Skip to main content

Advertisement

Log in

Oxidative Stress and Skin Cancer: An Overview

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Skin is the largest body organ that serves as an important environmental interface providing a protective envelope that is crucial for homeostasis. On the other hand, it is a major target for toxic insult by a broad spectrum of physical and chemical agents that are capable of altering its structure and function. There are a large number of dietary contaminants and drugs can manifest their toxicity in skin. These environmental toxicants or their metabolites are inherent oxidants and/or directly or indirectly drive the production of a variety of reactive oxidants also known as reactive oxygen species. These are short-lived entities that are continuously generated at low levels during the course of normal aerobic metabolism. These are believed to activate proliferative and cell survival signaling that can alter apoptotic pathways that may be involved in the pathogenesis of a number of skin disorders. The skin possesses an array of antioxidant defense mechanisms that interact with toxicants to obviate their deleterious effect. The “antioxidant power” of a food is an expression of its capability both to defend the human organism from the action of the free radicals and to prevent degenerative disorders. Plants like olive trees have their own built-in protection against the oxidative damage of the sun, and these built-in protectors function as cell protectors in our own body. Although many antioxidants have shown substantive efficacy in cell culture systems and in animal models of oxidant injury, unequivocal confirmation of their beneficial effects in human populations has proven elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Housman TS. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J Am Acad Dermatol. 2003;48:425–9.

    Article  PubMed  Google Scholar 

  2. Jemal A, Murray T, Samules A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53:5–26.

    Article  PubMed  Google Scholar 

  3. Einspahr JG, Stratton SP, Bowden GT, Alberts DS. Chemoprevention of human skin cancer. Crit Rev Oncol Hematol. 2002;41:269–85.

    Article  PubMed  Google Scholar 

  4. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: University Press; 1999.

    Google Scholar 

  5. Cadenas E. Biochemistry of oxygen toxicity. Ann Rev Biochem. 1989;58:79–110.

    Article  PubMed  CAS  Google Scholar 

  6. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  PubMed  CAS  Google Scholar 

  7. Kehrer JP. Free radicals as mediators of tissue injury and disease. CRC Crit Rev Toxicol. 1993;23:21–48.

    Article  CAS  Google Scholar 

  8. Aruoma OI. Nutrition and health aspects of free radicals and antioxidant. Food Chem Toxicol. 1994;62:671–83.

    Google Scholar 

  9. Fiers W, Bevaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis and necrosis and reactive oxygen damage. Oncogene. 1999;18:7719–30.

    Article  PubMed  CAS  Google Scholar 

  10. Record IR, Dreosti IE, Konstantinopoulos M, Buckley RA. The influence of topical and systemic vitamin E on ultraviolet light-induced skin damage in hairless mice. Nutr Cancer. 1991;16:219–26.

    Article  PubMed  CAS  Google Scholar 

  11. Kawaguchi Y, Tanaka H, Okada T, Konishi H, Takahashi M, Ito M, Asai J. The effects of ultraviolet A and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res. 1996;288:39–44.

    Article  PubMed  CAS  Google Scholar 

  12. Bowden GT. Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer. 2004;4:23–35.

    Article  PubMed  CAS  Google Scholar 

  13. Afaq FV, Adhami M, Mukhtar H. Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res. 2005;571:153–73.

    Article  PubMed  CAS  Google Scholar 

  14. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–75.

    Article  PubMed  CAS  Google Scholar 

  15. Afaq F, Syed DN, Malik A, Hadi N, Sarfaraz S, Kweon MH, Khan N, Zaid MA, Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol. 2007;127:222–32.

    Article  PubMed  CAS  Google Scholar 

  16. Gruijl FR, Rebel H. Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochem Photobiol. 2008;84:382–7.

    Article  PubMed  Google Scholar 

  17. Melnikova VO, Pacifico A, Chimenti S, Peris K, Ananthaswamy HN. Fate of UVB-induced p53 mutations in SKH-hr1 mouse skin after discontinuation of irradiation: relationship to skin cancer development. Oncogene. 2005;24:7055–63.

    Article  PubMed  CAS  Google Scholar 

  18. Halliday GM, Lyons JG. Inflammatory doses of UV may not be necessary for skin carcinogenesis. Photochem Photobiol. 2008;84:272–83.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302:71–83.

    Article  PubMed  CAS  Google Scholar 

  20. Schwarz T. 25 years of UV-induced immunosuppression mediated by T cells—from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol. 2008;84:10–8.

    Article  PubMed  CAS  Google Scholar 

  21. Halliday GM, Rana S. Waveband and dose dependency of sunlight-induced immunomodulation and cellular changes. Photochem Photobiol. 2008;84:35–46.

    Article  PubMed  CAS  Google Scholar 

  22. Afaq F, Mukhtar H. Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermatol. 2006;15:678–84.

    Article  PubMed  CAS  Google Scholar 

  23. Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res. 2005;571:91–106.

    Article  PubMed  CAS  Google Scholar 

  24. Katiyar SK, Meeran SM. Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med. 2007;42:299–310.

    Article  PubMed  CAS  Google Scholar 

  25. Bresgen N, Jaksch H, Lacher H, Ohlenschläger I, Uchida K, Eckl PM. Iron-mediated oxidative stress plays an essential role in ferritin-induced cell death. Free Radic Biol Med. 2010;48:1347–57.

    Article  PubMed  CAS  Google Scholar 

  26. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.

    PubMed  CAS  Google Scholar 

  27. Kyriazi M, Yova D, Rallis M, Lima A. Cancer chemo preventive effects of Pinus maritima bark extract on ultraviolet radiation and ultraviolet radiation-7,12-dimethylbenz(a)anthracene induced skin carcinogenesis of hairless mice. Cancer Lett. 2006;237:234–41.

    Article  PubMed  CAS  Google Scholar 

  28. Gupta S, Mukhtar H. Chemoprevention of skin cancer: current status and future prospects. Cancer Metastasis Rev. 2002;21:363–80.

    Article  PubMed  CAS  Google Scholar 

  29. American Cancer Society, Skin Cancer Facts, Copyright 2003.

  30. Dlugosz A, Merlino G, Yuspa S. Progress in cutaneous cancer research. J Invest Dermatol. 2002;7:17–26.

    Article  Google Scholar 

  31. Baudouin C, Charveron M, Tarroux R, Gall Y. Environmental pollutants and skin cancer. Cell Biol Toxicol. 2002;18:341–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gruijl FR. Photo-carcinogenesis: UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol. 2002;15:316–20.

    Article  PubMed  Google Scholar 

  33. Gruijl FR, Van Kranen HJ, Mullenders LHF. UV induced damage, repair, mutations and oncogenic pathways skin cancer. J Photochem Photobiol. 2001;63:19–27.

    Article  Google Scholar 

  34. Zhang X, Wu RSS, Fu W, Xu L, Lam PKS. Production of reactive oxygen species and 8-hydroxy-2-deoxyguanosine in KB cells co-exposed to benzo(a)pyrene and UVA radiation. Chemosphere. 2004;55:1303–8.

    Article  PubMed  CAS  Google Scholar 

  35. Ahsan H, Chen Y, Kibriya MG, Islam MN, Slavkovich V, Graziano JH. Susceptibility to arsenic-induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase. Cancer Lett. 2003;201:57–65.

    Article  PubMed  CAS  Google Scholar 

  36. An Y, Gao Z, Wang Z, Yang S, Liang J, Feng Y. Immunohistochemical analysis of oxidative DNA damage arsenic-related human skin samples from arsenic-contaminated area of China. Cancer Lett. 2004;214:11–8.

    Article  PubMed  CAS  Google Scholar 

  37. Guyer SF, Afaq F, Mukhtar H. Photo-chemoprevention of skin cancer by botanical agents. Photodermatol Photoimmunol Photomed. 2003;19:56–72.

    Article  Google Scholar 

  38. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  39. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–84.

    Article  PubMed  CAS  Google Scholar 

  40. Manson MM. Cancer prevention—the potential for diet to modulate molecular signaling. Trends Mol Med. 2003;9:11–8.

    Article  PubMed  CAS  Google Scholar 

  41. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  PubMed  CAS  Google Scholar 

  42. Rice-Evans C, Miller N, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20:933–56.

    Article  PubMed  CAS  Google Scholar 

  43. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479–85.

    Google Scholar 

  44. Kris-Etheron PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hiplert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71–88.

    Article  Google Scholar 

  45. Majo DD, Guardia ML, Giammanco S, Neve LL, Giammanco M. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008;111:45–9.

    Article  Google Scholar 

  46. Browden J. Unleash the amazingly potent anti-aging, antioxidant pro-immune system health benefits of the olive leaf. Topanga: Freedom Press; 2009.

    Google Scholar 

  47. Tsuda T. The role of anthocyanins as an antioxidant under oxidative stress in rats. BioFactors. 2000;13:133–9.

    Article  PubMed  CAS  Google Scholar 

  48. Noda Y. Antioxidant activity of nasunin, an anthocyanin in egg plant peels. Toxicology. 2000;148:119–23.

    Article  PubMed  CAS  Google Scholar 

  49. Baliga MS, Katiyar SK. Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci. 2006;5:243–53.

    Article  PubMed  CAS  Google Scholar 

  50. Saraf S, Kaur CD. Phytoconstituents as photoprotective novel cosmetic formulations. Phcog Rev. 2010;4:1–11.

    Article  CAS  Google Scholar 

  51. Counet C, Callemien D, Collin S. Chocolate and cocoa: new sources of trans-resveratrol and trans-piceid. Food Chem. 2006;98:649–57.

    Article  CAS  Google Scholar 

  52. Wang Y, Catana F, Yang Y, Roderick R, Van Breemen RB. An LC-MS method for analysing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem. 2002;50:431–5.

    Article  PubMed  CAS  Google Scholar 

  53. Sanders TH, McMichael RW, Hendrix KW. Occurrence of resveratrol in edible peanuts. J Agric Food Chem. 2000;48:1243–6.

    Article  PubMed  CAS  Google Scholar 

  54. Vastano BC, Chen Y, Zhu N, Ho C-T, Zhou Z, Rosen RT. Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. J Agric Food Chem. 2000;48:253–6.

    Article  PubMed  CAS  Google Scholar 

  55. Soleas GJ, Diamandis EP, Golberg DM. Resveratrol: a molecule whose time has come and gone. Clin Biochem. 1997;30:91–113.

    Article  PubMed  CAS  Google Scholar 

  56. Baumann L. Antioxidants. Cosmetic dermatology: principle and practice. Chap. 34. 2nd ed. New York: McGraw Hill Professional Inc; 2009.

    Google Scholar 

  57. Green RJ. Natural therapies for emphysema and COPD: relief and healing for chronic pulmonary disorders. Vermont: Inner Traditions Bear Company; 2007.

    Google Scholar 

  58. Verma AK, Johnson JA, Gould MN, Tanner MA. Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 1988;48:5754–8.

    PubMed  CAS  Google Scholar 

  59. Deschner EE, Ruperto J, Wong G, Newmark HL. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis. 1991;12:1193–6.

    Article  PubMed  CAS  Google Scholar 

  60. Makita H, Tanaka T, Fujitsuka H, Tatematsu N, Sato H, Hara A. Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. Cancer Res. 1996;59:4904–9.

    Google Scholar 

  61. Nishino H, Iwashima A, Fujiki H, Sugimura T. Inhibition by quercetin of the promoting effect of teleocidin on skin papilloma formation in mice initiated with 7,12-dimethylbenz[a]anthracene. Gann. 1984;75:113–6.

    PubMed  CAS  Google Scholar 

  62. Błasiak J. DNA-damaging effect of cadmium and protective action of quercetin, Department of Molecular Genetics, University of Lodz. Pol J Environ Stud. 2001;10:437–42.

    Google Scholar 

  63. Svobodová A, Psotová J, Walterová D. Natural phenolics in the prevention of UV-induced skin damage. Biomed Pap. 2003;147:137–45.

    Article  Google Scholar 

  64. Dweck AC. Natural Ingredients for colouring and styling. Int J Cosmet Sci. 2002;24:287–302.

    Article  PubMed  CAS  Google Scholar 

  65. Choquenet B, Couteau C, Paparis E, Coiffard IJ. Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. J Nat Prod. 2008;71:1117–8.

    Article  PubMed  CAS  Google Scholar 

  66. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst. 1997;89:556–66.

    Article  PubMed  CAS  Google Scholar 

  67. Katiyar SK. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin. Int J Oncol. 2002;21:1213–22.

    PubMed  CAS  Google Scholar 

  68. García-Bores AM, Avila JG. Natural products: molecular mechanisms in the photochemoprevention of skin cancer. Rev Latinoamer Quím. 2008;36:83–102.

    Google Scholar 

  69. Fryer MJ. Evidence for the photoprotective effects of vitamin E. Photochem Photobiol. 1993;58:304–12.

    Article  PubMed  CAS  Google Scholar 

  70. Kapoor S, Saraf S. Assessment of viscoelasticity and hydration effect of herbal moisturizers using bioengineering techniques. Phcog Mag. 2010;6:298–304.

    Article  PubMed  CAS  Google Scholar 

  71. Bensouilah J, Buck P, Tisserand R, Avis A. Aromadermatology: aromatherapy in the treatment and care of common skin conditions. Abingdon: Radcliffe Publishing Ltd; 2006.

    Google Scholar 

  72. Dayan N. Skin aging handbook: an integrated approach to biochemistry and product development. New York: William Andrew Inc; 2008.

    Google Scholar 

  73. Salvador G, Yolanda G, Neena P, Angeles J. Fernblock, a nutriceutical with photoprotective properties and potential preventive agent for skin photoaging and photoinduced skin cancers. Int J Mol Sci. 2011;12:8466–75.

    Article  Google Scholar 

  74. Narendhirakannan RT, Subramanian S. Biochemical evaluation of the protective effect of Aegle marmelos (L.), Corr. leaf extract on tissue antioxidant defense system and histological changes of pancreatic beta-cells in streptozotocin-induced diabetic rats. Drug Chem Toxicol. 2010;33(2):120–30.

    Article  PubMed  CAS  Google Scholar 

  75. Narendhirakannan RT, Subramanian S, Kandaswamy M. Free radical scavenging activity of Cleome gynandra L. leaves on adjuvant induced arthritis in rats. Mol Cell Biochem. 2005;276:71–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Narendhirakannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narendhirakannan, R.T., Hannah, M.A.C. Oxidative Stress and Skin Cancer: An Overview. Ind J Clin Biochem 28, 110–115 (2013). https://doi.org/10.1007/s12291-012-0278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-012-0278-8

Keywords

Navigation