Skip to main content
Log in

Assessment of cardiac autonomic neuronal function using PET imaging

  • An ASNC 20th Anniversary Article Major Achievements in Nuclear Cardiology
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Ardell JL. Intrathoracic neuronal regulation of cardiac function. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 118-52.

    Google Scholar 

  2. Pardini BJ, Lund DD, Schmid PG. Organization of the sympathetic postganglionic innervation of the rat heart. J Auton Nerv Syst 1989;28:193-201.

    PubMed  CAS  Google Scholar 

  3. Adams DJ, Cuevas J. Electrophysiological properties of intrinsic cardiac neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 1-60.

    Google Scholar 

  4. Crick SJ, Anderson RH, Ho SY, Sheppard MN. Localisation and quantitation of autonomic innervation in the porcine heart II: Endocardium, myocardium and epicardium. J Anat 1999;195:359-73.

    PubMed  CAS  Google Scholar 

  5. Kopin IJ, Gordon EK. Origin of norepinephrine in the heart. Nature 1963;199:1289.

    PubMed  CAS  Google Scholar 

  6. Bruss M, Hammermann R, Brimijoin S, Bonisch H. Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 1995;270:9197-201.

    PubMed  CAS  Google Scholar 

  7. Esler MD, Jennings GL, Johns J, Burke F, Little PJ, Leonard P. Estimation of ‘total’ renal, cardiac and splanchnic sympathetic nervous tone in essential hypertension from measurements of noradrenaline release. J Hypertens Suppl 1984;2:S123-5.

    PubMed  CAS  Google Scholar 

  8. Wehrwein EA, Parker LM, Wright AA, Spitsbergen JM, Novotny M, Babankova D, et al. Cardiac norepinephrine transporter protein expression is inversely correlated to chamber norepinephrine content. Am J Physiol Regul Integr Comp Physiol 2008;295:R857-63.

    PubMed  CAS  Google Scholar 

  9. Keller NR, Diedrich A, Appalsamy M, Tuntrakool S, Lonce S, Finney C, et al. Norepinephrine transporter-deficient mice exhibit excessive tachycardia and elevated blood pressure with wakefulness and activity. Circulation 2004;110:1191-6.

    PubMed  CAS  Google Scholar 

  10. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: Physiological and pathophysiological relevance. J Pharmacol Sci 2006;100:323-37.

    PubMed  CAS  Google Scholar 

  11. Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 2004;287:R262-71.

    PubMed  CAS  Google Scholar 

  12. Raffel DM, Chen W. Binding of [3H]mazindol to cardiac norepinephrine transporters: Kinetic and equilibrium studies. Naunyn Schmiedebergs Arch Pharmacol 2004;370:9-16.

    PubMed  CAS  Google Scholar 

  13. Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: A false transmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328-34.

    PubMed  CAS  Google Scholar 

  14. Law MP, Osman S, Davenport RJ, Cunningham VJ, Pike VW, Camici PG. Biodistribution and metabolism of [N-methyl-11C]m-hydroxyephedrine in the rat. Nucl Med Biol 1997;24:417-24.

    PubMed  CAS  Google Scholar 

  15. Thackeray JT, Beanlands RS, Dasilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med 2007;48:1733-40.

    PubMed  CAS  Google Scholar 

  16. Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 2008;49:1189-95.

    PubMed  Google Scholar 

  17. Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung YW. Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 2006;47:1490-6.

    PubMed  CAS  Google Scholar 

  18. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: Retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34:1287-93.

    PubMed  CAS  Google Scholar 

  19. Law MP, Schafers K, Kopka K, Wagner S, Schober O, Schafers M. Molecular imaging of cardiac sympathetic innervation by 11C-mHED and PET: From man to mouse? J Nucl Med 2010;51:1269-76.

    PubMed  CAS  Google Scholar 

  20. Eldadah BA, Pacak K, Eisenhofer G, Holmes C, Kopin IJ, Goldstein DS. Cardiac uptake-1 inhibition by high circulating norepinephrine levels in patients with pheochromocytoma. Hypertension 2004;43:1227-32.

    PubMed  CAS  Google Scholar 

  21. Nomura Y, Matsunari I, Takamatsu H, Murakami Y, Matsuya T, Taki J, et al. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: Relation to 123I-MIBG uptake. Eur J Nucl Med Mol Imaging 2006;33:871-8.

    PubMed  Google Scholar 

  22. Link JM, Synovec RE, Krohn KA, Caldwell JH. High speed liquid chromatography of phenylethanolamines for the kinetic analysis of [11C]-meta-hydroxyephedrine and metabolites in plasma. J Chromatogr B Biomed Sci Appl 1997;693:31-41.

    PubMed  CAS  Google Scholar 

  23. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 2010;3:595-603.

    PubMed  Google Scholar 

  24. Caldwell JH, Kroll K, Li Z, Seymour K, Link JM, Krohn KA. Quantitation of presynaptic cardiac sympathetic function with carbon-11-meta-hydroxyephedrine. J Nucl Med 1998;39:1327-34.

    PubMed  CAS  Google Scholar 

  25. John AS, Mongillo M, Depre C, Khan MT, Rimoldi OE, Pepper JR, et al. Pre- and post-synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging 2007;34:1973-80.

    PubMed  Google Scholar 

  26. Kies P, Wichter T, Schafers M, Paul M, Schafers KP, Eckardt L, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation 2004;110:3017-22.

    PubMed  CAS  Google Scholar 

  27. Harms H, de Haan S, Knaapen P, Huisman M, Schuit R, Windhorst A, et al. Tracer kinetic analysis of myocardial 11C-hydroxyephedrine studies. (abstract). J Nucl Med 2011;52:254.

    Google Scholar 

  28. Munch G, Nguyen NT, Nekolla S, Ziegler S, Muzik O, Chakraborty P, et al. Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation 2000;101:516-23.

    PubMed  CAS  Google Scholar 

  29. Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 1997;38:780-5.

    PubMed  CAS  Google Scholar 

  30. Del Rosario RB, Jung YW, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11C]-(-)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 1996;23:611-6.

    PubMed  Google Scholar 

  31. Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 2011;4:435-43.

    PubMed  Google Scholar 

  32. Lazewatsky J, Sinusas A, Brunetti J, Heller G, Sparks R, Puretskiy A, et al. Radiation dosimetry of LMI1195, first-in-human study of a novel F-18 labeled tracer for imaging myocardial innervation (abstract). J Nucl Med 2010;51:1432.

    Google Scholar 

  33. Van Dort ME, Kim JH, Tluczek L, Wieland DM. Synthesis of 11C-labeled desipramine and its metabolite 2-hydroxydesipramine: Potential radiotracers for PET studies of the norepinephrine transporter. Nucl Med Biol 1997;24:707-11.

    PubMed  Google Scholar 

  34. Haka MS, Kilbourn MR. Synthesis and regional mouse brain distribution of [11C]nisoxetine, a norepinephrine uptake inhibitor. Int J Rad Appl Instrum B 1989;16:771-4.

    PubMed  CAS  Google Scholar 

  35. Ding YS, Lin KS, Logan J, Benveniste H, Carter P. Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S, S) and (R, R) enantiomers of reboxetine analogs ([11C]methylreboxetine, 3-Cl-[11C]methylreboxetine and [18F]fluororeboxetine), (R)-[11C]nisoxetine, [11C]oxaprotiline and [11C]lortalamine. J Neurochem 2005;94:337-51.

    PubMed  CAS  Google Scholar 

  36. Raffel DM, Jung YW, Gildersleeve DL, Sherman PS, Moskwa JJ, Tluczek LJ, et al. Radiolabeled phenethylguanidines: Novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem 2007;50:2078-88.

    PubMed  CAS  Google Scholar 

  37. Mohell N, Dicker A. The beta-adrenergic radioligand [3H]CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J 1989;261:401-5.

    PubMed  CAS  Google Scholar 

  38. Van Waarde A, Meeder JG, Blanksma PK, Brodde OE, Visser GM, Elsinga PH, et al. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to beta-adrenoceptors. Eur J Pharmacol 1992;222:107-12.

    PubMed  Google Scholar 

  39. Thackeray JT, Parsa-Nezhad M, Kenk M, Thorn SL, Kolajova M, Beanlands RS, et al. Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol 2011;38:1059-66.

    PubMed  CAS  Google Scholar 

  40. Delforge J, Mesangeau D, Dolle F, Merlet P, Loc’h C, Bottlaender M, et al. In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 2002;43:215-26.

    PubMed  CAS  Google Scholar 

  41. Delforge J, Syrota A, Lancon JP, Nakajima K, Loc’h C, Janier M, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739-48.

    PubMed  CAS  Google Scholar 

  42. Nishijima K, Kuge Y, Seki K, Ohkura K, Motoki N, Nagatsu K, et al. A simplified and improved synthesis of [11C]phosgene with iron and iron (III) oxide. Nucl Med Biol 2002;29:345-50.

    PubMed  CAS  Google Scholar 

  43. Nishijima K, Kuge Y, Seki K, Ohkura K, Morita K, Nakada K, et al. Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(-)[11C]CGP-12177, a radioligand for beta-adrenoreceptors. Nucl Med Commun 2004;25:845-9.

    PubMed  CAS  Google Scholar 

  44. Elsinga PH, Doze P, van Waarde A, Pieterman RM, Blanksma PK, Willemsen AT, et al. Imaging of beta-adrenoceptors in the human thorax using (S)-[(11)C]CGP12388 and positron emission tomography. Eur J Pharmacol 2001;433:173-6.

    PubMed  CAS  Google Scholar 

  45. Momose M, Reder S, Raffel DM, Watzlowik P, Wester HJ, Nguyen N, et al. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004;45:471-7.

    PubMed  CAS  Google Scholar 

  46. Doze P, Elsinga PH, van Waarde A, Pieterman RM, Pruim J, Vaalburg W, et al. Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 2002;29:295-304.

    PubMed  CAS  Google Scholar 

  47. Law MP, Osman S, Pike VW, Davenport RJ, Cunningham VJ, Rimoldi O, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27:7-17.

    PubMed  CAS  Google Scholar 

  48. Park-Holohan SJ, Asselin MC, Turton DR, Williams SL, Hume SP, Camici PG, et al. Quantification of [11C]GB67 binding to cardiac alpha1-adrenoceptors with positron emission tomography: Validation in pigs. Eur J Nucl Med Mol Imaging 2008;35:1624-35.

    PubMed  Google Scholar 

  49. DeGrado TR, Mulholland GK, Wieland DM, Schwaiger M. Evaluation of (-)[18F]fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 1994;21:189-95.

    PubMed  CAS  Google Scholar 

  50. Sorger D, Scheunemann M, Grossmann U, Fischer S, Vercouille J, Hiller A, et al. A new 18F-labeled fluoroacetylmorpholino derivative of vesamicol for neuroimaging of the vesicular acetylcholine transporter. Nucl Med Biol 2008;35:185-95.

    PubMed  CAS  Google Scholar 

  51. Kovac M, Mavel S, Deuther-Conrad W, Meheux N, Glockner J, Wenzel B, et al. 3D QSAR study, synthesis, and in vitro evaluation of (+)-5-FBVM as potential PET radioligand for the vesicular acetylcholine transporter (VAChT). Bioorg Med Chem 2010;18:7659-67.

    PubMed  CAS  Google Scholar 

  52. Wenzel B, Sorger D, Heinitz K, Scheunemann M, Schliebs R, Steinbach J, et al. Structural changes of benzylether derivatives of vesamicol and their influence on the binding selectivity to the vesicular acetylcholine transporter. Eur J Med Chem 2005;40:1197-205.

    PubMed  CAS  Google Scholar 

  53. Syrota A, Paillotin G, Davy JM, Aumont MC. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci 1984;35:937-45.

    PubMed  CAS  Google Scholar 

  54. Maziere M, Comar D, Godot JM, Collard P, Cepeda C, Naquet R. In vivo characterization of myocardium muscarinic receptors by positron emission tomography. Life Sci 1981;29:2391-7.

    PubMed  CAS  Google Scholar 

  55. Syrota A, Comar D, Paillotin G, Davy JM, Aumont MC, Stulzaft O, et al. Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci USA 1985;82:584-8.

    PubMed  CAS  Google Scholar 

  56. Delforge J, Janier M, Syrota A, Crouzel C, Vallois JM, Cayla J, et al. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation 1990;82:1494-504.

    PubMed  CAS  Google Scholar 

  57. Bucerius J, Joe AY, Schmaljohann J, Gundisch D, Minnerop M, Biersack HJ, et al. Feasibility of 2-deoxy-2-[18F]fluoro-d-glucose-A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 2006;95:105-9.

    PubMed  CAS  Google Scholar 

  58. Bucerius J, Manka C, Schmaljohann J, Mani V, Gundisch D, Rudd JH, et al. Feasibility of [18F]-2-fluoro-A85380-PET imaging of human vascular nicotinic acetylcholine receptors in vivo. JACC Cardiovasc Imaging 2012;5:528-36.

    PubMed  Google Scholar 

  59. Thackeray JT, Renaud JM, Kordos M, Klein R, DeKemp RA, Beanlands RS, et al. Inverse correlation of [11C]meta-hydroxyephedrine cardiac retention measures to norepinephrine concentration in rats (abstract). Mol Imag Biol 2010;12:S1229.

    Google Scholar 

  60. Mancini D. Surgically denervated cardiac transplant. Rewired or permanently unplugged? Circulation 1997;96:6-8.

    PubMed  CAS  Google Scholar 

  61. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 1990;82:457-64.

    PubMed  CAS  Google Scholar 

  62. Odaka K, von Scheidt W, Ziegler SI, Ueberfuhr P, Nekolla SG, Reichart B, et al. Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: Correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 2001;42:1011-6.

    PubMed  CAS  Google Scholar 

  63. Uberfuhr P, Frey AW, Ziegler S, Reichart B, Schwaiger M. Sympathetic reinnervation of sinus node and left ventricle after heart transplantation in humans: Regional differences assessed by heart rate variability and positron emission tomography. J Heart Lung Transplant 2000;19:317-23.

    PubMed  CAS  Google Scholar 

  64. Bengel FM, Ueberfuhr P, Hesse T, Schiepel N, Ziegler SI, Scholz S, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002;106:831-5.

    PubMed  Google Scholar 

  65. Bengel FM, Ueberfuhr P, Schäfer D, Nekolla SG, Reichart B, Schwaiger M. Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med 2006;47:1413-9.

    PubMed  Google Scholar 

  66. Li ST, Holmes C, Kopin IJ, Goldstein DS. Aging-related changes in cardiac sympathetic function in humans, assessed by 6-18F-fluorodopamine PET scanning. J Nucl Med 2003;44:1599-603.

    PubMed  CAS  Google Scholar 

  67. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208-15.

    PubMed  Google Scholar 

  68. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: A noninvasive study with positron emission tomography. Circulation 2001;103:1881-6.

    PubMed  CAS  Google Scholar 

  69. Le Guludec D, Delforge J, Syrota A, Desruennes M, Valette H, Gandjbakhch I, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 1994;90:172-8.

    PubMed  Google Scholar 

  70. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368-75.

    PubMed  CAS  Google Scholar 

  71. Ohte N, Narita H, Iida A, Fukuta H, Iizuka N, Hayano J, et al. Cardiac beta-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging 2012;39:1246-53.

    PubMed  Google Scholar 

  72. Mazzadi AN, Pineau J, Costes N, Le Bars D, Bonnefoi F, Croisille P, et al. Muscarinic receptor upregulation in patients with myocardial infarction: A new paradigm. Circ Cardiovasc Imaging 2009;2:365-72.

    PubMed  Google Scholar 

  73. Bulow HP, Stahl F, Lauer B, Nekolla SG, Schuler G, Schwaiger M, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 2003;24:233-9.

    PubMed  CAS  Google Scholar 

  74. Fallavollita JA, Banas MD, Suzuki G, deKemp RA, Sajjad M, Canty JM Jr 11C-Meta-hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol 2010;17:85-96.

    PubMed  Google Scholar 

  75. Fricke E, Eckert S, Dongas A, Fricke H, Preuss R, Lindner O, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: Follow-up after 1 year with neurostimulation. J Nucl Med 2008;49:1458-64.

    PubMed  CAS  Google Scholar 

  76. Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, et al. The neuronal norepinephrine transporter in experimental heart failure: Evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 2001;33:461-72.

    PubMed  CAS  Google Scholar 

  77. Bristow MR. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993;22:61A-71A.

    PubMed  CAS  Google Scholar 

  78. Naya M, Tsukamoto T, Morita K, Katoh C, Nishijima K, Komatsu H, et al. Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med 2009;50:220-5.

    PubMed  CAS  Google Scholar 

  79. de Jong RM, Willemsen AT, Slart RH, Blanksma PK, van Waarde A, Cornel JH, et al. Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 2005;32:443-7.

    PubMed  Google Scholar 

  80. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 2008;49:234-41.

    PubMed  Google Scholar 

  81. Tsukamoto T, Morita K, Naya M, Inubushi M, Katoh C, Nishijima K, et al. Decreased myocardial beta-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med 2007;48:1777-82.

    PubMed  CAS  Google Scholar 

  82. Link JM, Stratton JR, Levy W, Poole JE, Shoner SC, Stuetzle W, et al. PET measures of pre- and post-synaptic cardiac beta adrenergic function. Nucl Med Biol 2003;30:795-803.

    PubMed  CAS  Google Scholar 

  83. Ungerer M, Hartmann F, Karoglan M, Chlistalla A, Ziegler S, Richardt G, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174-80.

    PubMed  CAS  Google Scholar 

  84. Ungerer M, Weig HJ, Kubert S, Overbeck M, Bengel F, Schomig A, et al. Regional pre- and postsynaptic sympathetic system in the failing human heart-regulation of beta ARK-1. Eur J Heart Fail 2000;2:23-31.

    PubMed  CAS  Google Scholar 

  85. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J 2001;22:1594-600.

    PubMed  CAS  Google Scholar 

  86. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med Mol Imaging 2002;29:198-202.

    PubMed  CAS  Google Scholar 

  87. Hartmann F, Ziegler S, Nekolla S, Hadamitzky M, Seyfarth M, Richardt G, et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: An analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999;81:262-70.

    PubMed  CAS  Google Scholar 

  88. Vesalainen RK, Pietila M, Tahvanainen KU, Jartti T, Teras M, Nagren K, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84:568-74.

    PubMed  CAS  Google Scholar 

  89. Schafers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:57-62.

    PubMed  CAS  Google Scholar 

  90. Li ST, Tack CJ, Fananapazir L, Goldstein DS. Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2000;35:1867-73.

    PubMed  CAS  Google Scholar 

  91. Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: An in vivo PET study. Circulation 1997;96:3416-22.

    PubMed  Google Scholar 

  92. Schafers M, Lerch H, Wichter T, Rhodes CG, Lammertsma AA, Borggrefe M, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998;32:181-6.

    PubMed  CAS  Google Scholar 

  93. Wichter T, Schafers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: Quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552-8.

    PubMed  CAS  Google Scholar 

  94. Mazzadi AN, Andre-Fouet X, Duisit J, Gebuhrer V, Costes N, Chevalier P, et al. Cardiac retention of [11C]HED in genotyped long QT patients: A potential amplifier role for severity of the disease. Am J Physiol Heart Circ Physiol 2003;285:H1286-93.

    PubMed  CAS  Google Scholar 

  95. Calkins H, Allman K, Bolling S, Kirsch M, Wieland D, Morady F, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172-9.

    PubMed  CAS  Google Scholar 

  96. Jayachandran JV, Sih HJ, Winkle W, Zipes DP, Hutchins GD, Olgin JE. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 2000;101:1185-91.

    PubMed  CAS  Google Scholar 

  97. Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008;51:2266-75.

    PubMed  Google Scholar 

  98. Pizzuto MF, Valverde AM, Heavey BM, Banas MD, Michelakis N, Suzuki G, et al. Brief sympathetic activation precedes the development of ventricular tachycardia and ventricular fibrillation in hibernating myocardium. J Electrocardiol 2006;39:S140-5.

    PubMed  Google Scholar 

  99. Fallavollita JA, Luisi AJ Jr, Michalek SM, Valverde AM, deKemp RA, Haka MS. Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods. Contemp Clin Trials 2006;27:374-88.

    PubMed  Google Scholar 

  100. Fallavollita JA, Heavey BM, Baldwa S, Mashtare TL, Hutson AD, Munawwar S, et al. Volume of denervated myocardium is a novel predictor of VT/VF: Prediction of arrhythmic events with positron emission tomography (PAREPET) study (abstract). Heart Rhythm 2012;9:LB01.

    Google Scholar 

  101. Ewing DJ, Bellavere F, Espi F, McKibben BM, Buchanan KD, Riemersma RA, et al. Correlation of cardiovascular and neuroendocrine tests of autonomic function in diabetes. Metabolism 1986;35:349-53.

    PubMed  CAS  Google Scholar 

  102. Fricke E, Eckert S, Fricke H, Korfer J, Weise R, Lindner O, et al. Myocardial sympathetic innervation in diabetic patients with symptomatic coronary artery disease. Nuklearmedizin 2008;47:24-9.

    PubMed  CAS  Google Scholar 

  103. Gerson MC, Caldwell JH, Ananthasubramaniam K, Clements IP, Henzlova MJ, Amanullah A, et al. Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging 2011;4:87-93.

    PubMed  Google Scholar 

  104. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: An assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism 1999;48:92-101.

    PubMed  CAS  Google Scholar 

  105. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, et al. Sympathetic dysfunction in type 1 diabetes: Association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 2004;44:2368-74.

    PubMed  CAS  Google Scholar 

  106. Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 2011;10:75.

    PubMed  CAS  Google Scholar 

  107. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: Implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603-8.

    PubMed  CAS  Google Scholar 

  108. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging 2010;3:1207-15.

    PubMed  Google Scholar 

  109. Li ST, Dendi R, Holmes C, Goldstein DS. Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Ann Neurol 2002;52:220-3.

    PubMed  Google Scholar 

  110. Berding G, Schrader CH, Peschel T, van den Hoff J, Kolbe H, Meyer GJ, et al. [N-methyl 11C]meta-Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2003;30:127-31.

    PubMed  CAS  Google Scholar 

  111. Goldstein DS, Holmes C, Frank SM, Dendi R, Cannon RO 3rd, Sharabi Y, et al. Cardiac sympathetic dysautonomia in chronic orthostatic intolerance syndromes. Circulation 2002;106:2358-65.

    PubMed  Google Scholar 

  112. Goldstein DS, Eldadah B, Sharabi Y, Axelrod FB. Cardiac sympathetic hypo-innervation in familial dysautonomia. Clin Auton Res 2008;18:115-9.

    PubMed  Google Scholar 

  113. Delahaye N, Le Guludec D, Dinanian S, Delforge J, Slama MS, Sarda L, et al. Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 2001;104:2911-6.

    PubMed  CAS  Google Scholar 

  114. Bengel F, Schwaiger M. Assessment of cardaic sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004;11:603-16.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Bengel MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thackeray, J.T., Bengel, F.M. Assessment of cardiac autonomic neuronal function using PET imaging. J. Nucl. Cardiol. 20, 150–165 (2013). https://doi.org/10.1007/s12350-012-9644-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9644-4

Keywords

Navigation