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Abstract
The COVID-19 pandemic has wreaked havoc on the whole world, taking over half a million lives and capsizing the world
economy in unprecedented magnitudes. With the world scampering for a possible vaccine, early detection and containment
are the only redress. Existing diagnostic technologies with high accuracy like RT-PCRs are expensive and sophisticated,
requiring skilled individuals for specimen collection and screening, resulting in lower outreach. So, methods excluding
direct human intervention are much sought after, and artificial intelligence-driven automated diagnosis, especially with
radiography images, captured the researchers’ interest. This survey marks a detailed inspection of the deep learning–based
automated detection of COVID-19 works done to date, a comparison of the available datasets, methodical challenges like
imbalanced datasets and others, along with probable solutions with different preprocessing methods, and scopes of future
exploration in this arena. We also benchmarked the performance of 315 deep models in diagnosing COVID-19, normal,
and pneumonia from X-ray images of a custom dataset created from four others. The dataset is publicly available at https://
github.com/rgbnihal2/COVID-19-X-ray-Dataset. Our results show that DenseNet201 model with Quadratic SVM classifier
performs the best (accuracy: 98.16%, sensitivity: 98.93%, specificity: 98.77%) and maintains high accuracies in other similar
architectures as well. This proves that even though radiography images might not be conclusive for radiologists, but it is so
for deep learning algorithms for detecting COVID-19. We hope this extensive review will provide a comprehensive guideline
for researchers in this field.
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Introduction

COVID-19 has become a great challenge for humanity.
Fast transmission, the ever-increasing number of deaths,
and no specific treatment or vaccine made it one of the
biggest problems on earth right now. It has already been
characterized as a pandemic by the World Health Organi-
zation (WHO) and is being compared to the Spanish flu of
1920 that took millions of lives. Even though the fatality
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rate of the disease is only 2–3% [1], the more significant
concern is its rapid spreading among humans. The reproduc-
tive number of the virus is between 1.5 and 3.5 [2], making
it highly contagious. Therefore, early diagnosis is essential
to contain the virus. This, however, has proved to be very
difficult as the virus can stay inactive in humans approxi-
mately 5 days before showing any symptoms [3]. Even with
symptoms, COVID-19 is hard to be distinguished from the
common flu.

At present, one of the most accurate ways of diagnosing
COVID-19 is by a test called Reverse Transcription
Polymerase Chain Reaction (RT-PCR) [4]. Since the
coronavirus is an RNA virus, its genetic material is reverse
transcribed to get a complementary DNA or cDNA. This
can then be amplified by polymerase chain reaction or PCR,
making it easier to measure. However, it is a complicated
and time-consuming process, taking almost 2–3 h and
demands the involvement of an expert. Newer technology
can produce results in 15 min, but it is costly. Even then,
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there have been studies showing that RT-PCR can yield
false negatives [5]. There are newer machines that can
autonomously carry on the tests, eliminating human errors
and health risks associated with it. However, it is both costly
and unavailable in many parts of the world. Moreover, RT-
PCR only detects the presence of viral RNA. It cannot prove
that the virus is alive and transmissible [6]. The testing
material is also of scarcity due to the sheer number of cases
in the pandemic, leading to increasing costs.

Another method of COVID-19 detection is antibody
testing [7]. It aims to detect the antibody, generated as
an immune response of the COVID-19-affected body. This
testing method was designed for mass testing for the already
affected. It is cheap and fast, producing results in 15 min
and can be carried out in a modest laboratory. However,
the problem is that the average incubation period of the
coronavirus is 5.2 days [3], and antibodies are often not
generated before a week from infection and sometimes even
later than that. Thus, early containment is not possible. Also,
this testing method is susceptible to both false positives and
false negatives due to the cases of minor symptoms. Thus,
in terms of early detection and containment, this method is
not quite up to the task.

Since the outbreak of this disease, researchers have been
trying to find a way to detect COVID-19 that is fast, cheap,
and reliable. One of the prominent ideas is to diagnose
COVID-19 from radiography images. Studies show that
one of the first affected organs in coronavirus cases is the
lungs [8]. Thus, radiography images of the lungs could
give some insight on their condition. Radiologists, how-
ever, often fail to diagnose COVID-19 successfully solely
from the images due to the similarity between COVID-19-
affected lung images and pneumonia-affected lung images
and sometimes even normal lung images. Besides, man-
ual interpretation may suffer from inter and intra-radiologist
variance and be influenced by different factors such as emo-
tion and fatigue. Recent advances in deep learning regarding
such diagnostic problems allow Computer-Aided Diagnosis
(CAD) to reach new heights with its ability to learn from
high-dimensional features automatically built from the data.
Especially during this pandemic, when expert radiolo-
gists are conclusively experiencing difficulties diagnosing
COVID-19, CAD seems to be the top candidate to assist
the radiologists and doctors in the diagnosis. Works like
[9–11] and many more are showing the potential of deep
learning–driven CAD to face this pandemic.

Not just in the diagnosis of the virus, but there have
been many works done with deep learning applied to
almost all the sectors affected by the coronavirus. And the
flood of such works have resulted in a number of surveys
relating to the role of artificial intelligence in this pandemic
situation covering not just diagnosis but also clinical
management and treatment [12], image acquisition [13],

infodemiology, infoveillance, drug and vaccine discovery
[14], mathematical modeling [15], economic intervention
[16] etc. including discussions of various datasets [12, 13,
15–18].

The overall observation is that most of the surveys
done to date tried to cover a wider extent of the domain
instead of depicting an exhaustive overview in one direction.
However, we are motivated to focus on what we consider
to be the most important aspect of fighting the dreadful
disease, and that is detection and diagnosis. Throughout
this work, we dispensed a comprehensive discussion on
available datasets, existing approaches, research challenges
with probable solutions, and future pathways for deep
learning empowered automated detection of COVID-19. In
addition to the qualitative assay, we provided a quantitative
analysis that comprises of extensive experimentation using
315 deep learning models. We tried to investigate some of
the key questions here: (1) What are the key challenges
to diagnose the disease from radiography data? (2) Which
CNN architecture performs the best to extract distinct
features from the X-ray modality? (3) How transfer learning
can be utilized and how well does it perform being pre-
trained on the widely used ImageNet dataset [19]? To the
best of our knowledge, this is the very first survey that
includes a benchmark study of 315 deep learning models in
diagnosis of COVID-19.

The rest of the paper is organized as follows. In “Related
Work,” we present a study on related works. Subsequently,
Section “Radiography-Based Automated Diagnosis: Hope
or Hype” describes the radiography based diagnosis pro-
cess. We shed light on some challenges in radiography-
based diagnosis in “Challenges.” In “Description of Avail-
able Datasets,” we describe the publicly available radio-
graphy datasets. Detailed analysis of deep learning–based
approaches of COVID-19 diagnosis is presented in “Deep
Learning–Based Diagnosis Approaches”. Section “Image
Prepossessing” reviews different data preprocessing tech-
niques. Section “Comparative Analysis” provides a quanti-
tative analysis of some state-of-the-art deep learning archi-
tectures on our compiled dataset. Finally, we conclude this
paper with future research directions in “Discussion and
Future Directions” and concluding remarks in “Conclusion.”

RelatedWork

This paper gives a comprehensive overview of the auto-
mated detection of COVID-19 through data-driven deep
learning techniques. Previously, Ulhaq et al. [12] discussed
the existing literature on deep learning–based computer
vision algorithms relating to the diagnosis, prevention, and
control of COVID-19. They also discussed the infection
management and treatment-related deep learning algorithms
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along with a brief discussion about some of the existing
datasets. However, they included a pre-print (non peer-
reviewed) version of some papers which limit the accept-
ability of the work.

In [14], the authors discussed the role of AI and big
data in fighting COVID-19. In addition to the existing
deep learning architectures available for detection and
diagnosis of COVID-19, they discussed the existing SIR
(Susceptible, Infected, and Removed) models and other
deep models for identification, tracking, and outbreak
prediction. The survey also included different speech
and text analysis methods, cloud-based algorithms for
infodemiology and infoveillance, deep learning algorithms
for drug repurposing, big data analysis–based outbreak
prediction, virus tracking, vaccine, and drug discovery, etc.
They did not, however, show any comparative quantitative
analysis of the reviewed works.

Shi et al. [13] reviewed medical imaging techniques in
battling COVID-19. Various contact-less image acquisition
techniques, deep learning–based segmentation of lungs and
lesion, X-ray and CT screenings, and severity analysis of
COVID-19 along with some publicly open datasets are
included in the work. Nevertheless, they did not provide
any quantitative analysis of existing methods either. Also,
their discussions on the existing datasets are somewhat
inadequate.

In [15], the authors discussed mathematical modeling
of the pandemic with SIR, SEIR (Susceptible, exposed,
infected, and removed) and SIQR (Susceptible, infected,
quarantined, and recovered) models.

In [17], the authors gave a comparative list of publicly
available datasets consisting of the image data of COVID-
19 cases. However, they did not shed any light on the works
done so far and also did not provide any pathways for
future research in this domain. In contrast to other studies,
Latif et al. [16] discussed deep learning algorithms for
risk assessment and prioritization of patients in addition to
diagnosis.

In [18], Nguyen discussed deep learning–driven medical
imaging, IoT-driven approaches for the pandemic manage-
ment, and even Natural Language Processing (NLP)–based
approaches for COVID-19 news analysis. However, like
others, they did not give any comparative analysis either.

Most of the discussed papers have tried to cover a
wide area of topics and, thus, lacked detailed discussions
in a single domain. None of the papers provides a
quantitative analysis of the works discussed, something
that can be very helpful to the researchers. Our work
aims to overcome these limitations by focusing on a
single domain, COVID-19 detection. We also provide a
quantitative and comparative analysis of 315 different deep
learning algorithms, something that is yet to be done by any

other survey papers. A summary of all the survey papers
covered in this section is presented in Table 1.

Radiography-Based Automated Diagnosis:
Hope or Hype

Radiography images, i.e., chest X-ray and computed tomog-
raphy (CT), can be used to diagnose COVID-19 as the dis-
ease primarily affects the respiratory system of the human
body [8]. The primary findings of chest X-rays are those
of atypical pneumonia [20] and organizing pneumonia [21].
The most common finding in chest radiography images is
Ground Glass Opacity (GGO), which refers to an area with
increased attenuation in the lung. As shown in Fig. 1, a
chest X-ray image shows some hazy grey shade instead
of black with fine white blood vessels. In contrast, CT
scans show GGO [8] (Fig. 2a), and in severe cases, con-
solidation (Fig. 2b). Chest images sometimes also show
something called “crazy paving” (Fig. 2c), which refers
to the appearance of GGO with a superimposed interlob-
ular and intralobular septal thickening. These findings can
be seen in isolation or combination. They may occur in
multiple lobes and affect in the peripheral area of the lungs.

It is worth noting that chest CT is considered to be more
sensitive [22] for early COVID-19 diagnosis than chest X-
ray since chest X-ray may remain normal for 4–5 days after
start of symptoms where CT scan shows a typical pattern
of GGO and consolidation. Besides, CT scans can show
the severity of the disease [23]. A recent study performed
on 51 COVID-19 patients shows that the sensitivity of CT
for COVID-19 infection was 98% compared to RT-PCR
sensitivity of 71% [24].

However, CT scans are difficult to obtain in COVID-19
cases. It is mainly due to the difficulty of decontamination
issues regarding patient transports to the CT suites. As a
matter of fact, the American College of Radiology dictates
that CT scan-related hassles can disrupt the availability of
such radiology services [25]. Another problem is that CT
is not available worldwide, and in most cases, expensive
and, thus, has a low outreach. This is why, despite the lesser
sensitivity and quality, chest X-rays are the most common
method of diagnosis and prognosis of not only COVID-19
cases but most other lung-related abnormalities.

The main problem is that these findings are not only
found in COVID-19 cases but also in pneumonia cases. In
many mild COVID-19 cases, the symptoms are similar to
that of the common cold and sometimes show no different
than that of normal lungs. Even though Research in [27] has
indicated that the radiography image of COVID-19-affected
lungs differs from the image of bacterial pneumonia-
affected lungs. In COVID-19 cases, the effect is more likely
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Table 1 Related surveys on AI techniques for detecting COVID-19 from radiography images

Study Key topics No. of reviewed
papers1

No. of discussed
datasets2

Benchmarking
deep models3

Ulhaq et al. [12] Vision-based diagnosis, control and
treatment

21 6 –

Pham et al. [14] AI and big data-based diagnosis,
outbreak prediction, and biomedicine

32 2 –

Shi et al. [13] AI-based image acquisition, segmen-
tation, and diagnosis

14 4 –

Kalkreuth et al. [17] COVID-19 dataset listing 4 12 –

Latif et al. [16] AI-based COVID-19 diagnosis, pan-
demic modeling, dataset description,
and bibliometric analysis

25 5 –

Nguyen [18] AI-based COVID-19 diagnosis, mod-
eling, text mining, and dataset descrip-
tion

12 10 -

Mohamadou et al. [15] Mathematical modeling of pandemic
and COVID-19 diagnosis

20 6 –

Our study Deep learning–based COVID-19
diagnosis

38 16 Benchmarked 315 deep models
that comprises the combinations
of 15 CNNs and 21 classifiers

1Diagnosis-related papers, 2Radiography-based datasets, 3“-” means not applicable for the paper

The Italic entries signify our contributions

to be scattered diffusely across both lungs, unlike typical
pneumonia. However, in the early stages, even expert
radiologists are often unable to detect or distinguish
between COVID-19 and pneumonia.

Amidst such a frightful situation, deep learning–driven
CAD seems a logical solution. Deep learning can extract
and learn from high-dimensional features humans are not
even able to comprehend. So, it should be able to deliver
in this dire situation as well. Moreover, there has already
been a flood of such approaches recently with good results,
showing hope in this crisis period. However, many such
hopeful ideas have turned into false hopes in the past.
This work investigates the different works relating to deep
learning aided CAD to resolve whether this is our hope, or
if it is only another hype.

Challenges

As discussed in the previous section, radiography image can
pave an efficient way to the detection of the COVID-19
at an earlier stage. However, the unavailability and quality
issues related to COVID-19 radiography images introduce
challenges in the diagnosis process while effecting the
accuracy of the detection model. Here we discuss some
of the major challenges faced by the researchers in the
detection of COVID-19 from radiography images.

Scarcity of COVID-19 Radiography Images Significant num-
bers of radiography image datasets are made available by
the researchers to facilitate collaborative efforts for com-
bating COVID-19. However, they contain at most a few

Fig. 1 X-ray images with
different infection types: a
Patchy GGOs present at both
lungs; b Nuanced parenchymal
thickenings; and c GGOs with
some interstitial prominence.
Images obtained from [26]
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Fig. 2 CT scan showing
different infection types:
a Subpleural GGOs with
consolidations in all lobes;
b GGOs with probable partially
resolved consolidations; and
c Scattered GGOs with band
consolidations. Images obtained
from [26]

hundreds of radiography images of confirmed COVID-19
patients. As a result, poor predictions are made by the mod-
els being over-fitted by insufficient data which puts a cap on
the potential of deep learning [28]. Data augmentation tech-
niques can be used to increase the dataset volume. Common
augmentation techniques like flipping and rotating can be
applied to image data with satisfactory results [29]. Transfer
learning is another alternative to deal with insufficient data
size while reducing generalization errors and over-fitting.
Significant numbers of works integrated data augmentation
and transfer learning into deep learning algorithms to obtain
pleasing performances [30–40]. Few shot learning [41] and
zero shot learning [42] are also plausible solutions to the
data insufficiency problem.

Class Imbalance This is a common problem faced while
detecting COVID-19 from radiography images. Radiog-
raphy datasets consisting of a sufficient number of X-
ray images of pneumonia-affected and normal lungs are
available on a large scale. In contrast, for being a com-
pletely new disease, the number of images of COVID-19-
affected lungs are significantly less than that of normal and
pneumonia-affected lungs. As a result, the model becomes
prone to giving poor predictions to the minority class.
Re-sampling of the datasets is often performed as a solu-
tion to the class imbalance problem, which attempts to
make the model unbiased from the majority classes. In
random under sampling strategy, samples for the minor
classes are duplicated randomly, whereas samples from the
majority classes are removed randomly in random over sam-
pling methods to mitigate the class imbalance of a dataset
[43]. However, over sampling may result in over-fitting
[44], which can be reduced adopting any of the improved
oversampling techniques—Synthetic Minority Over Sam-
pling (SMOTE)[45], borderline SMOTE [46], and safe level
SMOTE [47]. Another technique to deal with the class
imbalance problem is to assign weights to the cost func-
tion, which ensures that the deep learning model gives
equal importance to every class. Some of the works applied
data augmentation, e.g., LV et al. [48] employed a Module

Extraction technique (MoEx) where standardized features
of one image are mixed with normalized features of other
images. In another work, Punn et al. [49] manifested class
average and random oversampling as an alternative method
to data augmentation.

Artifacts/Textual Data and Low Contrast Images In radiog-
raphy images, artifacts like wires, probes, or necklaces are
often present as depicted in Fig. 3. Even image annotation
with textual data (e.g., annotation of the right and left side of
an image with “R” and “L,” respectively) is a common prac-
tice. These artifacts hamper the learning of a model and lead
to poor prediction results. Although textual data (Fig. 3b)
can be erased manually by covering it with a black rectan-
gle [32], it is time consuming. A more advanced efficient
way is to use a mask of two lungs (for X-ray images) and
concatenate with the original image [35, 48, 49]. Thus, the
unnecessary areas are ignored and the focus is only given on
the interested areas. Mask can be generated using U-Net[48]
or binary thresholding [35, 49]. In CT images, the lungs
are segmented to focus on the infectious regions [50]. Seg-
mentation tools include U-Net, VB-Net, BCDU-Net, and
V-Net which are used in [51–53] and [54], respectively.
In some cases, image quality issues such as low contrast
(Fig. 3a) introduces challenges in the detection process. To
overcome this problem, histogram equalization and other
similar methods can be applied [30, 35, 48]. Authors in [48]
used Contrast Limited Adaptive Histogram Equalization
(CLAHE) which is an advanced version of histogram equal-
ization aiming to reduce over amplification of noise in near
constant regions. Additionally, in [35], histogram equaliza-
tion combined with Perona-Malik filter (PMF) and unsharp
masking edge enhancement is applied to facilitate contrast
enhancement, edge enhancement, and noise elimination on
the entire chest X-ray image dataset. Some literature works
are also observed to exclude the faulty images from their
dataset [37, 52, 55, 56].

Similar Clinical Manifestations In many cases, viral pneu-
monia shows similar symptoms as COVID-19 which makes
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Fig. 3 X-ray images of some
faulty images. a Low Contrast
with wire around Image. b
Textual data on top left corner
and probes on chest. c Wires
over the chest. Images obtained
from [26]

it difficult to distinguish them. Additionally, mild COVID-
19 cases often show no or mild symptoms, and thus, often
indistinguishable from the normal lung images to the naked
eye. In the worst-case scenario, these result in low detec-
tion probability, i.e., low true positive rate (TPR) and high
false negative rate (FNR) for COVID-19 cases. The conse-
quence is that the subjects who are screened as COVID-19
negative in false negative cases may end up contaminating
others without attempting for a second test. This suggests
that a trade-off should be made between sensitivity (true
positive) and specificity (true negative) [57]. In [58], the
authors argued that the trade-off should be kept as low as
possible to make the model highly sensitive (in contrast to
low specificity).

Description of Available Datasets

A large volume of well-labeled data can improve the net-
work quality in deep learning while preventing over-fitting
and poor predictions. It is a hard task to collect good-quality
data then labeling those accordingly and for uncharted terri-
tory like the novel Coronavirus, the hurdles are even bigger.
However, time demands to tackle this peril at hand. There-
fore, many researchers around the world have been working
on creating standard datasets. In this section, we discuss
some of these datasets in detail.

COVID-19 Image Data Collection [26]: This publicly avail-
able dataset consists of chest X-ray and CT images of indi-
viduals suspected with COVID 19 and pneumonia patients.
They were collected through doctors, hospitals, and other
public sources. 434 images were labeled from the gathered
542 COVID-19 images, and among them, the X-ray and CT
images numbered 462 and 80, respectively. There are about
408 Anterior-to-Posterior (AP) or Posterior-to-Anterior
(PA) images and 134 Anterior-to-Posterior Supine (AP
Supine) images of the patients. The metadata of 380 subjects

marked 276 COVID-19-positive cases where 150 male, 91
female patients, and the rest of them were unlabeled.

Actualmed COVID-19 Chest X-ray Dataset Initiative[59]: A
similar dataset of Anterior-to-Posterior (AP) and Posterior-
to-Anterior (PA) views of chest X-rays including metadata
have been published recently. This open sourced dataset
consists of 238 images where cases with COVID-19, no
findings and inconclusive images tallied 58, 127, and 53
respectively.

Figure1COVID-19Chest X-rayDataset Initiative [60]: Another
dataset with 55 images of Anterior-to-Posterior (AP) and
Posterior-to-Anterior (PA) view of chest X-ray was released
with public accessibility. The X-ray images from 48 sub-
jects labeled 10 males and 7 females and the rest remained
unlabeled. The dataset enlisted 35 confirmed COVID-19,
3 no findings, and 15 inconclusive images. The age of the
subjects ranges from 28 to 77.

COVID-19 Radiography Database [61]: A substantial dataset
is made based on the chest X-ray images. This dataset
comprises such data of COVID-19-positive patients, normal
individuals, and viral pneumonia-infected people. The latest
release has Posterior-to-Anterior (PA) view images of 219
COVID-19 positives, 1341 normal, and 1345 viral pneu-
monia specimens. The Italian SIRM dataset[62], COVID
Chest X-ray Dataset by Cohen J et al. [26], 43 different
articles and chest X-ray (pneumonia) images database by
Mooney P et al. [63] has led considerable facilitation for this
dataset.

COVIDx [64]: This dataset was developed by combining
the following 5 publicly available dataset: Cohen J et al.
[26], ActualMed COVID-19 Chest X-ray Dataset Initiative
[59], Figure1 COVID-19 Chest X-ray Dataset Initiative
[60], RSNA Pneumonia Detection Challenge dataset [65],
and COVID-19 Radiography Database [61]. The augmented
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dataset consisted of 13989 images from 13870 individuals.
The findings recorded 7966 normal images, 5459 images of
pneumonia patients, and 473 images of COVID-19-positive
patients.

Augmented COVID-19 X-ray Dataset [66]: This dataset
accumulated an equal number (310) of positive and negative
COVID-19 images from 5 well-known datasets. They
are as follows: COVID Chest X-ray Dataset [26], Italian
SIRM [62] radiography dataset, Radiopaedia [67], RSNA
Pneumonia Detection Challenge [65], and Chest X-ray
Images (pneumonia) [63]. Later using data augmentation
methods like flipping, rotating, translation, and scaling, the
number was enhanced to 912 COVID-19-positive images
and 912 COVID-19-negative images.

COVID-CT Dataset [68]: This CT image-based radiography
dataset has been well-acknowledged by radio experts. It
consists of 349 and 463 CT images from 216 COVID-
19-positive patients and 55 COVID-19-negative patients
respectively. As the data collection from two categories
implied, the labeling of the data has been done in two
classes: COVID-19 positive and COVID-19 negative.

Extensive COVID-19 X-ray and CT Chest Images Dataset [69]:
Unlike the other datasets, this contains both X-ray images
and CT scans, with a total number of augmented images
reaching 17,099. Amongst them, 9544 of them are X-rays,
and the rest are CT scans. The dataset has been created
for binary classification between COVID and non-COVID.
Among the X-ray images, there are 5500 non-COVID
images and 4044 COVID images. In the case of the CT
scans, there are 2628 non-COVID images and 5427 COVID
images.

COVID-19 CT Segmentation Dataset [70]: This dataset con-
sists of 100 axial CT images of more than 40 COVID-
positive patients. The images were segmented in three labels
by radiologists. They are ground glass, consolidation, and
pleural effusion. This dataset provides another nine volu-
metric CT scans that include 829 slices. Amongst them,
373 have been annotated positive and segmented by a
radiologist, with lung masks provided for more than 700
slices.

COVID-19 X-ray Images [71]: This is a dataset in Kaggle that
contains both chest X-ray and CT images with the tally of
the number of images up to 373. This dataset includes 3
classes, COVID-19, streptococcus pneumonia, and others,
including SARS, MERS, and ARDS. The dataset comes
with metadata that includes information such as sex, age,
medical status of the patients, and other related medical
status.

Researchers around the world have made their dataset
open for everyone to facilitate the research scopes. The
Italian SIRM [62] Covid-19 dataset, a Twitter thread
reader [72] with chest X-ray images, Radiopaedia [67],
COVID-19 BSTI Imaging Database [73] etc. are some
notable dataset which have been made public recently.
The Italian SIRM records 115 confirmed COVID-19 cases.
The thread reader from Twitter assembled 134 chest X-ray
images of 50 COVID-19 cases along with gender, age, and
symptom information of each. The Radiopaedia provides
chest radiography images of 153 normal, 135 COVID-
19 positives, and 485 pneumonia-affected patients. BSTI
Imaging Database consists of comprehensive reports and
chest radiography images (both X-ray and CT scans) of
59 COVID-19-positive patients. Coronacases.org [74] is
a website dedicated to COVID-19 cases, which includes
10 such cases with extensive patient reports. Eurorad.org
[75] contains 39 radiography images of COVID-19-positive
patients. Images include both X-ray and CT scans along
with extensive clinical reports. All the datasets mentioned
above are being used for model training either directly or
after going through some data augmentation process.

A summary of the discussed datasets is presented in
Table 2.

Deep Learning–Based Diagnosis Approaches

In this section, we explore the recent literature on radiography-
based COVID-19 diagnosis using deep learning–based
methods by arranging it into two groups. The first group
includes studies that detect COVID-19 from chest X-rays
whereas the latter discuses CT scan-based works.

X-ray-Based Diagnosis

Recently, a lot of work have been published on COVID-19
detection from chest X-ray images. The detection problem
is mostly modeled as a classification problem of 3 classes:
COVID-19-affected lungs, normal lungs, and pneumonia-
affected lungs. Here we discuss some recent works on X-ray
based COVID-19 diagnosis grouping them according to the
used deep learning approaches.

Transfer Learning There remains a scarcity of standard,
large volume dataset to train deep learning models for
COVID-19 detection. The existing deep convolutional
neural networks like ResNet, DenseNet, and VGGNet have
the setbacks of having a deep structure with excessively
large parameter sets and lengthy training time. Whereas
Transfer Learning (TL) surmounts most of these offsets. In
transfer learning, knowledge acquired from the training on
one dataset is reused in another task with a related dataset,
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yielding improved performance and faster convergence. In
the case of COVID-19 detection, the models are often pre-
trained on ImageNet [19] dataset and then fine-tuned with
the X-ray images. Many researchers have used TL after
pre-training their network on an existing standard dataset
[30–40, 48, 49, 55, 76, 77, 79, 83, 84]. Some works even
pre-trained their model twice. For example, ChexNet [85] is
one such network with twofold pre-train on ImageNet [86]
and ChestX-ray-14 [87].

Ensemble Learning Ensemble learning uses an augmenta-
tive learning technique that combines predictions from mul-
tiple models to generate more accurate results. It improves
the model prediction results by reducing the generalization
error and variance. In [88], ensemble learning technique
is used by combining 12 models (Resnet-18,50,101,152,
WideResnet-50,101, ResNeXt-50,101, MobileNet-v1, Densenet-
121,169,201) to get better results. Karim et al. [35] have also
ensembled 3 models (ResNet18, VGG19, DenseNet161).
However, authors in [37], used this a bit differently by using
only one model (i.e., ResNet18), then fine-tuning it with
three different datasets and finally ensembling the three
networks to get the final result. Ensemble learning has con-
tributed significantly towards achieving an accurate result
for COVID-19 detection.

Domain Adaptation Domain adaptation supports the mod-
eling of a relatively new target domain by adapting learning
patterns from a source domain, which has similar character-
istics as the target domain. Chest X-ray image of a COVID-
19 patient has a different distribution but similar charac-
teristics as that of pneumonia; thus, Domain Adaptation
technique can be used. This technique was used by Zhang
et al. [77] for creating COVID-DA where the discrepancy of
data distribution and task differences was handled by using
feature adversarial adaptation and a novel classifier scheme,
respectively. Employing this learning method marked a
noticeably improved result in detecting COVID-19.

Cascaded Network Radiography-based COVID-19 detec-
tion suffers from the data scarcity. Introducing cascaded
network architecture in a small dataset facilitates dense neu-
rons in the network while avoiding the overfitting problem
[89]. LV et al. [48] cascaded two networks (ResNet-50 and
DenseNet-169) to classify COVID-19 samples. After a sub-
ject got classified as viral pneumonia from the 3 classes
(normal, bacterial, and viral pneumonia) using ResNet, it
was fed into DenseNet169 for the final classification as
COVID-19. The infectious regions were concentrated on
with an attention mechanism technique Squeeze-Excitation
(SE) [90]. Contrast Limited Adaptive Histogram Equaliza-
tion improved their image quality, and an additional Module
Excitation (MoEx) [91] with the two networks enhanced

the imaging features. Both the cascaded networks, ResNet-
50 and DenseNet-50 gained high accuracy of 85.6% and
97.1%, respectively.

Other Approaches Wang et al. [39] designed the COVID-
Net architecture optimizing the human-machine collabo-
rative design strategy. They also fabricated a customized
dataset for the network training. Lightweight design pattern,
architectural diversity, and selective long-range connectiv-
ity supported its reliability with an accuracy of 93.3% for
detecting COVID-19. Optimizing the COVIDx dataset with
Data Augmentation and pretraining the model with Ima-
geNet also contributed to the high accuracy. Ozturk et al.
[92] proposed Dark-COVIDNet evolved from DarkNet-19.
It boasted 17 convolutional layers optimizing different fil-
tering on each layer. Punn et al. [49] used NASNetLarge to
detect COVID-19. Both proposed models performed well.

Computed Tomography-Based Diagnosis

CT scan images are scarce as it is expensive and unavailable
in many parts of the world. CT scan images still have shown
better performance in COVID-19 detection as it provides
more information and features than X-ray. Many works
have used deep learning for segmentation of CT images
[81, 93, 94]. Authors in [52] even determined the severity
of COVID-19 case followed by the conversion time from
mild to severe case. In [51–54, 56, 93–95], authors used
3D images as input to detect the infectious regions from
COVID-19 patients. Most works applied machine learning
based methods. Here we discuss some of these works
clustered according to the algorithms used.

Joint Regression and Classification, Support VectorMachine
Machine learning (ML) algorithms, such as Logistic
Regression (LR) and Support Vector Machine (SVM),
hold superiority over CNN if we probe the complicacy
of learning millions of parameters and ease of use. Even
though LR and SVM are not that efficient in learning
very high-dimensional features, the high-definition CT scan
images redress the need for it in this application. So, it
can be stated that LR and SVM provide effective results
in COVID-19 detection with some attributive advantages.
For example, in [50], authors formed four datasets by
taking various patch sizes from 150 CT scans. For
extracting features, they applied Grey Level Co-occurrence
Matrix (GLCM), Local Directional Pattern (LDP), Grey
Level Run Length Matrix (GLRLM), Grey-Level Size
Zone Matrix (GLSZM), and Discrete Wavelet Transform
(DWT) algorithms to the different patches of the images
before applying SVM for COVID-19 classification with
GLSZM, which resulted in a better performance. In [52],
authors proposed a joint regression and classification
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algorithm to detect the severe COVID-19 cases and estimate
conversion time from mild to severe manifestation of the
disease. They used logistic regression for classification
and linear regression for estimating the conversion time.
They also attempted to reduce the influence of outliers and
class imbalance, by giving more weight to the important
class. Both of the proposed models showed satisfactory
performance.

Random Forest and Deep Forest Random forest algorithm
relies on building decision trees and ensembling those
to make predictions. Its simplicity and diversity made it
applicable to a wide range of classification applications
while reducing computational complexity. In [96], an
infection Size-Adaptive Random Forest (iSARF) method is
proposed where the location-specific features are extracted
using VB-Net toolkit [97] and the optimal feature set is
obtained using the Least Absolute Shrinkage and Selection
Operator (LASSO). The selected features are then fed into
the random forest algorithm for the classification. In [98],
the authors proposed an Adaptive Feature Selection guided
Deep Forest (AFS-DF) for the classification task. They also
extracted the location-specific features using VB-Net and
utilized these features to construct an N random forest.
The adaptive feature selection was opted for minimizing
redundancy before cascading multiple layers to facilitate the
learning of a deep, distinguishable feature representation for
COVID-19 classification.

Multi-view Representation Learning In classification and
regression tasks single-view learning is commonly used as
a standard for its straightforward nature. However, multi-
view representation learning is getting attention in recent
times because of its ability to acquire multiple heteroge-
neous features to describe a given problem with improved
generalization. In [54], authors employed multi-view rep-
resentation learning for COVID-19 classification among
community-acquired pneumonia (CAP). V-Net[99] is used
to extract different radiomics and handcrafted features from
CT images before applying a latent representation based
classifier to detect COVID-19 cases.

Hypergraph Learning In [100], a hypergraph was constructed
where each vertex represents COVID-19 or community-
acquired pneumonia (CAP) case. They extracted both radiomics
and regional features; thus, two groups of hyperedges
were employed. For each group of hyperedges, k-nearest
neighbor was applied by keeping each vertex as centroid
and found related vertices depending on features. Then the
related vertices connected together by making edges. It is
not impossible to have noisy, unstable or abnormal image
in a dataset. To keep away these images, two types of
uncertainty score were calculated: aleatoric uncertainty for

noisy or abnormal data and epistemic uncertainty for the
model’s inablity to distinguish two different cases. These
uncertainty score referred to the quality of image and used
as the weight of vertices. Label propagation algorithm [101]
was run on the hypergraph generating a label propagation
matrix, which was then used to test new cases.

CNN Architecture The quality of CT images coupled with
the expansive computational power of recent technologies
make deep learning the most potent candidate for COVID-
19 detection. Many state-of-the-art deep CNN architectures
like ResNet, DenseNet, and Alexnet have already been
used for COVID-19 diagnosis [80–82, 94, 95]. These
models are generally pre-trained on the ImageNet dataset
before being fine-tuned using CT image datasets to avoid
learning millions of parameters from scratch. However,
the insufficiency of chest CT image data of COVID-19-
affected patients results in the augmentation of training
data in many cases [51, 80, 81, 95]. In [53], authors
proposed COVIDCT-Net where they used BCDU-Net [102]
to segment infectious areas before feeding it into a CNN for
classification. DeCovNet was proposed in [51] where a pre-
trained U-Net[103] is used to segment the 3D volume of the
lung image before being fed into a deep CNN architecture.

Attention Mechanism To find the infectious regions better,
attention mechanism was applied in [56, 81, 93, 94] and
others. Authors in [81] used Locality Sensitive Hashing
Attention [104] in their residual attention U-Net model. In
[93], an online 3D class activation mapping (CAM)[105]
was used with ResNet-34 architecture. Authors in [94]
applied Feature Pyramid Network (FPN)[106] with ResNet-
50 to extract top k-features of an image before feeding them
to an attention module (Recurrent Attention CNN [107])
to detect the infections regions from the images. In [56],
authors used location attention with the model learning the
location of infectious patches in the image by calculating
relative distance-from-edge with extra weight.

The details of the works that used deep learning for
diagnosing COVID-19 is given in Table 3.

Image Prepossessing

Image prepossessing is a crucial step in radiography image
classification with deep learning, simply because the small-
est details in the images can veer the model to learn com-
pletely different features and make disparate predictions.
Especially when it comes to COVID-19 images, where it
is already difficult for models to learn to classify from two
very similar classes (pneumonia and COVID-19), prepro-
cessing becomes an important step. This is not only credited
to the similarity between the classes but also the imbalance
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present in the datasets currently available. In this section, we
discuss the various preprocessing methods used by different
works in COVID-19 detection. A summary of the discussed
techniques is also given in Table 4.

Data Augmentation Imbalance dataset is a prevalent issue
in COVID-19 classification due to the scarcity of COVID-
19 images. As discussed before in Section “Challenges,”
it can cause wrongful predictions. One way to solve this
is data augmentation, which is a strategy to increase the
number of images by using various image transformation
methods such as rotation, scaling, translation, flipping,
and changing the pixels’ brightness. It creates diversity in
images without actually collecting new ones. It is one of
the simplest ways to deal with imbalanced datasets, and
thus, is used in most of the works regarding COVID-19
classification, the list of which, is given in Table 4.

Class Resampling This is a popular method and has seen
much success in overcoming data imbalance. In [113],
authors randomly omitted images from the majority class
(viral pneumonia, bacterial pneumonia, and normal) to
balance the dataset, which is called random undersampling
or RUS. The opposite is done in [37, 49, 93] where
the authors randomly oversampled the minority class
(COVID-19), which is called random oversampling or
ROS. Both methods are widely used for their simplicity
and effectiveness. In [114], authors experimented several
undersampling and oversampling methods with multiclass
and hierarchical classification models.

Focal Loss and Weighted Loss Focal loss [115] is another
method to solve the issue of class imbalance. It puts more
weight on the hard to classify objects and decreases the
weight on easy and correct predictions. A scaling factor is
added to the cross-entropy loss function, and it decreases as
the confidence in a prediction goes up. This was used in [77]
for addressing the class imbalance issue. On the other hand,
the weighted loss function is a more common technique to
balance the data among different classes, which puts more
weight on the minority class and less on the majority. In [49,
88], and [52], authors have used weighted loss function and
obtained good results.

Image Quality Enhancement In medical image analysis,
every pixel of the image is important for the proper diag-
nosis of the disease. This is even more applicable when it
comes to diagnosing COVID-19 as it bears so much simi-
larity with pneumonia. Thus, image quality enhancement is
applied in many works regarding COVID-19 detection. For
this, the most prominent technique is increasing the contrast
of the image that allows the features to stand out more. His-
togram equalization used in [30, 35, 48, 49, 51, 80, 93], is an
example of that. In [38, 51, 80], authors applied brightness
adjustment for enhancing image quality. In [35, 49], authors
applied Perona-Malik Filter [117] and Adaptive total varia-
tion [118], respectively for noise removal. Unsharp masking
is used in [35] for edge sharpening.

Image Segmentation Image segmentation involves divid-
ing an image into segments to simplify image analysis

Table 4 A summary of different prepossessing approaches employed in deep learning-based automated detection of COVID-19

Preprocessing Approach Method Reference

Addressing data
imbalance

Data augmentation Rotation, Translation,
Cropping, Flipping etc.

[30–40, 51, 55, 66, 79, 81, 88, 95]

Class resampling Undersampling [113, 114]

Oversampling [37, 49, 93, 114]

Loss function Focal Loss[115] [51]

Weighted Loss[116] [49, 52, 88]

Image segmentation Segmentation model VB-Net[97] [52, 93, 96, 98, 100]

U-Net[103] [48, 51, 95]

V-Net[99] [54]

BCDU-Net[102] [53]

Image quality
enhancement

Contrast enhancement Histogram Equalizetion [30, 35, 48, 49, 51, 80, 93]

Brightness changing Adding or sub-
tracting every
pixel by a
constant value

[38, 51, 80]

Noise removal Perona-Malik filter [117] [35]

Adaptive Total Variation [118] [49]

Edge sharpening Unsharp Masking [35]
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and focus only on the important part. Thus, in the case of
COVID-19 detection, image segmentation is often a crit-
ical preprocessing step that can allow the model to learn
from only the affected organ, namely, the lungs, to pro-
vide more accurate predictions. One of the most well-known
algorithms for medical image segmentation is U-net [103],
which has a superior design of skip connections between
different stages of the network (used in [81] and [95]). Prob-
ably, the most famous derivations of U-Net is VB-Net [97],
which is used in [52, 96, 98], and [100]. There are other
architectures available for segmentations such as V-Net [99]
used in [54], BCDU-Net [102] used in [53] and other works
like [56, 81] and [94] that have incorporated image seg-
mentation into their deep models rather than going through
segmentation as a preprocessing step.

Comparative Analysis

As we have seen so far, researchers’ continuous efforts have
already elicited deep learning–based automated diagnosis
of COVID-19 as a potential research avenue. However,
despite having several publicly accessible datasets (See
“Description of Available Datasets”), no “benchmark”
dataset has been released yet that can be used to assess the
performance of different methods’ ability to detect COVID-
19 using the same standard. Therefore, different authors
reported the performance of their method based on different
datasets and evaluation protocols. Being motivated by the
urge to compare the models on the same scale, here we
present a comparative quantitative analysis of 315 deep
models that consists of the combinations of 15 convolutional
neural network (CNN) models and 21 classifiers using our
customized dataset. Note that, we release our dataset along
with train-test split and models to be publicly available. 1

Dataset Description

To conduct the analysis, we compile a dataset of our own
that includes X-ray images from 4 different data sources,
[26, 59, 60], and [61]. The dataset contains 7879 distinct
images in total for 3 different classes: COVID-19, normal,
and pneumonia, where the pneumonia class has both viral
and bacterial infections. However, we have not taken all the
available images of the 4 datasets, but only the frontal X-ray
(Posterior-to-Anterior) images, leaving out the side views.
We selected datasets from the above sources as they are
fully accessible to the research community and the public.

1The dataset and models are available at https://github.com/rgbnihal2/
COVID-19-X-ray-Dataset

To the best of our knowledge, the images are annotated by
radiologists, and therefore, the reliability of ground truth
labels is ensured.

The dataset is split into training (60%) and test (40%) sets
using Scikit-learn’s train test split module, which, given the
split percentage, randomly splits the data between the two
sets due to a random shuffle. The shuffling algorithm uses
D.E. Knuth’s shuffle algorithm (also called Fisher-Yates)
[119] and the random number generator in [120]. The split
is also stratified to ensure the presence of the percentage
of class samples in each set. The distributions of samples
across the classes and train-test set are shown in Table 5.

Method

The overall detection problem is posed as a multi-class clas-
sification problem that consists of two major components:
feature extraction and learning a classifier.

Feature Extraction For the feature extraction step, we
utilize transfer learning and select a CNN model which has
been trained on ImageNet [86], a dataset containing 1.2
million images of 1000 categories. The last fully connected
layer, classification layer, and softmax layer are removed
from the model and the rest is considered as a feature
extractor that computes a feature vector for each image.

Learning a Classifier We forward the extracted features to
a learning model, which is then trained using 5-fold cross-
validation on the training set. From Table 1, we notice
an imbalance of sample distribution across the classes
(COVID-19: 8.7%, normal: 37.1%, and pneumonia: 52.2%).
Therefore, to analyze the deep models’ performance
at the presence of class imbalance problem, we have
done experimentation with three different approaches: a
weighted cost function, upsampling the training dataset, and
downsampling the training dataset.

– Weighted Cost Function: Being inspired by the work
in [116], we have applied a weighted cost function
which ensures each class to be given same relative

Table 5 Data distribution of chest X-ray images among 3 different
classes: COVID-19, normal, and pneumonia

Class Total no. of samples Training data Test data

COVID-19 683 410 (5.2%) 273 (3.5%)

Normal 2924 1754 (22.3%) 1170 (14.8%)

Pneumonia 4272 2563 (32.5%) 1709 (21.7%)

Total 7879 4727 (60%) 3152 (40%)

https://github.com/rgbnihal2/COVID-19-X-ray-Dataset
https://github.com/rgbnihal2/COVID-19-X-ray-Dataset
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importance by assigning more weight on the minority
class and less on the majority.

L = Wnormal × Lnormal + Wpneumonia × Lpneumonia

+WCOVID × LCOVID (1)

where L is total categorical cross-entropy loss. Lnormal,
Lpneumonia, and LCOVID denote the cross-entropy losses
for normal, pneumonia, and COVID, respectively.
Weight of each class is calculated using the following
formula:

wi = n

k × ni

(2)

where wi is the weight of class i, n is the total number
of observations in the dataset, ni is the total number
of observations in class i, and k is the total number of
classes in the dataset.

– Upsampling: Upsampling is the method of randomly
replicating samples from the minority class. First,
we separate observations from each class. Next, we
resample the minority classes (normal and COVID-19),
setting the number of samples to match the majority
class (pneumonia). Thus, the ratio of the three classes
becomes 1:1:1 as shown in Fig. 4b.

– Downsampling: Downsampling involves randomly
eliminating samples from the majority class to prevent
from dominating the learning algorithm. It has a similar
process, like upsampling. After separating samples
from each class, we resample the majority classes
(pneumonia and normal), setting the number of samples
to match that of the minority class (COVID-19). After
that, the ratio of the three classes becomes 1:1:1 (see
Fig. 4c).

Evaluation Process 15 CNN architectures are used to
extract feature vectors, and these are fed to 21 classifiers.
Therefore, 15 × 21 = 315 models are experimented with a
general cross-entropy and the weighted cross-entropy given
in (1). Thus, a total of 630 models are deployed with the
dataset and ranked according to the performance metrics. In

addition, the performance of the top-5 models is evaluated
with the upsampled and downsampled training dataset. This
study thus includes a total of 640 models for performance
benchmarking.

Following is the list of CNN models that have been used
to assess the feature extraction step (number of features
extracted from each image is given in the parenthesis):

– Alexnet (4096) [121],
– Xception (2048) [122],
– InceptionV3 (2048) [123],
– InceptionResNetV2 (1536) [124],
– VGG16 (4096) [125],
– ResNet50 (2048) [126],
– MobileNetV2 (1280) [127],
– DarkNet53 (1024) [128],
– DarkNet19 (1000) [129],
– GoogleNet (1024) [130],
– DenseNet-201 (1920) [131],
– ShuffleNet (544) [132],
– NasNetMobile (1054) [133],
– ResNet18 (512) [126], and
– VGG19 (4096) [125].

The architectures of these models are shown in Table 6.
List of classifiers we tried for the comparative analysis:

– Tree-Based[134]: Fine, Medium, Coarse
– Discriminant Analysis[135]: Linear, Quadratic
– Support vector machine[136]: Linear , Quadratic ,

Cubic, Coarse Gaussian, Medium Gaussian
– K-Nearest Neighbor[137]: Fine, Medium, Cubic,

Cosine, Coarse, Weighted
– Ensemble: BoostedTree[138], BaggedTree[139], Sub-

spaceDiscriminant, Subspace KNN[140], RusBoost-
edTree

The overall performance is evaluated using accuracy,
COVID-19 accuracy, weighted precision, weighted recall,
weighted specificity, and weighted F1-score. Here we have
used weighted average of performance metrics instead of

Fig. 4 Distribution of samples
among 3 different classes in a
original, b upsampled, and c
downsampled training dataset
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Table 6 Architectural details of the CNNs employed for perfor-
mance benchmarking in COVID-19 detection (zoom in for better
visualization)

Layer Patch size/stride Depth Output size

(a) ResNet-50

Convolution 7×7×64/2 1 112×112

Max pool 3×3/2 1 56×56

Convolution 1×1×64 3 56×56

3×3×64

1×1×256

Convolution 1×1×128 4 28×28

3×3×128

1×1×512

Convolution 1×1×256 6 14×14

3×3×256

1×1×1024

Convolution 1×1×512 3 7×7

3×3×512

1×1×2048

Average pool − 1 1×1000

Fully connected

Softmax

(b) GoogleNet

Convolution 7×7/2 1 112×112×64

Max pool 3×3/2 0 56×56×64

Convolution 3×3/1 2 56×56×192

Max pool 3×3/2 0 28×28×192

Inception(3a) - 2 28×28×256

Inception(3b) - 2 28×28×480

Max pool 3×3/2 0 14×14×480

Inception(4a) - 2 14×14×512

Inception(4b) - 2 14×14×512

Inception(4c) - 2 14×14×512

Inception(4d) - 2 14×14×528

Inception(4e) - 2 14×14×832

Max pool 3×3/2 0 7×7×832

Inception(5a) - 2 7×7×832

Inception(5b) - 2 7×7×1024

Average pool 7×7/1 0 1×1×1024

Dropout(40%) - 0 1×1×1024

Linear - 1 1×1×1024

Softmax - 0 1×1×1024

(c) VGG-16

Convolution 3×3×64/1 2 224×224×64

Max pool 3×3/2 1 112×112×64

Convolution 3×3×128/1 2 112×112×128

Max pool 3×3/2 1 56x56x128

Convolution 3×3×256/1 2 56×56×256

1×1×256/1 1

Max pool 3×3/2 1 28×28×256

Table 6 (continued)

Layer Patch size/stride Depth Output size

Convolution 3×3×512/1 2 28×28×512

1×1×512/1 1

Max pool 3×3/2 1 14×14×512

Convolution 3×3×512/1 2 14×14×512

1×1×512/1 1

Max pool 3×3/2 1 7×7×512

Fully connected - 2 1×4096

Softmax - 1 1×1000

(d) AlexNet

Convolution 11×11/4 1 55×55×96

Max pool 3×3/2 1 27×27×96

Convolution 5×5/1 1 27×27×256

Max pool 3×3/2 1 13×13×256

Convolution 3×3/1 1 13×13×384

Convolution 3×3 1 13×13×384

Convolution 3×3 1 13×13×256

Max pool 3×3/2 1 6×6×256

Fully connected - 2 1×4096

Softmax - 1 1×1000

(e) DarkNet-53

Convolution 3×3×32/1 1 256×256×32

Convolution 3×3×64/2 1 128×128×64

Convolution 1×1×32/1 1 128×128

Convolution 3×3×64/1

Residual -

Convolution 3×3128/2 1 64×64

Convolution 1×1×64/1 2 64×64

Convolution 3×3×128/1

Residual -

Convolution 3×3×256/2 1 32×32

Convolution 1×1×128/1 8 32×32

Convolution 3×3×256/1

Residual -

Convolution 3×3×512/2 1 16×16

Convolution 1×1×256/1 8 16×16

Convolution 3×3×512/1

Residual -

Convolution 3×3×1024/2 1 8×8

Convolution 1×1×512/1 4 8×8

Convolution 3×3×1024/1

Residual -

Average pool - 1 1×1000

FC

Softmax



Cogn Comput

Table 6 (continued)

Layer Patch size/stride Depth Output size

(f ) ShuffleNet

Convolution 3×3/2 2 112×112

Max pool 3×3/2 2 56×56

Stage 2 -/2 1 28×28

-/1 3 28×28

Stage 3 -/2 1 14×14

-/1 7 14×14

Stage 4 -/2 1 28×28

-/1 3 7×7

Global pool 7×7 - 1×1

FC - - 1×1000

(g)MobileNetV2

Convolution 3×3/2 1 112×112×32

Bottleneck -/1 1 112×112×16

Bottleneck -/2 2 56×56×24

Bottleneck -/2 3 28×28×32

Bottleneck -/2 4 14×14×64

Bottleneck -/1 3 14×14×96

Bottleneck -/2 3 7×7×160

Bottleneck -/1 1 7×7×320

Convolution 1×1/1 1 7×7×1280

Average pool 7×7/- 1 1×1×1280

Convolution 1×1/1 - k

(h) DenseNet-201

Convolution 7×7/2 1 112×112

Max pool 3×3/2 1 56×56

Dense block (1) 1×1 6 56×56

3×3

Transition layer (1) 1×1 1 56×56

3×3/2, avg pool 28×28

Dense block (2) 1×1 12 28×28

3×3

Transition layer (2) 1×1 1 28×28

3×3/2 ,avg pool 14×14

Dense block (3) 1×1 48 14×14

3×3

Transition layer (3) 1×1 1 14×14

3×3/2, avg pool 7×7

Dense block (4) 1×1 32 7×7

3×3

Average pool 7×7 1 1×1

FC 1000

Softmax -

Table 6 (continued)

Layer Patch size/stride Depth Output size

(i) Xception

Convolution 3×3×32/2 1 149×149×32

3×3×64 147×147×64

Separable convolution 3×3×128/1 2 147×147×128

Max pool 3×3/2 1 74×74×128

Separable convolution 3×3×256/1 2 74×74×256

Max pool 3×3/2 1 37×37×256

Separable convolution 3×3×728/1 2 37×37×728

Max pool 3×3/2 1 19×19×728

Separable convolution 3×3×728/1 24 19×19×728

Separable convolution 3×3×728/1 1 19×19×728

3×3×1024/1 19×19×1024

Max pool 3×3/2 1 10×10×1024

Separable convolution 3×3×1536/1 1 10×10×1536

3×3×2048/1 10×10×2048

Average pool - - 1×1×2048

Optional FC - - 1×1×1000

Logistic regression - - 1×1×1000

(a) In ResNet-18, the convolution layers 2 to 5 contain 2 successive
convolutions instead of 3 and each is repeated only 2 times

(b) InceptionV3 incorporates factorized 7×7 convolutions and takes
in different sized inputs. InceptionResNetV2 incorporates residual
networks with factorized convolutions, as well as several reduction
blocks

(c) In VGG-19, the 3rd, 4th, and 5th convolution layer has all 3×3
convolutions and is repeated 4 times each instead of 3 successive
convolutions

(e) DarkNet-19 has no residual networks, with only max pooling layers
reducing the image

average as the dataset is imbalanced. This gives same weight
to each class.

Analysis of Result

We present a comparative analysis in Table 7 among 5
top performing models in four categories, (a) models that
employ a general cross-entropy cost function, (b) models
that employ a weighted cost function, (c) models that are
trained on the upsampled dataset, and (d) models that
are trained on the downsampled dataset. The models are
evaluated using different evaluation metrics on the test
dataset.

From Table 7, we can see that the Densenet201-Quadratic
SVM model outperforms other model in terms of perfor-
mance metrics. By adopting the weighted cost function as
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Fig. 5 a–h Confusion matrix of
two top performing models
generated using four different
settings: general cost function,
weighted cost function,
upsampling training-set, and
downsampling training-set. In
the figure, GC, WC, QSVM,
and ESD denote general cost
function, weighted cost
function, Quadratic SVM and
Ensemble Subspace
Discriminant respectively
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given in (1), we observe slight improvement in the result
for the best model. However, the change varies differently
across the models. Some models’ performance get worse
(e.g., Alexnet-CoarseTree, Shufflenet-MediumTree, Alexnet-
QuadraticSVM), some obtain better results (e.g., GoogleNet-
BaggedTrensemble, Resnet50-CoarseKNN, NasNetMobile-
Bagged Tree Ensemble etc.) and others do not change
significantly. Note that, we consider at least 0.6% change
(minimum 20 samples) in test accuracy as a significant
change. We also show confusion matrix of some of the top
performing models in Fig. 5.

Here we note few observations that are based on the
performance analysis of 640 models:

1. As we extracted features from the last pooling layer
of each CNN architecture, the number of features is in
mid range (between 1000 and 5000). For this dimension
of the feature vector, SVM (Linear,Quadratic,cubic)
and Ensemble classifiers (Subdiscriminant, Bagged,
Boosted) are found to outperform other classifiers.

2. Using Densenet201 as CNN architecture gives better
result than other CNN architectures.

3. Weighted cost function performs better than the two alter-
native approaches, i.e., upsampling and downsampling.

4. With Darknet53-Quadratic SVM model, the accuracy of
COVID-19 class is 100%. The model however detects
three samples of pneumonia class to be COVID-19.

5. The validation accuracy and the test accuracy of the
models are almost the same.

Misclassified COVID Samples

We present some of the COVID samples in Fig. 6 that
have been misclassified by 78% of the models when
trained with the general cost function and the weighted cost
function. For COVID-positive cases, generally a chest X-
ray shows high opacity in the peripheral part of the image.
For patients with serious condition, multiple consolidations
present across the image. In contrast, discontinuity of
diaphragmatic shadow and subtle consolidation in chest
X-ray differentiates pneumonia from other diseases. On
the other hand, normal samples do not have any signs of
consolidation or high opacity or any discontinuity of the
diaphragmatic shadow.

According to an expert radiologist, the X-ray sample
shown in Fig. 6a has low opacity in the left and right upper
lobes and absence of consolidation even in the peripheral
part of the lung, which is similar to normal lung condition.
In contrast, the COVID samples shown in Fig. 6b–e are
misclassified as pneumonia. These samples, according to
the radiologist, are hard to diagnose even by an expert in this
domain. More tests like CT scan and RT-PCR are required
to confirm the status.

Feature Visualization

As we mentioned earlier in “Method,” the CNN models
we utilize here as feature extractor are pre-trained on the

Fig. 6 Some miss-classified COVID samples. a COVID-19 miss-classified as normal; b–e COVID-19 miss-classified as pneumonia
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Fig. 7 2D t-SNE [141] visualization of the extracted features obtained by a DarkNet53 and b DenseNet201 from our X-ray image dataset

ImageNet dataset. Even though none of the classes we con-
sider here is included in Imagenet, the CNN architectures
produce very good features that are distinctive across the
classes.

We visualize the features we obtain via transfer learning
in Fig. 7 using 2D t-SNE (t-distributed stochastic neighbor
embedding) [141] plot. One can notice that the features
of three different classes are quite well separated and
easy for a simple machine learning model to do the
classification.

Performance with Lower Dimensional Features

Here we re-investigate the performance of the models
using lower dimensional features. We apply t-SNE to the
originally extracted higher dimensional features and fed
the two-dimensional feature generated by t-SNE into the

classifiers we have mentioned in “Method.” Table 8 shows
the performance measures of top-5 models.

From Table 8, one can see that the Resnet50-Weighted
KNN model gives the best result. It is to be noticed that,
with the originally obtained higher dimensional features,
Denenet201-Quadratic SVM performs the best. Here are our
observations:

1. Using only 2D features, the best accuracy we obtained
is 96.5%. This model gives about 2% more error than
the previously obtained one. However, this method is
quicker and simpler than the previous one.

2. We found KNN classifiers (Weighted, Fine, Medium)
and Ensemble Bagged Tree to perform better than other
classifiers. We think ese classifiers’ ability to learn from
lower dimensional space make these perform better
than the alternatives.

Table 8 Performance analysis of the models using t-SNE output as feature (top-5 models)

Architecture Res-net50 Res-net50 Dense-net201 Dark-net53 Dense-net201

Classifier WKNN EBT WKNN WKNN EBT

Validation accuracy 95.37 95.20 95.43 94.39 95.37

Test accuracy 96.51 96.26 95.94 95.88 95.84

COVID-19 accuracy 97.80 96.70 98.53 99.63 98.53

Weighted precision 96.52 96.29 95.97 95.91 95.89

Weighted sensitivity 96.88 96.69 96.28 96.37 96.16

Weighted F1-score 96.70 96.47 96.10 96.12 95.99

Weighted specificity 96.56 96.34 96.23 95.97 95.93

WKNN weighted KNN, EBT ensemble bagged tree

The Italic entries signify the highest performing architecture for that metric
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Discussion and Future Directions

One of the major issues in the deep learning–based auto-
mated diagnosis of COVID-19 from the radiography images
is the requirement of providing a large annotated dataset,
prepared by an expert physician or radiologist to train the
deep model. Although a major number of recent works
made their dataset of radiography images publicly avail-
able, they contain at most a few hundreds of images in
the COVID-19 class. Compiling a dataset with sufficient
images in the COVID-19 class requires collecting radiogra-
phy images of confirmed COVID-19 patients from reliable
and authentic sources which is a challenging task. The
challenge is further intensified due to the requirement of
the proper annotation of the collected data. To deal with
the aforementioned challenges, Few-shot, Zero-shot, and
Deep Reinforcement Learning (DRL) can be adopted in
this domain for ensuring minimal human intervention in the
diagnosis.

Few-shot learning enables a deep model to learn informa-
tion from only a handful of labeled examples per category.
Recently, Few-shot learning has been applied on chest X-ray
images to classify some lung diseases where it performed
promisingly well [142]. However, Few-shot learning has
great potential to detect COVID-19 as well, which has not
been explored yet. On the other hand, Zero-shot learning
has the amazing capacity of recognizing a test sample which
it has not seen during training. Therefore, Zero-shot learn-
ing can also be a resort to minimizing the issue regarding
the scarcity of training data of COVID-19 class. In addition,
DRL can also alleviate the need for good-quality images and
the hassle of proper annotations. If the problem can be mod-
eled as a Markov’s Decision Process, DRL algorithms can
perform remarkably well. As far as we know, the applica-
tion of DRL in the detection of COVID-19 is not done yet.
However, the success of DRL in varied fields, e.g., image
processing tasks [143, 144]; image captioning [145]; video
captioning [146]; automated diagnosis [147, 148], shows the
potential of DRL to be effectively utilized in the diagnosis
of COVID-19.

Conclusion

Due to scientists’ and researchers’ constant conscientious
effort to unbolt new methods for the effectuation of COVID-
19 detection with the power of deep learning, the research
in this domain has made significant progress in a short
time. However, due to the absence of a benchmark dataset,
researchers have reported performances based on different
datasets and evaluation protocols, rendering the idea of
comparative analysis far-fetched. This work is inclined
towards addressing this issue. Here we discussed some

of the existing challenges and methods of COVID-19
detection from radiography images along with a description
of the existing datasets. We have also proposed our
customized dataset comprising four others. Our finding is
that the primary challenge in any COVID-19 detection is
the data imbalance issue due to the scarcity of COVID-
19 image data. Therefore, to analyze the deep models’
performance at the presence of skewness in the data, we
have done extensive experimentation on 315 deep models
that comprise the combinations of 15 existing deep CNN
architectures and 21 classifiers. In the experimentation,
we utilized three approaches: a weighted cost function,
upsampling the training dataset, and downsampling the
training dataset to find the most competent solution in
addressing the data imbalance issue. Our results show
that deep CNNs boast high-performance metrics all-
around in COVID-19 classification, with DenseNet-201
with quadratic SVM classifier achieving the best results
among all, demonstrating its potential as a viable solution
for early diagnosis of COVID-19. We also observed that the
weighted cost function outperforms the other two alternative
approaches. We believe that the comprehensive analysis
provided in this work can facilitate future enthusiasts
working in this domain. Nevertheless, this review may be
considered an early work as many more deep learning
approaches will probably be applied and tested on detecting
COVID-19 to search for the best possible fit. We believe that
our efforts will have a positive impact on the fight against
COVID-19 during this pandemic situation.
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