Skip to main content

Advertisement

Log in

Effect of Arsenic and Manganese Exposure on Intellectual Function of Children in Arsenic Stress Area of Purbasthali, Burdwan, West Bengal

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Arsenic existing in the soil and ground water worldwide is known as a neurotoxic that affects the peripheral nervous system. The peripheral neuropathy caused by chronic or sub acute arsenic exposure by inhalation or oral route is well documented. However, the effects of arsenic, especially chronic low-level exposure, on the central nervous system have been rarely reported. The present result highlights the direct interference of arsenic in the cognitive level of the school of children. The arsenic level in drinking water ranges from 0.0507 to 0.084 ppm with mean, SD, and SE are 0.0506, ±0.0196, and 0.0018, respectively. Mean IQ level in the contaminated area varies between 76 and 120 and two-sample t test results show significance difference (p < 0.000) with control. The multiple regression analysis suggests strong negative regression coefficient (−308.2) of IQ with water borne arsenic (WAs). Almost similar negative regression coefficient (−6.513) is also recorded with memory power. Results also suggest the inconsistency with urine arsenic and drinking water arsenic. On the other hand, drinking water manganese level also demonstrates weak relation with IQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amador DR, Navarro M, Trejo-Acevedo A, Carrizales L, Pe’rez-Maldonado I, Dı’az Barriga F, Caldero’n J (2009) Use of the Rey–Osterrieth complex figure test for neurotoxicity evaluation of mixtures in children. NeuroToxicol 30:1149–1154

    Article  Google Scholar 

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DC

    Google Scholar 

  • Asadullaha MN, Chaudhury N (2011) Poisoning the mind: arsenic contamination of drinking water wells and children’s educational achievement in rural Bangladesh. Econ Edu Rev 30:873–888

    Article  Google Scholar 

  • Baldissarelli AL, Capiotti KM, Bogo MR, Ghisleni G, Bonan CD (2012) Arsenic alters behavioral parameters and brain ectonucleotidase activities in zebrafish (Danio rerio). Compar Biochem Physiol-Part C Toxicol Pharmacol 155:566–572

    Article  CAS  Google Scholar 

  • Bellinger DC (2004) Lead. Pediatrics 113(Suppl. 1):1016–1022

    Google Scholar 

  • Bellinger DC (2009) Interpreting epidemiologic studies of developmental neurotoxicity:conceptual and analytic issues. Neurotoxicol Teratol 31:267–274

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Tripathy S, Kim K, Kim SH (2008) Arsenic fractions and enzymeactivities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicol Environ Safety 71:149–156

    Article  CAS  Google Scholar 

  • Biswas B (2010) Geomorphic controls of arsenic in ground water Purbasthali I & II blocks of Burdwan district, West Bengal, India. Int J Environ Sci 1(4):429–439

    Google Scholar 

  • Bouchard MF, Sauve S, Barbeau B, Legrand M, Brodeur ME, Bouffard T (2011) Intellectual impairment in school-age children exposed to Manganese from drinking water. Environ Health Perspect 119:138–143

    Article  CAS  Google Scholar 

  • Calderon J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, DmHaz-Barriga F (2001) Exposure to arsenic and Lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S, Sorif S, Selim M, Rahman M, Quamruzzaman Q (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  CAS  Google Scholar 

  • Chandra AV, Ali MM, Saxena DK, Murthy RC (1981) Behavioral and neurochemical changes in rats simultaneously exposed to manganese and lead. Arch Toxicol 49:49–56

    Article  CAS  Google Scholar 

  • Chiba M, Kikuchi M (1984) The in vitro effects of zinc and manganese on delta aminolevulinic acid dehydratase activity inhibited by lead or tin. Toxicol Appl Pharmacol 73:388–394

    Article  CAS  Google Scholar 

  • Crinella FM, Cordova EJ, Ericson J (1998) Manganese, aggression, and attention deficit hyperactivity disorder (abstract). Neurotoxicol 19:468–469

    Google Scholar 

  • Das AK (2008) Bioinorganic chemistry, 1st edn. Book and Allied (P) Ltd, Kolkata, pp 351–359

    Google Scholar 

  • De AK (2008) Environmental chemistry, 1st edn. New Age International Publishers, New Delhi, pp 222–247

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Inter 31(5):631–641

    Article  CAS  Google Scholar 

  • Garai R, Chakraborty AK, Dey SB, Saha KC (1984) Chronic arsenic poisoning from tube well water. J Ind Medical Asso 82:34–35

    CAS  Google Scholar 

  • He P, Liu D, Zhang G, Su M (1994) Effects of high-level manganese sewage irrigation on children’s neurobehavior. Chin J Preven Med 28:216–218

    CAS  Google Scholar 

  • Hu P, Ouyang Y, Wu L, Shen L, Luo Y, Christie P (2015) Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar.J. Environ Sci 27:225–231

    Article  Google Scholar 

  • Hua MS, Huang CC (1991) Chronic occupational exposure to manganese and neurobehavioral function. J Clin Exp Neuropsychol 13(4):495–507

    Article  CAS  Google Scholar 

  • Kaplan RM, Saccuzzo DP (2009) Standardized tests in education, civil service, and the military. Psychol Test 7:325–327

    Google Scholar 

  • Karthikeyan K, Nanthakumar K, Velmurugan P, Tamilarasi S, Lakshmanaperumalsamy P (2010) Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamil Nadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environ Monitor Assess 160(1–4):141–155

    Article  CAS  Google Scholar 

  • Kim Y, Kim BY, Hong YC, Shin MS, Yoo HJ, Kim JW (2009) Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neuro Toxicol 30:564–571

    CAS  Google Scholar 

  • Li XS, Zhi JL, Gao RO (1995) Effect of fluoride exposure on intelligence in children. Fluoride 28(4):189–192

    CAS  Google Scholar 

  • Lu Y, Sun ZR, Wu LN, Wang X, Lu W, Liu SS (2000) Effects of high-fluoride water on intelligence in children. Fluoride 33(2):74–78

    CAS  Google Scholar 

  • Mergler D, Baldwin M, Belanger S, Larribe F, Beuter A, Bowler R (1999) Manganeseneurotoxicity, a continuum of dysfunction: results from a community based study. Neuro Toxicol 20:327–342

    CAS  Google Scholar 

  • Mondal NK, Roy P, Das B, Datta JK (2011) Chronic arsenic toxicity and it’s relation with nutritional status: a Case Study in Purbasthali-II, Burdwan, West Bengal, India. Int J Environ Sci 2(2):1103–1118

    CAS  Google Scholar 

  • Mondal NK, Dey U, Ghosh S, Dutta JK (2015) Soil enzyme activity under arsenic stressed area of Purbasthali, West Bengal, India. Arch Agro Soil Sci 61(1):73–87

    Article  CAS  Google Scholar 

  • Ostrowski SR, Wilbur S, Chou CH, Pohl HR, Stevens YW, Allred PM (1999) Agency for toxic substances and disease registry’s 1997 priority list of hazardous substances. Latent effects—carcinogenesis, neurotoxicology, and developmental deficits in humans and animals. Toxicol Indus Health 15:602–644

    Article  CAS  Google Scholar 

  • Rahaman S, Sinha AC, Pati R, Mukhopadhyay D (2013) Arsenic contamination: a potential hazard to the affected areas of West Bengal, India. Environ Geochem Health 35:119–132

    Article  CAS  Google Scholar 

  • Rahman MM, Sengupta MK, Ahamed S, Chudhury UK, Hossain AMd, Lodh D, Saha KC, Pati S, Kaies I, Barua AK, Chakraborti D (2005) Health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338:189–200

    Article  CAS  Google Scholar 

  • Raven JC, Court JH, Raven J (1983) Manual for Raven’s progressive matrices and vocabulary scales (section 3)-standard progressive matrices. Lewis, London

    Google Scholar 

  • Riojas-Rodrı´guez H, Solis-Vivanco R, Schillman A, Montes S, Rodriguez S, Rodriguez-Agudelo Y (2011) Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ Health Perspect 118:1465–1470

    Article  Google Scholar 

  • Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderon J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica 23(Suppl 4):S579–S587

    Article  Google Scholar 

  • Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P (2007) Arsenic exposure and cognitive performance in Mexican school children. Environ Health Perspect 115:1371–1375

    Article  CAS  Google Scholar 

  • Roy A, Kordas K, Lopez P, Rosado J, Cebrian M, GarciaVargas G, Ronquillo D, Stoltzfus R (2011) Association between arsenic exposure and behavior among first-graders from Torreo´ n, Mexico. Environ Res 111:670–676

    Article  CAS  Google Scholar 

  • Roy P, Mondal NK, Das B, Das K (2013) Arsenic contamination in groundwater: a statistical modelling. J Urban Environ Eng 7(1):24–29

    Article  Google Scholar 

  • Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 213:414–427

    Article  CAS  Google Scholar 

  • Siripitayakunit P, Visudhiphan M, Pradipasen M, Vorapongsathron T (1999) Association between chronic arsenic exposure and children’s intelligence in Thailand. In: Chappel WR, Abernathy CO (eds) Arsenic expo health effects. Elsevier, New York, pp 141–150

    Chapter  Google Scholar 

  • Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G (2003) Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology 24:667–674

    Article  CAS  Google Scholar 

  • Tsai SY, Chou H, The H, Meei CC, Jen CC (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24:747–753

    Article  CAS  Google Scholar 

  • Tsuji JS, Garry MR, Perez V, Chang ET (2015) Low-level arsenic exposure and developmental neurotoxicity in children: a systematic review and risk assessment. Toxicology 337(4):91–107

    Article  CAS  Google Scholar 

  • vanGeen A, Cheng ZY, Jia Q, Seddique AA, Rahman MW, Rahman MM (2007) Monitoring 51 deep community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation. J Environ Sci Health 42:1729–1740

    Article  CAS  Google Scholar 

  • Varner JA, Jensen KF, Horvath W, Isaacson RL (1998) Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784(1–2):284–298

    Article  CAS  Google Scholar 

  • von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A (2007) Children’s intellectual function in relation to arsenic exposure. Epidemiology 18:44–51

    Article  Google Scholar 

  • Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, Zhang XD (2007) Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province, China. Environ Health Perspective 115:643–647

    Article  CAS  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A (2004) Water arsenic exposure and children’s intellectual function Araihazar, Bangladesh. Environ Health Perspect 115:1–5

    Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A (2006) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115:1–5

    Article  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Ahsan H, Levy D, Kline J, van Geen A, Mey J, Slavkovich V, Siddique AB, Islam T, Graziano JH (2011) Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology 32:450–457

    Article  CAS  Google Scholar 

  • WHO (2008) Guidelines for drinking-water quality, third edition, incorporating first and second addenda, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216

    Article  CAS  Google Scholar 

  • Xiang Q, Liang Y, Chen L, Wang C, Chen B, Zhou M (2003) Effects of fluoride in drinking water on children’s intelligence. Fluoride 36(2):84–94

    CAS  Google Scholar 

  • Zhao LB, Liang GH, Zhang DN, Wu XR (1996) Effect of a high fluoride water supply on children’s intelligence. Fluoride 29(4):190–192

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to all villagers and school children for their unconditional help. They also express their sincere thanks to all the faculty of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naba Kumar Mondal.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.B., Chakraborty, D. & Mondal, N.K. Effect of Arsenic and Manganese Exposure on Intellectual Function of Children in Arsenic Stress Area of Purbasthali, Burdwan, West Bengal. Expo Health 9, 1–11 (2017). https://doi.org/10.1007/s12403-016-0216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-016-0216-8

Keywords

Navigation