause large distortions on the reconstructed images. 
Therefore, the main problem of face frontalization is 
how to fill the invisible part. Traditional methods for face 
frontalization includes 2D-based models and 3D-based 
models.

In [14] and [26], two approaches of person-specific 3D 
model reconstruction were proposed, in which several images 
captured from one person in different poses and expressions 
are used to reconstruct the 3D face. The main drawback of 
these methods is they are unable to reconstruct 3D surface 
of novel faces. In order to deal with this problem, many 
methods were proposed based on 3D Morphable Model 
(3DMM), which is, theoretically, capable of reconstructing 
a full 3D facial surface from a single input image [8, 49, 50]. 
Although 3D-based methods can implement frontalization, 
they are not practical since a) it is usually computationally 
expensive to build 3D models, b) a massive training data is 

required to learn shape models, and c) it is very challenging 
to reconstruct the 3D models of novel subjects.

In [43] and [31], two effective 2D frontalization approaches 
were presented and both of them belong to hard frontalization 
which employ a single 2D/3D reference template as base 
shape. The query images are then used to fit the facial 
textures to the reference template. Soft symmetry [43] fills the 
invisible regions by the corresponding symmetric visible parts 
of face. Apparently, this approach is sensitive to occlusions 
and it only enables tilt head rotation recovery but fails in 
recovering the faces in pan angles. The texture-fitting strategy 
of Robust Statistical face Frontalization (RSF) [29] is based 
on active appearance model (AAM) instantiation [22] which 
reconstructs the appearances by combining a group of eigen 
faces. It is robust to occlusions and is capable of recovering 
the faces in whatever pan or tilt angles. Therefore, RSF is 
more stable than soft symmetry.

Recently, deep learning methods are also used in face 
frontalization. Yim et al. [44] used multi-task deep neural 
network (DNN) to generate a facial image of any query 
head-pose from a single input image. Multi-task DNN 
included a main DNN that generated a face with desired 
head-pose and an auxiliary DNN for the secondary task 
of identity maintenance. The output of this model is an 
identity-preserving face of the desired head-pose. Tran 
at al. [37] proposed a GAN-based framework that used 
an encoder-decoder structured generator and a multi-task 
CNN as discriminator for facial identity classification 
task and pose classification task. The output of the 
generator is the synthesized identity-preserving face 
of the desired pose. Li et al. [16] presented in-painting 
and frontalization GAN (IF-GAN) which was the 
only method that was specifically designed to remove 
occlusions. However, this method could only work on 
artificial occlusions, in which the occlusion mask must 
be given in advance as prior knowledge. Therefore, 
IF-GAN cannot be used in real-world conditions and 
occlusion remains a big challenge in this field.

These methods have been proved to be effective in 
face recognition tasks. However, the reconstructed faces 
are expected to approximate real frontal faces while 
the identity and expressions are more or less removed. 
There is only one published work on facial expression-
aware face frontalization (FEAF) [39]. In that approach, 
multiple emotional shape templates are designed 
instead of a single shape template and it achieves 
good results in static FER. Inherently, it is still a kind 
of hard frontalization and is not suitable for dynamic 
FER because all the frames of the image sequence 
are arbitrarily normalized to the templates so that the 
dynamic information of subtle expression and shape 
changes will be lost. Dynamic FER requires a novel face 
frontalization method that is able to not only recover 
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appearances to frontal view, but also distinguish subtle 
changes in terms of facial shapes and appearances.

Methodology

We propose a new face frontalization method which 
synthesizes clean, frontal and expression-preserving faces. It 
mainly includes two stages: cascade regression-based frontal 
face-shape estimation and AAM-based frontal face-texture 
fitting. In the first stage, the non-frontal facial shape features 
(positions of landmark points) are detected by SDM, and 
then sequentially fed to a four-step cascade regression model 
which gradually maps the non-frontal shape into its frontal 
view. We have adopted four different regression methods 
as the base regressor. They work independently and their 
outputs are combined to make a comprehensive decision via 
a ensemble learning framework. The whole system in the 
first stage receives a facial image with an arbitrary head-pose 
and outputs its predicted frontal shape. In the second stage, 
the facial textures are roughly warped into this frontal shape. 
The distortion caused by warping, as well as occlusions, is 
rectified by fitting a pre-trained AAM model which linearly 
combines a group of clean eigen faces. The final output is a 
realistic expression-preserving facial images in frontal view 
without any occlusions.

Regression Approaches

In this stage, we address the problem of learning an asso-
ciated pattern between the non-frontal facial shape and its 
corresponding frontal counterpart in a regression manner. 
Given a pair of shape vectors:

representing non-frontal and frontal facial annotations, 
respectively, the problem is to learn a regression function R 
that makes R(x) most approximate to x

0
 . We implement four 

popular regressors for this task: Linear Regression, linear 
Support Vector Regression (SVR), Radial Basis Function 
(RBF) kernel-based SVR and Gaussian Process Regression 
(GPR).

Linear Regression: Linear regression is one of the most 
commonly used machine learning methods. The geometric 
view of linear regression model is that all sample points 
are constrained on a hyperplane. It makes the prediction 

(1)
x =[x1, y1, x2, y2, ...xn, yn]

x
0
=[x1

0
, y1

0
, x2

0
, y2

0
, ...xn

0
, yn

0
]

by a weighted combination of all input features that can be 
referred to as:

where � is a weight and b is a bias term. Consider the train-
ing data {(x1, y1), ..., (xl, yl)} , where x = x1, ..., xl ∈ ℝ

n is the 
n-dimensional feature vector and y = y1, ..., yl ∈ ℝ is the 
response, linear regression solves a least square problem by 
minimizing:

where 𝜆 > 0 is a regularization coefficient used to adjust the 
balance between under-fitting and over-fitting. The solution 
for � is given as:

where I is the identity matrix.
Support Vector Regression: SVR also considers the 

linear function y = ⟨�, x⟩ + b . Unlike linear regression that 
learns a hyperplane by blindly minimizing the prediction 
error thoughtout all sample points, SVR specifies a  maxi-
mum margin hyperplane and minimize the margin by only 
considering the points that lies far away from hyperplane. 
SVR leaves much flexibility to the researchers to dynam-
ically determine how much error can be tolerated in the 
model. This makes SVR less sensitive to noise and reduces 
the risk of overfitting. The SVR function can be expressed 
as:

where maximum margin � is the distance from hyper-
plane to the constrained farthest sample points. It allows 
the model to contain some small errors within a strictly 
restricted boundary. This restriction is loosened by the slack 
variable � . It is a soft margin which further increases the 
tolerance of the points outside the maximum margin. This 
soft margin is also dynamically controlled by parameter C 
which adjusts the balance between accuracy and tolerance 
of deviation.

After introducing the dual problem and Lagrangian mul-
tipliers. The optimization problem becomes:

(2)y = ⟨�, x⟩ + b

(3)argmin
�

∥ y − �Tx ∥2 +� ∥ � ∥2

(4)� = yxT (xxT + �I)−1

(5)

min
1

2
‖�‖2 + C

l�
i=1

(�−
i
+ �+

i
)

s.t.

⎧
⎪⎨⎪⎩

yi − ⟨�, xi⟩ − b ≤ � + �+
i⟨�, xi⟩ + b − yi ≤ � + �−
i

�+
i
, �−

i
≥ 0
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where �i and �∗ are the Lagrangian multipliers. Sequential 
Minimal Optimization (SMO) [25] is commonly used to 
optimize the parameters in the SVR training stage. The 
obtained SVR model can predict the result by Equation (2).

The SVR method mentioned above is still linear. Kernel 
function is a trick in SVR to solve non-linear problems. The 
model is obtained by replacing the dot product ⟨xi, xj⟩ in 
Equation (6) by a kernel function K(xi, xj) = �(xi),�(xj)⟩ , 
where �(x) is a human-designed transformation rule that  
maps x to a transformed feature space. RBF is a commonly 
used kernel where K(xi, xj) = exp

(
−

∥xi−xj∥
2

2�2

)
 . Both linear 

SVR and RBF kernel-based SVR will be used for the facial 
spatial alignment task.

Gaussian Process Regression: Similar to non-
linear SVR, GPR also starts from the  linear function 
y = ⟨�, x⟩ + b and progresses into the kernel-based model. 
GPR is a probabilistic model that specifies � as a prior 
distribution p(�) which is assumed to be Gaussian. The 
bias b is amended to comply with the Gaussian distribution 
� ∼ N(0, �2

n
) . For convenience, we use f(x) instead of ⟨�, x⟩ 

and define GPR model as:

Accordingly, f(x) is assumed to be a Gaussian Process (GP).
A GP is defined as a set of random variables in which 

any arbitrary subsets comply with the same joint Gaussian 
distribution. Given any arbitrary random variables x and x, , 
a GP prior is specified as:

where m(x) is the mean of f(x) and K(x, x,) is the covariance 
matrix. The collection of regression targets (the true 
landmark positions) are also assumed to be jointly Gaussian 
distributed, denoted as y ∼ GP(m(x),K(X,X)) + �2

n
In , where 

In is an identity matrix.
In the training stage, the popular RBF kernel is used as 

the covariance function, showing as follows:

where l is a length scale. There are three hyperparameters 
� = {l,�2

f
,�2

n
} that can be optimized by minimizing the 

negative log-likelihood:

(6)

max

�
1

2

∑l

i,j=1
(�i − �∗

i
)(�j − �∗

j
)⟨xi, xj⟩

−�
∑l

i=1
(�i + �∗

i
) +

∑l

i=1
yi(�i − �∗

i
)

s.t.

l�
i,j=1

(�i − �∗
i
) = 0 and �i, �∗ ∈ [0,C]

(7)y = f (x) + �

(8)f (x) ∼ GP(m(x),K(x, x,))

(9)K(x, x,) = �2
f
exp(−

1

2l2
‖x − x,‖2)

(10)L(�) = −log p(y|X;�)

We skip over the optimization process as it is irrelevant to 
our topic.

In the testing stage, a new instance of x∗ can be incor-
porated into the Gaussian distributed collection. The joint 
distribution of true targets and prediction of new instant f∗ 
can be expressed as:

The posterior probability of f ∗ can be computed as:

where

The estimated result f∗ is then specified by the mean value 
�∗ and variance Σ∗.

Cascade Regression Model

The problem of facial spatial alignment is obviously non-
linear. Although the above mentioned regression approaches 
are able to solve the non-linear problem, their single-step 
mapping strategies are still inadequate for the frontalization 
problem. The presented problem should model facial 
changes under various head-poses and expressions, which is 
too complex to be solved in one-step regression. Therefore, 
we develop an adaptive cascade regression model that learns 
the frontal-profile associations in a cascade manner and 
gradually approximates to the optimum in several steps of 
regression rather than only one step.

In the frontalization task, the landmark positions are 
normalized through Procrustes analysis in which the in-plane 
rotation and size of the face are adjusted. Given M annotated 
facial image pairs of non-frontal and corresponding frontal 
faces, the linear function can be defined as x

0
+ Δx = R(x

0
) , 

where x
0
 and x represents the shape vector for non-frontal 

and frontal images, respectively. And Δx = x − x
0
 is known. 

Consequently, the final objective of regression can be 
expressed as:

This equation can be referred to as the linear function of all 
the three regression methods mentioned above. This function 
is illuminated in Fig. 2.

Then we introduce the cascade regression manner regard-
ing Δxi representing the obtained Δx in the ith cascade. In 
each cascade, we revise Eq. (14) into:

(11)
[
y

f ∗

]
∼ N

((
�

�∗

)
,

[
K(X,X) + �nI

2
n
K(X, x∗)

K(x∗,X) K(x∗, x∗)

])

(12)P(f ∗|x∗,X, f ) ∼ N(�∗,Σ∗)

(13)�∗ = �(x∗) + K(x∗,X)[K(X,X) + �nI
2
n
]−1(y − �(x))

(14)Δx ← R(x
0
)

(15)Δxi ← R
i(xi

0
)
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and train a regression model at the current stage. In the new 
round, xi+1

0
= Δxi + x

i

0
 , Δxi+1 = x − x

i+1

0
 and they will be 

used to train a regression model in the current round. The 
cascade regression model keeps doing iteration until these 
parameters and Δxi become zero. Empirically, it converges 
in 4 or 5 steps.

During testing, the non-frontal facial landmarks should 
be localized first. There are many existing facial landmark 
detection methods that have been proved to be effective. 
With the obtained facial landmarks, frontal face-shape will 
be estimated using Eq. (15) sequentially.

By performing cascade on four regression approaches 
(linear regression, linear SVR, RBF SVR and GPR), we 
achieve four independent cascade regression models. We 
further introduce ensemble to combine all the regression 
models together and make a comprehensive decision. 
Ensemble learning is a model combination strategy that 
combines multiple models and then computes the average 
or weighted summation for the final prediction. We apply 
the ensemble and employ both the average and weighted 
summation strategy to predict the final result.

Ensemble Regression :  Ensemble learning is 
also known as classifier or regressor combination. It 
simultaneously processes multiple independent learners 
and strategically combines them to improve prediction 
accuracy. Naturally, a ensemble learning model would 
expect base models to be very different from each other. 
The most common way to increase between-model 
variations is to use the bootstrap aggregating (bagging) 
strategy in which each base learner is fed with a random 
subset of the whole training dataset. But bagging is not 
suitable for our model because our base learners are four 
different regressors which has already involved large 
variations.

For our ensemble regression model, there are four base 
regressors: [R1,R2,R3,R4] . Given an input x , the output 
E(x) is computed by a linear function:

where � is the weight. Suppose the groudtruth landmark 
position is y , our goal is to minimize:

The optimal value of the weight �i can be easily computed 
through the least square method. Beside calculating the 
optimal weight value, we also introduce an averaging 
strategy as comparison, in which � value is always fixed to 
2.5. The comparison of two strategies will be made in the 
experimental section.

In the training stage, the four regressors are trained 
independently without using the ensemble process. Then, 
the training data [x, y] is used again to compute the weight 
value � . In each cascade, we compute a group of weight 
parameters. Finally, the whole ensemble model, as well as 
obtained weight values, is used in validation and the testing 
set to predict more accurate frontal facial shape by Eq. 16 
and ypredict = x + E(x).

Texture Reconstruction

The cascade regression model outputs a predicted frontal 
facial shape which is seen as a base mesh. The next step is 
to reconstruct realistic facial textures using this mesh model. 
This is achieved by using a two-step image warping: 1) a 
warp function W(x;p) is computed to associate the each pixel 
position from the base mesh with the pixel positions of the 

(16)E(x) = �1R1(x) + �2R2(x) + �3R3(x) + �4R4(x)

(17)argmin
�

∥ x + E(x) − y ∥2

Fig. 2  Cascade regression training 
process
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input image I, and 2) the value of each pixel x in the warped 
image I(W(x;p)) is obtained by sampling the image I at the 
corresponding position. We employ the piecewise affine 
warping method [27] to calculate the warp function W(x;p) 
. Piecewise affine warping is based on an assumption that 
image warping on a small local region can be seen as a linear 
transformation although whole face warping is nonlinear.

Given a base shape, Delaunay triangulation is used to 
create multiple non-overlapping triangles formed by facial 
landmark points. All these triangles make up the mesh. Each 
triangle accounts for a fairly small region such that it is rea-
sonable to use linearly affine warping.

Let s0 denote the base mesh whose pixels are denoted as 
x = (x, y) . Assume a pixel (x0, y0) in the base mash falls into 
a triangle whose vertices are (x0

i
, y0

i
) , (x0

j
, y0

j
) and (x0

k
, y0

k
) , this 

pixel can be uniquely expressed as:

Let s denote the shape of the input face where there is  
a unique triangle (xi, yi) , (xj, yj) and (xk, yk) associated with 
the triangle (xi, yi) , (xj, yj) and (xk, yk) from base mesh. The 
results of � and � are used to calculate the associated pixel 
position (x, y) in the input image:

(x0, y0) =(x0
i
, y0

i
) + �[(x0

j
, y0

j
) − (x0

i
, y0

i
)]

+ �[(x0
k
, y0

k
) − (x0

i
, y0

i
)]

(18)where

⎧⎪⎨⎪⎩
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(x0−x0

i
)(y0

k
−y0
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i
)
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)(y0

k
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i
)−(y0

j
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)(x0
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i
)
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)(x0
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−x0
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)(y0

j
−y0

i
)

(x0
j
−x0

i
)(y0

k
−y0

i
)−(y0

j
−y0

i
)(x0

k
−x0

i
)

(19)
W(x;p) =(x, y) = (xi, yi) + �[(xj, yj) − (xi, yi)]

+ �[(xk, yk) − (xi, yi)]

As the location of each pixel of the base mesh is assigned to 
the corresponding position in the input image, the pixel value 
of the base mash is obtained by sampling pixel values from 
the input image I at the corresponding position. The most 
commonly used sampling strategy is bilinear interpolation.

After piece-wise affine warping, the selected template is 
filled in textures from input images. However, the warped 
image may not be realistic due to the self-occlusion caused 
by out-of-plane head rotation, as is illuminated in Fig. 3. 
Thus, we design a further process to rectify the textures. 
This is achieved by mainly implementing AAM model 
instantiation for texture fitting.

Active Appearance Model: AAM [12] is well known for 
facial landmark detection. AAM model fitting is employed to 
reconstruct facial textures. For each query image I ∈ ℝ

m×n , 
AAM model instantiation minimizes an objective function:

where A(x) = A0(x) +
∑m

i=1
�iAi(x) is the required frontal 

face in which A0(x) is  the mean face and 
∑m

i=1
�iAi(x) is 

a linear combination of a set of pre-defined eigen faces 
MA = [A1(x)|A2(x)|⋯ |Am(x)] , parameterized by � . The 
eigen faces are computed by applying Principal Component 
Analysis (PCA) to a set of warped training images. The 
original training images should normally contain clean 
(no occlusion) and frontal faces. They are then normalized 
by piece-wise affine warping their facial shapes and 
appearances onto a base mesh (selected template). By 
applying PCA, Ai is manually set to be m eigen faces with 
regards to m largest eigenvalues.

In our experiment, the shape of the input face is 
automatically detected by SDM. The detected landmarks may 
be sometimes incorrect, which may directly lead to a failure 

(20)argmin
�

∥ A(x) − I(W(x;p)) ∥2

Fig. 3  Texture fitting

Piece-wise 
affine warping

≈
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of the frontalization result. Therefore, we continue employing 
the AAM gradient search strategy to enhance the landmark 
detection results. The Eq. (21) is modified by minimizing:

where p is updated by p ← p + Δp . The linear approxima-
tion is given by a Taylor series expansion:

where ∇I is the gradient image, �W
�p

 is the warp Jacobian 
evaluated by p, and p is the parameter of current shape 
referred to the equation s = s0 +

∑n

i=1
pisi defined by 

the active shape model (ASM) [35]. The base shape s0 is the 
mean shape of all shapes of training images and the 
eigenvectors si represent shape variance computed by 
applying PCA to the training shapes. Let shape denotes the 
landmark positions as s = (x1, y1, x2, y2, ..., xv, yv) . The warp 
Jacobian is computed by applying the chain rule:

where

The solution of Equation (22) for � is given as:

where MT
A
= M−1

A
 since they are orthonormal eigenvectors. 

Then the solution to Δp is to use Gaussian Newton approxi-
mation as:

The algorithm works iteratively with the update rule 
p ← p + Δp until reaching the stop criterion. AAM fitting 
starts with the mean face and gradually searches for the 
optimal landmark locations. But the slow convergent rate 
will break out the requirement of real-time settings. Thus, 
we take the SDM output as initialization and only conduct 
3 iterations to reduce computational time. By this strategy, 
the whole system could work well in real-time with satisfied 
results. The final parameter � is used to calculate the frontal 
facial image A0(x) +

∑m

i=1
�iAi(x).

(21)argmin
�,Δp

∥ A(x) − I(W(x;p + Δp)) ∥2

(22)I(W(x;p + Δp)) = I(W(x;p)) + ∇I
�W

�p
Δp

(23)
�W

�p
=

v∑
i=1

[
�W

�xi

�xi

�p
+

�W

�yi

�yi

�p

]

(24)

�W

�xi
=(1 − � − �, 0) and

�W

�yi
= (0, 1 − � − �)

�xi

�p
=(s

xi
1
, s

xi
2
, ..., sxi

n
) and

�yi

�p
= (s

yi
1
, s

yi
2
, ..., syi

n
)

(25)� = (I(W(x;p + Δp)) − A0(x))M
T
A

(26)
Δp =

∑
x

([
∇I

�W

�p

]T[
∇I

�W

�p

])−1[
∇I

�W

�p

]T

[A(x) − I(W(x;p))]

Generally, AAM fitting is able to well amend the distortion 
caused by warping and remove occlusions. Empirically, the 
method works well for the head-pose within ±45 degree. Both 
SDM face alignment and AAM reconstruction methods, as 
well as most face alignment and frontalization methods, were 
reported ineffective when the head-pose angles exceed this 
range. Considering that the head-pose of in-the-wild facial 
images seldom goes beyond this range, our method could still 
work effectively in most cases.

Experiment

The proposed method has been validated with the following 
tasks: 1) regression error of spatial alignment, 2) static FER 
in the wild, 3) dynamic FER in the wild.

Training Data Collection

Binghamton University 3D Facial Expression (BU3DFE) is 
a static 3D facial expression database which includes 100 
subjects with 2500 3D facial expression models. We generate 
the training data by projecting the rendered 3D models from 
the BU3DFE database to the 2D image space. Images are 
captured at 7 pan angles (-45◦ , -30◦ , -15◦ , 0 ◦ , 15 ◦ , 30◦ , 45◦ ) 
and 5 tilt angles (-30◦ , -15◦ , 0 ◦ , 15 ◦ , 30◦ ), which results in 
totally 35 different viewpoints, as is shown in Fig. 4. Each 
training instance includes the position landmark points in 
one of the 34 non-frontal rotations and the corresponding 
points in frontal pose.

To train the cascade regression model, we need to detect 
facial keypoints in each 2D images. We use both SDM 
and OpenFace [2] for our landmark detection task. Most 
landmarks can be well detected using these two methods. 
Misaligned points were manually corrected or removed. 
This process generates 1887 training examples in pair 
denoted by 

[
x, x

0

]
 . The 1887 generated images are used to 

train the frontal-shape prediction model in the first stage. 
For the second stage, we manually picked 302 frontal view 
images without any occlusions from FER dataset, Static 
Facial Expressions In The Wild (SFEW) and Acted Facial 
Expressions In The Wild (AFEW). They are used to train the 
AAM model. Finally 200 eigen faces are obtained and used 
for texture fitting.

Unlike many deep learning methods that require 
millions of training examples, our method can work with 
a small volume of training data. Although we used over a 
thousand external training images in the first stage, it is 
still a small number compared with millions of external 
images used by deep learning methods. Furthermore, the 
1887 images are easy to obtain without much manual 
intervention. For the recognition stage,  there is no need 
to use any external data to train the recognition model.
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Spatial Alignment

In this section, we measure the accuracy of the frontal facial 
shape prediction based on the generated 1887 example pairs. 
We perform a 10-folder cross-validation strategy to evaluate the 
performance of different regression models. The alignment error 
is measured by:

where (x, y) and (x0, y0) are aligned position and groundtruth, 
respectively, and l is the width of facial bounding box which 
is calculated by (max(x0) − min(x0) + max(y0) − min(y0))∕2.

Table 1 shows the comparison of alignment errors using 
the regression approaches mentioned in Section 3.1. We can 
have some clues from this table:

1) Non-linear regression approaches (GPR and 
SVR with RBF kernel) perform better than linear 
models (linear regression and linear SVR). GPR shows 
significant superiority than other regressors.

2) Each cascade regression model has an around 5% 
superior performance over the corresponding single-step 
regression model. Furthermore, the error of the cascade 

(27)err =

√
(x − x0)

2 + (y − y0)
2∕l

linear model is smaller than single-step RBF-based SVR 
models, which indicates that a linear model embedded in 
a cascade manner can also achieve an effective non-linear 
solution.

3) Ensemble of four cascade regressors can improve the 
performance over each base regressor. For the two ensemble 
methods, the weighted summation strategy performs better than 
the simple averaging strategy. On the contrary, the combination 
of four single-step regression models has a higher error than 
GPR showing the superiority of the GPR method over the other 
regressors. Ensemble learning can boost the performance only 
when the base learners have similar generalization abilities.

This result demonstrates that combining multiple 
models can provide a better solution to facial spatial 
alignment than using a single model. In this experiment, 
the best result is obtained by the ensemble of four 
cascade regression models and this approach will be used 
to facilitate the next step of texture fitting.

Static FER on SFEW

The proposed method is used to solve dynamic FER 
problems. It is also appropriate to be applied  to static FER. 

Fig. 4  3D rendering and training data generating

Table 1  Alignment error (%) of different regression methods

Linear SVR(linear) SVR(RBF) GPR Ensemble(average) Ensemble(weighted)

Single-step Regression 18.87 18.44 16.99 11.13 14.88 13.26
Cascade Regression 13.82 12.92 12.40 10.84 10.53 9.84
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Statistical Facial Expression in the Wild (SFEW) [17] is 
a static spontaneous facial expression database which 
contains 700 images captured from movies labelled in seven 
categories: six universal emotions and neutral.

For FER, there is a standard evaluation protocol provided 
by the authors of SFEW. The evaluation is strictly person-
independent. In this experiment, Local Binary Pattern 
(LBP) and Support Vector Machine (SVM) are used for 
feature extraction and emotion classification, respectively. 
In Table 2, the methods of [34] and [7] are the state-of-the-
art approaches. It is worth mentioning that the method in 
[7], which is also based on frontalization, only performs 
frontal shape prediction without texture reconstruction. 
Our method has achieved over 14% superior accuracy than 
[7]. This suggests that texture fitting is also necessary for 
facial expression analysis and can significantly boost its 
performance.

In this comparison, we did not mention deep learning 
methods because our work focus on the small sample 
learning task which is quite different from deep learning. 
Meanwhile, deep learning methods usually require a large 
volume of external training data, which do not comply with 
the evaluation protocol of SFEW.

Dynamic FER on AFEW

In this section, experiments of frontalization and expression 
analysis on sequential facial images are conducted which 
are followed by both quantitative and qualitative analysis. 
In order to evaluate the performance on video sequences, 
Acted Facial Expressions In The Wild (AFEW) [5] dataset 
is applied. AFEW is an unconstrained facial expression 
database in which video clips are collected from movies. 
It contains 1368 video clips which are divided into three 
parts: 578 for training, 383 for validation and 407 for testing. 
Considered that the groundtruth of testing images is still 
unreleased, we follow the evaluation protocol of Emotion 
Recognition in the Wild Challenge 2014 (EmotiW 2014) 
[4] but only compare the performance on validation data.

The intuitive visualization of frontalization results is shown 
in Fig. 5. From this figure, we can see three main advantages of 
the proposed method. Firstly, the occlusions are well removed. 
As is displayed, for example, the hand covering on the face is 
removed and its occluded regions are well recovered. Secondly, 

all the non-frontal faces are normalized and reconstructed in 
the frontal view. Finally, facial expressions are still aware and 
identifiable in the reconstructed images. These visual results 
indicate the effective performance of the proposed methods in 
terms of recognizable expression reconstruction, frontalization 
and de-occlusion.

Based on the reconstructed facial image sequences, we 
applies LBP-TOP and SVM for feature extraction and emotion 
classification, respectively. In Table 3, the baseline result is 
achieved by the database creators who also used the traditional 
LBP-TOP + SVM strategy. The difference between our 
method and the baseline is that we have introduced a novel 
frontalization process. The accuracy of our method is 15% 
higher than the baseline, which indicates the effectiveness of 
face frontalization. The winner of EmotiW 2014 competition 
is [18] which used both audio and video signals, and combined 
SIFT, HOG and DCNN with external training data. Due to 
the very large amount of external training examples, [18] still 
keeps the record of EmotiW 2014 competition. The algorithm 
in [10] is a typical representation of time alignment which aims 
to model the variations of time extent.

We firstly compare the two traditional methods between ours 
and [10]. Our method applies spatial alignment without tempo-
ral alignment while [10] does the opposite. Our method has a 
minor superiority than [10], which demonstrates that both tem-
poral alignment and spatial alignment are important to dynamic 
analysis of facial expressions. Although many researchers focus 
on modelling temporal relations, the importance of spatial rela-
tions problems caused by head-pose and occlusions still remain.

The result of the proposed method and [10] are both based 
on reasonable heuristics without using any external training 
data. The method in [18] achieves 0.1% higher accuracy than 
our method, but it used a large amount of external training data. 
Although deep learning methods usually outperform the small 
sample learning methods, it may be restricted in some application 
cases due to the requirement for a large training dataset.

Conclusion

In this paper, we have presented a novel CRFF method for 
facial expression-preserving face frontalization and applied 
it to dynamic FER. It successfully fills the gap that there 
is no dynamic FER approaches for spatial alignment. To 
address the challenging problem of accurate frontal facial 

Table 2  Comparison of 
recognition rate (%) of the state-
of-the-art methods on SFEW 
databse

Angry Disgust Fear Happy Neutral Sadness Surprise Overall

Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90
[34] 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70
[7] 24.11 14.12 20.20 50.00 23.00 23.23 21.98 26.14
Ours 40.18 25.88 48.48 55.26 37.00 36.36 37.36 40.71
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shape prediction, we have developed an adaptive cascade 
regression learning  method and an ensemble learning 
method to boost the prediction performance. Our method 
have successfully achieved frontal face generation and 
de-occlusion, while preserving subtle facial expression 
cues. Different from existing 3D methods and deep learning 
methods, our method can generate realistic faces even with 
a very small training dataset and the whole model works 

in real-time. Experimental results demonstrate that the 
proposed method can boost the performance of FER and it 
is suitable for in-the-wild facial analysis. In the future, we 
plan to further improve the dynamic FER performance by 
combining time alignment methods with the proposed spatial 
alignment methods. Meanwhile, we would apply this method  
to a wider applications, such as Boredom, inattention and 
pain detection, to further support the research of healthcare.

Fig. 5  Visualization of frontalization

Table 3  Comparison of 
recognition rate (%) of the state-
of-the-art methods on AFEW 
databse

Angry Disgust Fear Happy Neutral Sadness Surprise Overall

Baseline[4] 50.00 25.00 15.21 57.14 34.92 16.39 21.73 33.15
[18] 84.75 17.95 27.27 82.54 70.49 22.03 6.52 48.52
[9] - - - - - - - 48.3
Ours 65.63 27.50 32.61 74.07 57.14 32.79 36.96 48.40
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