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Abstract
To fight against the present pandemic scenario of COVID-19 outbreak, medication with drugs and vaccines is extremely 
essential other than ventilation support. In this paper, we present a list of ligands which are expected to have the highest 
binding affinity with the S-glycoprotein of 2019-nCoV and thus can be used to make the drug for the novel coronavirus. 
Here, we implemented an architecture using 1D convolutional networks to predict drug–target interaction (DTI) values. The 
network was trained on the KIBA (Kinase Inhibitor Bioactivity) dataset. With this network, we predicted the KIBA scores 
(which gives a measure of binding affinity) of a list of ligands against the S-glycoprotein of 2019-nCoV. Based on these 
KIBA scores, we are proposing a list of ligands (33 top ligands based on best interactions) which have a high binding affinity 
with the S-glycoprotein of 2019-nCoV and thus can be used for the formation of drugs.

Keywords COVID-19 · Ligand · S-glycoprotein · Binding affinity · KIBA · Drug–target interaction values · 1D CNN · 
Protein Sequence Composition · ECFP4

Introduction

A worldwide pandemic has been declared by the World 
Health Organization (WHO) following the global spread 
of COVID-19 (coronavirus disease 19). Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 
been traced down as the virus causing this global havoc [1]. 
Originated at Wuhan, China, in December 2019 [2], currently 
this newly found virus has caused numerous deaths all over 
the world including India as well [3]. A few clinical trials 
have been made with some commonly used drugs all over 
the world, like chloroquine, hydroxychloroquine, lopinavir, 
ritonavir and remdesivir [4]. But the experts have stated that 
experiments performed in laboratories do not always give 
conclusive results which can lead to the recommendation 

of this medicine for cure. Therefore in the present scenario, 
the medical community is yet to get a vaccine or drug or 
medication that can help fight the COVID-19 outbreak. In 
this paper, we propose a deep learning-based drug prediction 
model to control the outbreak of the COVID-19 pandemic. 
Here, an end-to-end deep learning-based framework will 
work on the protein–ligand binding of various chemical 
molecules and give us a prediction of the type of drug which 
may work on the protein part of RNA of SARS-CoV-2.

The world medical fraternity is yet to come across any 
prominent medicine or drug to fight the havoc caused 
by COVID-19, as per recent updates from WHO  [6]. 
Thereby, our goal is to help medical fraternity in 
inventing medicines by suggesting them effective ligands. 
Various countries have gone into complete lockdown 
administering social distancing as the sole tool to prevent 
the citizens from getting affected. Health workers are 
provided with Personal Protective Equipment (PPE) 
for securing themselves while treating COVID-positive 
patients. Not only the devastating health effects, this 
pandemic impacted hugely on world economy too [7]. 
Many universities and laboratories across the world are 
conducting various experiments to find out a new and 
effective drug or compound which can help to structure 
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a medicine that will help us combat COVID-19 [8–10]. 
But till date, the results have not been fruitful. There had 
been an unexpected enthusiasm among various individuals 
in administering hydroxychloroquine (HCQS) as cure of 
this disease [11]. But medical professionals are not ready 
to administer the same in mass quantity as the result is 
not proven to be helpful. Though when administered has 
been found to be safe in the USA, usage of remdesivir 
for the treatment of COVID-19-affected patients is yet to 
be considered a safe option until large trial is conducted 
with the same [12]. Recent news shows there has been 
a clinical trial in New York on COVID-19 patients with 
heartburn medicines [13]. But the authorities have kept the 
trial under wrap off now until they get a concrete result. 
Therefore to summarize the situation, there is no proven 
drug or medicine which can fight COVID-19 virus till 
now. Adoption of artificial intelligence (AI) techniques in 
medical platform can lead to a probable solution toward 
it [5]. In recent years, the new DL techniques [12] have 
been adopted in drug discovery and development, opening 
a new opportunity to computational decision making in 
pharmaceutical science. After studying the structures 
of proteins, active small molecules toward the protein 
targets can be discovered from the structure-based drug 
design methodologies. Therefore, this research is of 
utmost importance where the proposed new compound, 
if validated by biochemists as an effective solution, can 
help mankind survive this tough time. In this paper, a deep 
learning-based architecture has been used to implement 
a drug prediction model which may work on the protein 
part of RNA of SARS-COV-2. Our contribution here is to 
select the number of filters to get the best possible result 
and also the input dimensions to suit the proposed CNN 
models.

The rest of the work has been organized in few sections. 
Background section (Section 2) deals with discussion 
on some recent published works to prevent COVID-19. 
Section 3 describes the proposed methodology we have 
followed. Here, we have used neural networks and 1D 
CNN to predict protein–ligand interaction value. Protein 
sequence composition (PSC) and ProtVec are used for 
featuring protein sequence, and graph neural network 
and ECPF4 are used for featuring ligand. Comparing the 
performance of these models, we picked PSC and ECPF4 
for featuring protein and ligands. Concatenation of these 
two models yields 9444-dimensional input vector where 
the output of the model will be a real number, signifying 
the binding tendency between the protein and the ligand. 
We have created one python dictionary with SMILES code 
as keys and model’s output corresponding to SMILES code 
as values. After sorting, we are getting the top 33 ligands 
which are supposed to have the highest binding capacity 
with the S-protein part of SARS-CoV-2. The results are 

commendable here, reported in Section 5. Section 6 draws 
the final conclusion and an open problem as future work.

Background

Megha  [14] has presented an approach for molecular 
docking analysis of selected natural products from plants 
for inhibition of SARS-CoV-2 main protease. The paper 
primarily focuses on proposing a new and naturally found 
compound that can be included in our daily food habit which 
will help us fight the dangerous SARS-CoV-2 viruses. The 
results of the research show that many of these compounds 
portray binding abilities with the SARS-CoV-2 protease. 
The focus of the entire study lies on finding binding affinity 
of various ligands (27) with the COVID-19 6LU7 and 6Y2E 
proteases. Studying these binding affinity efforts has been 
made to draw a conclusion to whether a natural product-
based solution can be developed which will help us to fight 
the pandemic. The data that were chosen to be worked on 
include COVID-19 3CLpro/Mpro (PDB ID: 6LU7) 1, 5 
and free enzyme of the SARS-CoV-2 (2019-nCoV) main 
protease (PBD ID: 6Y2E) 3, the active site of protease 
obtained using Computed Atlas for Surface Topography 
of Proteins (CASTp), the 3D structure of selected ligand, 
anti-HIV drug, saquinavir (has been used as a positive 
control). The result of the study shows that high virulence 
and spread of COVID-19 are reduced by 15 out of 27 natural 
products that are active in binding the protease. These 15 
natural products are present in our day to day cuisine and 
can help us with providing the first line of defense against 
COVID-19. Some of these products are found in curcumin 
and coriandrin, compounds found in apple peels (ursolic 
acid), in olive oil (oleanolic acid), in cucurbit vegetables 
(hederagenin), in red pepper (apigenin), in Glycyrrhiza 
glabra (glabridin), rosemary and thyme or mint family plants 
(sageone), to name a few.

Another approach was presented to show protein–ligand 
scoring with convolutional neural networks  [15]. This 
research helps us to get a faster computational approach 
for drug discovery compared to the long procedure of trial 
and error carried out in a clinic and laboratory. Scoring 
functions are one of the primary parameters against which 
the structure-based drug design method is evaluated. Here, 
the scoring function of a convolutional neural network 
has been adapted which takes a 3D representation of 
protein–ligand interaction as input and gives an output 
that helps to differentiate between correct and incorrect 
binding poses. For pose prediction and virtual screening, 
two different datasets have been used. For pose prediction, 
CSAR-NRC has been used which contains around 466 
ligand-bound cocrystals. Those targets have been excluded 
which shows a binding affinity of less than 5pK units. For 
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virtual screening, Database of Useful Decoys: Enhanced is 
used which contains 102 targets and more than 20,000 active 
molecules and over a million decoy molecules. To give an 
acceptable input to the CNN, the 3D structural data were 
transformed into a grid. Each grid point holds information 
about the heavy atom residing at that point. Caffe deep 
learning framework has been used to train this model. For 
model evaluation, threefold cross-validation has been done 
for both pose prediction and virtual screening.

Another group of scientists introduced us to an approach 
of deep learning-based drug screening for novel coronavirus 
2019-nCov [16]. To avoid the long traditional clinic-based 
drug discovery method and to rapidly come up with a 
solution to fight COVID-19, a deep learning-based alternate 
approach has been adapted in the paper. Firstly, the RNA 
of the virus is collected from the GISAID database and 
transformed into a protein sequence. Next, using homology 
modeling, a protein 3D structure is constructed. DFCNN, a 
deep learning-based method, is developed by the researchers 
which can perform quick virtual screening and identifies 
potential drugs for SARS-CoV-2 protease after performing a 
thorough drug screening process against 4 different chemical 
compound databases. Also, drug screening is performed 
against tripeptides. The DFCNN does not have the gradient 
vanishing problem, and the layers are fully connected in 
the neural network. The database used for DFCNN is from 
PDBbind. The primary advantage of DFCNN is that it 
does not involve docking run and the dataset can have non-
binding decoys. Check for any kind of mutation in the virus 
has been done by matching the protein sequence of the virus 
when collected from 18 different patients. As of now, the 
virus is stable. The 4 different compound databases against 
which the performance of the DFCNN has been checked 
are the Chemdiv dataset [17], Targetmol-Approved_Drug_
Library [18], Targetmol-Natural_Compound_Library [19] 
and Targetmol-Bioactive_Compound_Library [20]. Results 
show the compounds with DFCNN have a score as high as 
0.997 (Targetmol-Natural compound library). The DFCNN 
system when checked against the tripeptides set showed a 
score of 0.995. This high value indicates that peptides are 
most likely to bind with the pocket of SARS-CoV-2 main 
protease. Study shows peptides formed by I, K, P amino acids 
have the highest probability of binding with the pockets.

Proposed Methodology

Overview

We introduce a methodology for finding out the probable 
candidate drug molecule, also known as a ligand which 
binds with the S-protein sequence of SARS-CoV-2. The 
hunt here is to find a ligand that can bind with the active 

site of the SARS-CoV-2 protein chain. Biochemically, 
a drug is called an effective drug if it has a stable 
binding state with the active site of the S-protein chain 
of a certain virus. There are two different approaches to 
drug discovery of which Target-Based Discovery is the 
dominant approach. This approach involves screening of 
compounds for specific activity against known targets. 
This is where machine learning and neural networks 
come in. Convolutional neural networks are excellent 
in finding spatial and temporal patterns in a dataset. A 
drug’s efficiency may be affected by the degree to which 
it binds. The drug–target interaction (DTI) refers to the 
effective binding capacity of the drug molecule (ligand) 
and the target molecule (protein) chain. The use of neural 
networks and artificial intelligence for drug prediction is a 
well-versed field of research. We used a model consisting 
of 1D CNNs to find the best ligand with the highest 
effective potential binding. The raw protein names or 
SMILES codes [21] of ligands (as given in the downloaded 
dataset) have not been used directly as inputs to our model. 
Rather, we have vectorized both the protein sequences and 
SMILES codes and generated vectors corresponding to 
each protein sequence and each SMILES code. The input 
to our model is a vector formed by the concatenation of 
the vector corresponding to a protein sequence, with the 
vector corresponding to a SMILES code. Vectorization 
plays a vital role in proper drug–target interaction value 
prediction and is discussed in details in later sections. The 
KIBA score corresponding to a particular protein–ligand 
pair is not a 0-1 value, but is a real–valued number.

Description of the Dataset

We used the Kinase Inhibitor Bioactivity (KIBA) dataset 
to train our network  [22] architecture for drug–target 
interaction prediction. The KIBA dataset, on the other 
hand, originated from an approach called KIBA, in which 
Kinase Inhibitor Bioactivities from different sources 
such as Ki, Kd and IC50 were combined. KIBA scores 
were constructed to optimize the consistency between 
Ki, Kd and IC50 by utilizing the statistical information 
they contained. The KIBA dataset originally comprised 
467 targets and 52 498 drugs. The KIBA dataset has the 
following descriptions: Protein-229, Compound-2111 and 
Interaction-118254. It was later filtered to contain only 
drugs and targets with at least 10 interactions yielding 
a total of 229 unique proteins and 2111 unique drugs. 
Table 1 summarizes the dataset in the forms that we used 
in our experiments along with the distribution graphs. 
The workflow is shown in Fig.  1. The detailed KIBA 
score, length of SMILES characters and length of protein 
sequence are shown in Fig. 2.
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Vectorization of Protein Sequence and Ligand 
SMILES Code

Vectorization of Protein Sequence

The primary focus of the work in the processed dataset is 
protein names, ligand SMILES code and the KIBA score 
corresponding to this pair. Now, it is hard to convert protein 
names to vectors. So, first, we had to generate protein 
sequence corresponding to the protein names. The task 
has been accomplished using the propy  [23] library of 
python. Next, we had to convert the protein sequences into 
vectors. There are multiple ways existing in the literature for 
representing proteins as feature vectors. We have used protein 
sequence composition (PSC) descriptors [24] for vectorizing 

the protein sequence in this research. Initially, we converted 
the protein names to their corresponding protein sequences 
using GetProteinSequence function of propy library and then 
generated the PSC descriptors for the protein sequences with 
the help of the GetProDes function of the same library of 
python. Thus, we received a 8420-dimensional feature vector 
for each protein sequence. PSC descriptors consist of amino 
acid composition (AAC), dipeptide composition (DC) and 
tripeptide composition (TC) [24]. AAC is the frequency of 
each amino acid in the protein sequence and needs 20 feature 
values for it. DC is the frequency of dipeptide, that is, every 
two amino acid combination. It is represented by 400 feature 
values. TC is the frequency of three amino acid combination 
and is represented by 8000 feature values. Thus, PSC 
descriptors convert a protein sequence into (20+400+8000) 
= 8420 feature vectors.

Vectorization of Ligand SMILES Code

We have the Simplified Molecular-Input Line-Entry System 
(SMILES) codes of the ligands. SMILES is a chemical 

Fig. 1  The block diagram of the 
proposed work

Table 1  KIBA Dataset Description

Protein Compound Interaction

229 2111 118254
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notation to represent a chemical structure in the form of text. 
SMILES code gives us information about the atoms present, 
different kinds of bonds, branching, aromaticity, etc., of a 
molecule. Some architectures work with the ligand SMILES 
codes directly as input. But, we have focused on vectorizing 
the SMILES code of ligands and then using that, vector for 
our model has been purposes. The most commonly used 
methods for featurizing the SMILES codes are Extended 
Connectivity Fingerprints (ECFP) and Neural Graph 
Fingerprints. ECFPs are circular topological fingerprints 
used for molecular characterization and structure–activity 
modeling. Basically, a molecule is converted into a bit 
vector or count vector of a given length. Some of the main 
properties of ECFPs are: They represent molecular structure 
by circular atom neighborhood; they represent the presence 
of particular sub-structures; they can be rapidly calculated; 
and they are not predefined and can represent essentially 
infinite number of different molecular features (including 
stereo-chemical information). The 2 important parameters 
in ECFPs are diameter and length. Diameter specifies the 
maximum diameter of the circular neighborhoods considered 
for each atom and is generally kept at 4. ECFP4 means 
maximum diameter is set to 4; similarly, ECFP6 means 
diameter is set to 6. Diameter parameter controls the number 
and the maximum size of considered atom neighborhoods. 
Length specifies the length of bit-string representation, that 
is, the length of the bit vector which is generally 1024 [25].

Instead of molecular fingerprint vectors like ECFP, we 
can use a vector generated by a differentiable neural network 
which takes a graph as input. This is done by Neural Graph 
Fingerprints. That graph is a representation of a molecule 
with vertices representing individual atoms and edges 
representing bonds. The length of the generated vector 
can be fixed by user. Important information like the atoms 
present, bonds present, degree of bonds, atom features, etc., 
is collected from the SMILES codes with the help of the 
RDKit library of python [26], and this information is used 
to build a molecular graph, representing the molecule. Then, 

the algorithm followed in this work [27] is used to get a real-
valued vector corresponding to a molecule. The advantages 
of neural fingerprints over fixed length fingerprints are 
better predictive performance than fixed fingerprints. Neural 
fingerprints can be optimized to encode only the relevant 
features, thus reducing computation, while fixed length 
fingerprints will need large vectors to encode all possible 
sub-structures. We tried out both ECFP4 and Neural Graph 
Fingerprints with the PSC descriptors of proteins. We found 
that ECFP4 performs better than Neural Graph Fingerprints. 
Hence, we decided to use ECFP4 in our paper.

Generating Concatenated Input Vector for our Model

Till now, we have vectorized each protein sequences into a 
8420-dimensional vector using PSC descriptors. Also, we 
have vectorized each SMILES code into a 1024-dimensional 
vector using ECFP4. Then, we concatenated the PSC 
descriptor vector of each protein sequence with the ECFP4 
bit vector of its corresponding ligand SMILES code, as is 
done in [28]. Thus, we have a concatenated vector of length 
(8420+1024) = 9444. This concatenated vector was used as 
input to our model.

The Architecture

Convolutional neural networks (CNNs) are mainly used for 
image classification problems where we use 2D CNNs. But 
the power of CNNs can also be used for one-dimensional 
sequences of data with the help of 1D CNNs. We have used 
1D CNNs to build up our architecture. The very first area 
of interest was the input dimensions to the architecture. We 
implemented 1D CNNs using keras library in python [29]. 
Since our input vector is 9444-dimensional vector, we either 
have to input it as (9444, 1) or (1, 9444). We found that for 
any given architecture, the performance was much better 
when the input shape was (1, 9444). Hence, we used this 
input shape for our architecture. The input vector reshaped to 

Fig. 2  (a) KIBA scores, (b) length of SMILES (chars), (c) length of protein sequence (chars)
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(1, 9444) was first passed through a 1D convolutional layer 
with 64 filters. Convolution involves the multiplication and 
addition of the input vector with another vector, called the 
weight or filter, thus producing a feature map. Over those 
feature maps, activation functions are applied. We have 
used the ReLU activation function. The output was passed 
through another 1D convolutional layer with 64 filters. 
Then, BatchNormalization was done. BatchNormalization 
is used to stabilize the learning process and to reduce the 
number of training epochs. After that, we applied two more 
1D convolutional layers each having 128 filters followed by 
BatchNormalization. Then, we flattened the output from 
BatchNormalization, which was a (1, 128)-dimensional 
vector to generate a 128-dimensional vector. This was 
connected to a dense layer having 100 neurons which was 
finally connected to a single neuron, the output neuron. We 
used the ReLU activation function in all the convolutional 
layers. The kernel size was kept to 1. The dense layer with 

100 neurons also had activation function ReLU. The last 
output layer with 1 neuron had linear activation function 
since we are trying to predict regression values. The diagram 
of the model is shown in Fig. 3.

Training

Training was done on the KIBA dataset. We only used the 
first 19,000 rows due to lack of adequate computational 
resources. We trained our model on Google Colab using its 
Tesla K80 GPU. The training set was split into validation set 
by a factor of 0.1. The batch size was 100, and we trained the 
model for 100 epochs. The model was compiled using Adam 
optimizer. The learning rate of the Adam optimizer was set 
to 0.001. The loss function used was root mean squared loss 
(RMSE) loss function which is a common loss function for 
regression-based problems. We used mean squared error 

Fig. 3  The proposed architec-
ture for DTI model
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(MSE) and mean average error (MAE) as metrics. We used 
model checkpoint of keras to save the best model only. We 
monitored the validation loss, and the model corresponding 
to minimum validation loss was saved. The best model 
(using model checkpoint) was saved corresponding to 
minimum validation loss of 0.83. The minimum recorded 
values of validation MSE and validation MAE were 0.70 and 
0.63, respectively. Graphs were plotted to see the progress of 
MSE, MAE and loss against the epoch number. The graphs 
are shown in Fig. 4.

The train loss is shown in blue line and the validation 
loss in orange line. The validation loss for the best model 
was 0.83. The plot of MSE vs the epoch number is shown 
in Fig. 5. The training MSE is marked by blue line and the 
validation MSE by orange line. The minimum recorded 
value of validation MSE was 0.70. Finally, the MAE vs the 
epoch number plot is shown in Fig. 6. The training MAE 
is blue, and the validation MAE is orange in color. The 
minimum recorded value of validation MAE was 0.63.

Results and Discussion

After the completion of the training process, we have 
a model whose input is the vector formed by the 
concatenation of the ECFP4 descriptor of ligand SMILES 
code and the PSC descriptor of a protein sequence. 
The output of the model is the corresponding KIBA 
score for the protein–ligand pair which is a real-valued 
number. Hence, the task is a regression task. The KIBA 
score gives an indication of the binding affinity of the 
protein–ligand pair. Now, we use our model for predictive 
analysis. We want to predict those ligands which are 
supposed to have the highest binding affinity with the 
S-glycoprotein of SARS-CoV-2. Three monomeric 
subunits of spike (S) glycoprotein trimerized to form 

a functional spike protein interact with host ACE2 
receptors and mediate host cell entry. Destabilization or 
inhibition of formation of functional spike glycoprotein 
may prevent the entry of virus inside the host cell. Hence, 
we need to predict ligands which can bind with the 
S-protein chains, thus stopping the tripeptide formation. 
So, our input to the model was the PSC descriptor of the 
S-protein sequence of SARS-CoV-2, concatenated with 
the ECFP4 descriptor of a ligand. A large database of 
ligands was essential to test their binding affinity with 
the S-protein. For that, we used the data available [30] 
from GitHub repository  [31]. We have used the data 
available there and converted that into a CSV file 
containing the SMILES code of over 615,000 distinct 
ligands. So, we have the SARS-CoV-2 S-glycoprotein 
sequence on the one hand and the ligand SMILES code 
on the other hand. We iterated over the entire length of 
the ligand dataset of over 615,000 distinct ligands. At 
each iteration, the 9444-dimensional vector formed by 

Fig. 4  Training loss of RMSE vs the epoch number

Fig. 5  MSE vs the epoch number

Fig. 6  MAE vs the epoch number
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Table 2  SMILES codes of the 
top 33 ligands in the descending 
order of their binding affinity 
with the S-glycoprotein of 
SARS-CoV-2

SMILES code No SMILES codes

16 NCCNC(=O)c1cccc(c1)c2cnc(Nc3cc(ccn3)N4CCC(F)(F)CC4)s2
17 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4C[C@H]5CC[C@@H]4CN5)c(Cl)

c3)n1)c6cn[nH]c6
19 COCCCc1cc(Nc2nc(NCc3onc(C)c3)ncc2Br)n[nH]1
20 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCCNCC4)c(Cl)c3)n1)c5cn[nH]c5
29 Clc1cc(Nc2nc(cn3c(cnc23)c4cn[nH]c4)C5CC5)ccc1C(=O)N6C[C@H]

7CC[C@@H]6CN7
32 CN1CC(CN(C)C1=O)c2ccc(NC(=O)c3nc(c[nH]3)C♯N)

c(c2)C4=CCCCC4
36 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNCC4)c(Cl)c3)n1)c5cn[nH]c5
37 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNC5(CC5)C4)c(Cl)c3)n1)

c6cn[nH]c6
39 CN1CC(CN(C)C1=O)c2ccc(NC(=O)c3nc(c[nH]3)C♯N)

c(c2)C4=CCC CCC 4
40 Cc1cc(CNc2ncc(Br)c(Nc3cc([nH]n3)C4CC4)n2)on1
44 Cn1ncc(NC(=O)c2nc(sc2N)c3c(F)cccc3F)c1N4CCCN(CC4)

C5CNC5
47 CC(C)c1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNCC4)c(Cl)c3)n1)

c5cn[nH]c5
51 Clc1cc(Nc2nc(cn3c(cnc23)c4cn[nH]c4)C5CC5)ccc1C(=O)

N6CCNCC6
54 Cc1cn2c(cnc2c(Nc3ccc(cc3F)C(=O)N4CCNCC4)n1)c5cn[nH]c5
55 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCN(CCO)CC4)c(Cl)c3)n1)

c5cn[nH]c5
56 CN1CC(CN(C)C1=O)c2ccc(NC(=O)c3nc(c[nH]3)C♯N)c(c2)

C4=CCC(C)(C)CC4
63 C[C@H](Nc1nc(nc2c1cc(C(=O)NCCN(C)C)n2C)n3cnc4ccncc34)

c5ccccc5
64 Cc1cc2c(Nc3ccc4nc(N)sc4c3)c(cnc2cc1OCCCN5CCNCC5)C♯N
67 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNCC45CC5)c(Cl)c3)n1)c6cn

[nH]c6
68 O=C(Nc1ccc(cc1C2=CCCCC2)C3CCN(CCC ♯N)CC3)c4nc(c[nH]4)

C♯N
70 CC1(C)CNCCN1C(=O)c2ccc(Nc3nc(cn4c(cnc34)c5cn[nH]c5)

C6CC6)cc2Cl
71 CCN1CCC(C1)∖∖N=C∖∖C(C=N)c2ccn3c(cnc3c2)c4cccc

(NC(=O)NCC(F)(F)F)c4
74 COc1ccc(CCNC(=O)c2cc3C(=O)N4C=CC=C(C)C4=Nc3s2)cc1OC
75 CC(C)c1nc2c(Nc3ccc(C(=O)N4CCNCC4)c(Cl)c3)nc(C)

cn2c1c5cn[nH]c5
79 Clc1cc(Nc2nc(cn3c(cnc23)c4cn[nH]c4)C5CC5)ccc1C(=O)

N6CCNC7(CC7)C6
88 Clc1cc(Nc2nc(cn3c(cnc23)c4cn[nH]c4)C5CC5)ccc1C(=O)

N6CCNCC67CC7
90 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNCC4)c(c3)C5CC5)n1)c6cn[nH]c6
91 Cc1cn2c(cnc2c(Nc3ccc(cc3F)C(=O)N4CCNCC4(C)C)n1)c5cn[nH]c5
93 Fc1cc(ccc1Nc2nc(cn3c(cnc23)c4cn[nH]c4)C5CC5)C(=O)N6CCNCC6
95 Cc1cn2c(cnc2c(Nc3ccc(C(=O)N4CCNCC4(C)C)c(Cl)c3)n1)c5cn[nH]c5
96 CC(C)(N)CC(=O)N1CCC(CC1)c2ccc(NC(=O)c3nc(c[nH]3)C♯N)

c(c2)C4=CCCCC4
99 CN1CC(CN(C)S1(=O)=O)c2ccc(NC(=O)c3nc(c[nH]3)C♯N)

c(c2)C4=CCCCC4
100 Fc1ccc(NC(=O)C2=C(CCC2)c3nc(Nc4cc([nH]n4)C5CC5)

c6cccn6n3)cn1
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Fig. 7  2D diagram correspond-
ing to the 3D structure of the 
ligands, 16, 20, 54, 75 and 99, 
given in Table 2
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concatenating the 8420-dimensional PSC descriptor of 
the S-protein with the 1024-dimensional ECFP4 vector of 
a ligand was given as input to the model and the predicted 
score was stored in a python dictionary. The keys of the 
dictionary were the SMILES code of the ligands, and 
the values of the dictionary were the predicted model 
scores corresponding to those ligands. Higher KIBA 
score indicates a lower binding affinity between a drug 
and the corresponding target (protein) and vice versa. 
Hence, we printed the dictionary in ascending order of 
the predicted KIBA scores and saved the top 33 ligands. 
These ligands have the lowest predicted KIBA scores 
and thus the highest possible binding affinity with 
the S-protein of SARS-CoV-2 among this set of about 
615000 ligands. These 33 ligands with their SMILES 
codes are presented in Table  2. The binding affinity 
of the ligands with S-protein is expected to gradually 
decrease as we go down the table.

We present the 2D structures of first four of those 
ligands in Fig. 7. We used the chimera software  [32] 
to visualize the PDB file of the S-protein. The PDB 

structure was downloaded from the site  [33]. The 
PDB structure contained a trimeric complex formed 
by combining 3 S-protein monomeric units. These 3 
monomeric units were represented as chain A, chain B, 
chain C in chimera. We removed chains B and C and 
also ligands, water molecules and ions, thus getting only 
chain A, that is, a single monomeric S-protein unit. The 
visualization image is shown in Fig. 8.

At this stage, druggability test of all the predicted 
ligands is an essential task to validate the results. We 
calculated physicochemical property parameters of the 
ligands, such as partition coefficient (log p), molecular 
weight (MW), number of hydrogen bond donors (HBDs), 
hydrogen bond acceptors (HBAs) and rotatable bonds 
(Rot B) by following Lipinski’s rule of 5  [34] and 
compared the parameters with the rules. Lipinski’s 
rule of five is a thumb rule for druggability test of a 
determinate molecule. In the drug discovery setting, the 
rule of 5 predicts that poor absorption or permeation 
is more likely when there are more than 5 H-bond 
donors, 10 H-bond acceptors, the molecular weight is 

Fig. 8  Visualization of the PDB 
file representing chain A of 
S-glycoprotein of SARS-COV-2
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greater than 500, and the calculated Log P (CLog P) 
is greater than 5 [35]. We performed a check for each 
parameters using RDKit [26] and validated the proposed 
ligands which satisfy the rule of 5. Thirty-three proposed 
ligands have molecular weight less than 500, less than 5 
H-bond donors, less than 10 H-bond acceptors, number 
of rotatable bonds less than 10 and CLog P less than 5. 
But, few ligands out of total 50 partially satisfy the rule 
of five, i.e., having less than 5 H-bond donors, less than 
10 H-bond acceptors, number of rotatable bonds less than 
10 but molecular weight and CLog P value are out of 
range. So, we have not considered those ligands as best 

performers in this work. The detailed report of first few 
predicted ligands is given in Table 3.

Comparison Analysis

We compared our architecture to a few renowned architectures 
ever researched upon. The RMSE metric was chosen since it 
is a standard evaluation metric for regression problems, which 
is the case for our model. A state-of-the-art architecture was 
proposed in the PADME research paper [28] which adopts 
Molecular Graph Convolutions (MGC) which is more flexible 
than ECFP. This architecture achieved a RMSE of 0.79 and 

Table 3  Druggability test of few predicted ligands taken from Table 2

Serial no. SMILES code Molecular weight No. of hydrogen 
bond donors

No. of hydrogen 
bond acceptors

No. of rotat-
able bonds

Partition coefficient No of 
rules 
satisfied

1 16 458.538 3 7 4 3.8727 5
2 17 462.945 3 7 2 3.4012 5
3 19 422.287 3 8 4 3.1933 5
4 20 450.934 3 7 2 3.26032 5
5 29 488.983 2 6 5 3.97 5
6 32 418.501 2 8 3 3.572 5
7 36 436.907 3 7 2 2.8702 5
8 37 462.945 3 7 2 3.4028 5
9 39 432.528 2 4 3 3.962 5
10 40 390.245 3 7 3 3.492 5
11 44 488.568 3 9 3 2.1402 5
12 47 464.961 3 7 2 3.6852 5
13 51 462.945 3 7 2 3.4392 5
14 54 420.452 3 7 2 2.3559 5
15 55 480.96 3 8 2 2.5749 5
16 56 446.555 2 4 3 4.20798 5
17 63 483.58 2 9 5 3.1667 5
18 64 473.606 3 9 5 3.4028 5
19 67 462.945 3 7 2 3.4028 5
20 68 428.54 2 5 3 4.584 5
21 70 490.99 3 7 2 4.2178 5
22 71 499.541 3 6 5 4.583 5
23 74 423.494 1 7 5 3.2073 5
24 75 478.988 3 7 2 3.993 5
25 79 488.983 3 7 2 3.971 5
26 88 488.983 3 7 2 3.9718 5
27 90 442.527 3 7 2 3.0942 5
28 91 462.945 3 7 2 2.92498 5
29 93 446.49 3 7 2 2.9249 5
30 95 464.961 3 7 2 3.6488 5
31 96 474.609 3 5 3 4.324 5
32 99 454.556 2 5 3 2.696 5
33 100 444.474 3 7 3 4.1837 5
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was one of the finest DTI architectures in action. Yet another 
revolutionary architecture was incorporated in the KronRLS-
MKL [36] paper, where a multiple kernel learning algorithm 
was enforced to find the drug–target interaction which 
achieved a standard 0.6566 RMSE score. Yet another famous 
architecture is SimBoost [37] which achieved RMSE score 
of 0.4711. We present a table showing the summary of the 
compared architecture along with ours on the KIBA Dataset 
(Table 4). The comparison graph of the models for the KIBA 
Dataset is given in Fig. 9.

Conclusion

According to various reports placed by the United Nations, 
at present we are facing such a health crisis that has not been 
witnessed on Earth in the last 75 years. The spread of COVID-
19 is not only causing health crisis but affecting the society and 
economy of various nations giving them a tremendous blow. 
Due to its high virulence and ability to contaminate at a very 
fast rate, the virus is spreading in the community. The symptoms 
are that of the common cold, and therefore, many times a 
patient is not even able to realize that he/she has been affected. 
And by the time realization dawns, more people have been 
contaminated. This virus is proving to be fatal for old people 
with low immunity systems. To stop this chain, governments 
have administered lockdown situations where day-to-day life’s 

proceedings have come to a standstill. This has especially 
affected the poor and daily wage employees who earn their bread 
from everyday income. Homeless people, migrant workers or 
people stuck in places away from their homeland are facing even 
more trouble trying to connect to their families and provide them 
with necessities. Different projects have halted as people are 
not able to travel to their workplace and not everything can be 
resolved over the Internet. With the economy taking a backseat, 
job seekers are believed to face an even tougher situation in 
coming days. Situations are getting worse with every passing 
day, and only stopping the spread of this virus or finding a 
cure for the same can revive our societal condition. Therefore, 
this research is of utmost importance where the proposed new 
compound, if validated by biochemists as an effective solution, 
can help mankind survive this tough time. In this work, we 
have trained a machine learning model for the prediction of 
KIBA scores for a pair of protein–ligand. Using that model, we 
have identified the top 33 ligands which can be used to find a 
potential cure for SARS-CoV-2. We are very much thankful to 
Mr. Prasenjit Paria, SRF, CIFRI Lab, Barrackpore, India, for 
validation of our results with two standard software [38, 39] 
and other measures. In future, we will try to find the available 
druggable pockets of the S-glycoprotein of SARS-CoV-2 and 
also further validate our results with the help of docking.
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