Skip to main content

Advertisement

Log in

Dynamic Education of Macrophages in Different Areas of Human Tumors

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Human tumor tissues can often be anatomically classified into areas of cancer nest, invading edge, and peritumoral stroma, each with distinct compositions and functional properties. Macrophages (Mφ) constitute a major component of the leukocyte infiltrate in tumors. These cells are derived from circulating monocytes, and in response to environmental signals, they exhibit distinct phenotypes with diverse functions. Soluble factors derived from cancer cells can alter the normal developmental process of Mφ that is intended to trigger transient early activation of monocytes in the peritumoral region, which in turn induces formation of suppressive Mφ in cancer nests. The activated monocytes in the peritumoral region attenuated the T-cell response by expressing B7-H1, and were superior to the suppressive tumor Mφ in inducing Th17 expansion, and thus repurpose the inflammatory response away from anti-tumor immunity (the sword) and towards tissue remodeling and proangiogenic pathways (a plowshare). In contrast, the suppressive Mφ can induce the production of Tregs in cancer nest. Accordingly, angiogenesis was most active at the invading edge, which was situated close to the peritumoral stroma with activated Mφ and the density of these activated monocytes is selectively associated with vascular invasion and metastasis in patients with hepatocellular carcinoma. These data reveal an intriguing mechanism in which human Th17 cells are generated and regulated by a fine-tuned collaborative action between different types of immune cells in distinct tumor microenvironments. These results give important new insights into the distinct role of macrophages in human tumor progression which would be helpful for the rational design of novel immune-based anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  3. van Zijl F, Mair M, Csiszar A et al (2009) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28:4022–4033

    Article  PubMed  Google Scholar 

  4. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  PubMed  CAS  Google Scholar 

  5. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  6. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  7. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  8. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  PubMed  CAS  Google Scholar 

  9. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  10. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  11. Biswas SK, Mantovani A (2011) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  Google Scholar 

  12. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  13. Budhu A, Forgues M, Ye QH et al (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10:99–111

    Article  PubMed  CAS  Google Scholar 

  14. Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  PubMed  CAS  Google Scholar 

  15. Qian BZ, Pollard JW (2011) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  Google Scholar 

  16. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  17. Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47:729–736

    Article  PubMed  CAS  Google Scholar 

  18. Liu H, Pan Z, Li A et al (2008) Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol 5:373–378

    Article  PubMed  CAS  Google Scholar 

  19. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  20. Xu J, Ding T, He Q et al (2012) In situ molecular signature predict early recurrence in Hepatitis B virus-related hepatocellular carcinoma. J Hepatol, in press

  21. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774

    Article  PubMed  CAS  Google Scholar 

  22. Taylor PR, Martinez-Pomares L, Stacey M et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  PubMed  CAS  Google Scholar 

  23. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  PubMed  CAS  Google Scholar 

  24. Kuang DM, Wu Y, Chen N et al (2007) Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood 110:587–595

    Article  PubMed  CAS  Google Scholar 

  25. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  26. Krausgruber T, Blazek K, Smallie T et al (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238

    Article  PubMed  CAS  Google Scholar 

  27. He M, Xu Z, Ding T, Kuang DM, Zheng L (2009) MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol 6:343–352

    Article  PubMed  CAS  Google Scholar 

  28. Cheng J, Huo DH, Kuang DM et al (2007) Human macrophages promote the motility and invasiveness of osteopontin-knockdown tumor cells. Cancer Res 67:5141–5147

    Article  PubMed  CAS  Google Scholar 

  29. Yang M, Chen J, Su F et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  PubMed  CAS  Google Scholar 

  30. Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  PubMed  CAS  Google Scholar 

  31. Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  CAS  Google Scholar 

  32. Fu J, Xu D, Liu Z et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339

    Article  PubMed  Google Scholar 

  33. Gao Q, Qiu SJ, Fan J et al (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593

    Article  PubMed  Google Scholar 

  34. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  35. Zhou J, Ding T, Pan W et al (2009) Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 125:1640–1648

    Article  PubMed  CAS  Google Scholar 

  36. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P (2009) Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 9:445–452

    Article  PubMed  Google Scholar 

  37. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  PubMed  CAS  Google Scholar 

  38. Godin-Ethier J, Pelletier S, Hanafi LA et al (2009) Human activated T lymphocytes modulate IDO expression in tumors through Th1/Th2 balance. J Immunol 183:7752–7760

    Article  PubMed  CAS  Google Scholar 

  39. Zhao Q, Kuang DM, Wu Y et al (2012) Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol 188:1117–1124

    Article  PubMed  CAS  Google Scholar 

  40. Kuang DM, Peng C, Zhao Q et al (2010) Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 51:154–164

    Article  PubMed  CAS  Google Scholar 

  41. Ding T, Xu J, Wang F et al (2009) High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol 40:381–389

    Article  PubMed  CAS  Google Scholar 

  42. Kuang DM, Peng C, Zhao Q et al (2010) Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 185:1544–1549

    Article  PubMed  CAS  Google Scholar 

  43. Kuang DM, Zhao Q, Peng C et al (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206:1327–1337

    Article  PubMed  CAS  Google Scholar 

  44. Kuang DM, Zhao Q, Wu Y et al (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955

    Article  PubMed  CAS  Google Scholar 

  45. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  46. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477

    Article  PubMed  CAS  Google Scholar 

  47. Hou J, Tian L, Wei Y (2004) Cancer immunotherapy of targeting angiogenesis. Cell Mol Immunol 1:161–166

    PubMed  CAS  Google Scholar 

  48. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  PubMed  CAS  Google Scholar 

  49. Lewis CE, Hughes R (2007) Inflammation and breast cancer. Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Res 9:209

    Article  PubMed  Google Scholar 

  50. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    Article  PubMed  CAS  Google Scholar 

  51. Xu S, Cao X (2010) Interleukin-17 and its expanding biological functions. Cell Mol Immunol 7:164–174

    Article  PubMed  CAS  Google Scholar 

  52. Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248–256

    Article  PubMed  CAS  Google Scholar 

  53. Zhang JP, Yan J, Xu J et al (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50:980–989

    Article  PubMed  CAS  Google Scholar 

  54. Su X, Ye J, Hsueh EC et al (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641

    Article  PubMed  CAS  Google Scholar 

  55. Yen HR, Harris TJ, Wada S et al (2009) Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol 183:7161–7168

    Article  PubMed  CAS  Google Scholar 

  56. Li J, Huang ZF, Xiong G et al (2011) Distribution, characterization, and induction of CD8 regulatory T cells and IL-17-producing CD8 T cells in nasopharyngeal carcinoma. J Transl Med 9:189

    Article  PubMed  CAS  Google Scholar 

  57. Wang L, Yi T, Kortylewski M et al (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206:1457–1464

    Article  PubMed  CAS  Google Scholar 

  58. Kryczek I, Wei S, Zou L et al (2007) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    PubMed  CAS  Google Scholar 

  59. Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373

    Article  PubMed  CAS  Google Scholar 

  60. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  PubMed  CAS  Google Scholar 

  61. Wu Y, Zhao Q, Peng C et al (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 225:438–447

    Article  PubMed  CAS  Google Scholar 

  62. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  PubMed  CAS  Google Scholar 

  63. Kessenbrock K, Plaks V, Werb Z (2011) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  Google Scholar 

  64. Shi GM, Ke AW, Zhou J et al (2010) CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology 52:183–196

    Article  PubMed  CAS  Google Scholar 

  65. Zhao Q, Xiao X, Wu Y et al (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 41:2314–2322

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project grants from the National Natural Science Foundation of China (91029737), and the “973” Program (2010CB529904 and 2011CB811305).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zheng, L. Dynamic Education of Macrophages in Different Areas of Human Tumors. Cancer Microenvironment 5, 195–201 (2012). https://doi.org/10.1007/s12307-012-0113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0113-z

Keywords

Navigation