Skip to main content
Log in

Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 μA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel array, the yield of functioning transistors is dramatically increased and deviceto-device variability is reduced compared to single devices. This new nanowirebased platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  CAS  Google Scholar 

  2. Wang, D.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.

    Article  Google Scholar 

  3. Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.

    Article  CAS  Google Scholar 

  4. Tang, W.; Dayeh, A. S.; Picraux, S. T.; Huang, J. Y.; Tu, T. K. Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett. 2012, 12, 3979–3985.

    Article  CAS  Google Scholar 

  5. Weisse, J. M.; Lee, C. H.; Kim, D. R.; Zheng, X. Fabrication of flexible and vertical silicon nanowire electronics. Nano Lett. 2012, 12, 3339–3343.

    Article  CAS  Google Scholar 

  6. Qian, F.; Gradecak, S.; Li, Y.; Wen, C.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

    Article  CAS  Google Scholar 

  7. Knoch, J.; Zhang, M.; Appenzeller, J.; Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A. 2007, 87, 351–357.

    Article  CAS  Google Scholar 

  8. Dellas, N. S.; Schuh, C. J.; Mohney, S. E. Silicide formation in contacts to Si nanowires. J. Mater. Sci. 2012, 47, 6189–6205.

    Article  CAS  Google Scholar 

  9. Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schoenenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.

    Article  CAS  Google Scholar 

  10. Zheng, G.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183.

    Article  CAS  Google Scholar 

  11. Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  CAS  Google Scholar 

  12. Zaremba-Tymieniecki, M.; Durrani, Z. A. K.; Schottky-barrier lowering in silicon nanowire field-effect transistors prepared by metal-assisted chemical etching. Appl. Phys. Lett. 2011, 98, 102113.

    Article  Google Scholar 

  13. Lake, R.; Klimeck, G.; Bowen, R.; Jovanovic, D.; Blanks, D.; Swaminatan, M. Quantum transport with band-structure and Schottky contacts. Phys. Status Solidi. B 1997, 204, 354–357.

    Article  CAS  Google Scholar 

  14. Werner, J. H.; Güttler, H. H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533.

    Article  CAS  Google Scholar 

  15. Feste, S. F.; Zhang, M.; Knoch, J.; Mantl, S. Impact of variability on the performance of SOI Schottky barrier MOSFETs. Solid State Electron. 2009, 53, 418–423.

    Article  CAS  Google Scholar 

  16. Tsaur, B.-Y.; Silversmith, D. J.; Mountain, R. W.; Anderson C. H. Jr. Effects of interface structure on the electrical characteristics of PtSi-Si Schottky barrier contacts. Thin Solid Films 1982, 93, 331–340.

    Article  CAS  Google Scholar 

  17. Talin, A. A.; Hunter, L. L.; Leonard, F.; Rokad, B. Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 2006, 89, 153102.

    Article  Google Scholar 

  18. Lee, M.; Jeon, Y.; Moon, T.; Kim, S. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS inverters on plastic. ACS Nano 2011, 5, 2629–2636.

    Article  CAS  Google Scholar 

  19. Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25

    Article  CAS  Google Scholar 

  20. Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436.

    Article  CAS  Google Scholar 

  21. Yu, J.; Chung, S.; Heath, J. R. Silicon nanowires: Preparation, device fabrication, and transport properties. J. Phys. Chem. B 2000, 104, 11864–11870.

    Article  CAS  Google Scholar 

  22. Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935.

    Article  CAS  Google Scholar 

  23. Kotov, N. A.; Dekany, I.; Fendler, J. H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. J. Phys. Chem. 1995, 99, 13065–13069.

    Article  CAS  Google Scholar 

  24. Weber, W. M.; Duesberg, G. S.; Graham, A. P.; Liebau, M.; Unger, E.; Cheze, C.; Geelhaar, L.; Lugli, P.; Riechert, H.; Kreupl, F. Silicon nanowires: Catalytic growth and electrical characterization. Phys. Status Solidi B 2006, 243, 3340–3345.

    Article  CAS  Google Scholar 

  25. Dellas, N. S.; Liu, B. Z.; Eichfeld, S. M.; Eichfeld, C. M.; Mayer, T. S.; Mohney, S. E. Orientation dependence of nickel silicide formation in contacts to silicon nanowires. J. Appl. Phys. 2009, 105, 094309.

    Article  Google Scholar 

  26. Olowolafe, J. O.; Nicolet, M. A.; Mayer, J. W. Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films. Thin Solid Films 1976, 38, 143–150.

    Article  CAS  Google Scholar 

  27. Ogata, K.; Sutter, E.; Zhu, X.; Hofmann, S. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires. Nanotechnology 2011, 22, 365305.

    Article  CAS  Google Scholar 

  28. Weber, W. M.; Geelhaar, L.; Unger, E.; Cheze, C.; Kreupl, F.; Riechert, H.; Lugli, P. Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B 2007, 244, 4170–4175.

    Article  CAS  Google Scholar 

  29. Weber, W. M.; Graham, A. P.; Duesberg, G. S.; Liebau, M.; Cheze, C.; Geelhaar, L.; Unger, E.; Pamler, W.; Hoenlein, W.; Riechert, H.; et al. Non-linear gate length dependence of on-current in Si-nanowire FETs. In Proceedings of the 36th European Solid-State Device Research Conference (ESSDERC), 2006.

    Google Scholar 

  30. Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Walter, M. W. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

    Article  Google Scholar 

  31. Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.

    Article  CAS  Google Scholar 

  32. Sze, S. M.; Kwok, K. N. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.

    Book  Google Scholar 

  33. Park, H.; Park, S.; Hong Shick, M.; Seonghoon, J. Investigation of noise in silicon nanowire transistors through quantum simulations. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2008.

    Google Scholar 

  34. Saurabh, M.; Mohata, D.; Ramakrishnan, K.; Jawar, S.; Aaron, V. L.; Ashkar, A.; Mayer, T. S.; Vijaykrishnan, N.; Schlom, D. G.; Liu, A. W. K.; et al. Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In Proceedings of IEEE International Conference on Electron Devices Meeting (IEDM), 2009.

    Google Scholar 

  35. Bhuwalka, K. K.; Schulze, J.; Eisele, I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. In Proceedings of IEEE International Conference on Transactions on Electron Devices, 2005.

    Google Scholar 

  36. Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

    Article  CAS  Google Scholar 

  37. Tove, P. A. Methods of avoiding edge effects on semiconductor diodes. J. Phys. D 1982, 15, 517–536.

    Article  CAS  Google Scholar 

  38. Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  CAS  Google Scholar 

  39. Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

    Article  CAS  Google Scholar 

  40. Zschieschang, U.; Kang, M. J.; Takimiya, K.; Sekitani, T.; Someya, T.; Canzler, T. W.; Werner, A.; Blochwitz-Nimoth, J.; Klauk, H. Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J. Mater. Chem. 2012, 22, 4273–4277.

    Article  CAS  Google Scholar 

  41. Zhang, M.; Knoch, J.; Zhang, S.; Feste, S.; Schroeter, M.; Mantl, S. Threshold voltage variation in SOI Schottky-barrier MOSFETs. IEEE T. Electron. Dev. 2008, 55, 858–865.

    Article  CAS  Google Scholar 

  42. Zhang, M.; Knoch, J.; Zhao, Q. T.; Lenk, S.; Breuer, U.; Mantl, S. Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs. In: Proceedings of European Solid-State Device Research Conference (ESSDERC), 2005, Grenoble, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Walter M. Weber or Larysa Baraban.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pregl, S., Weber, W.M., Nozaki, D. et al. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 6, 381–388 (2013). https://doi.org/10.1007/s12274-013-0315-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0315-9

Keywords

Navigation