Skip to main content
Log in

Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In an ongoing project directed toward the discovery of novel treatments for diabetic complications from traditional herbal medicines, fifteen compounds, apigenin (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (3), luteolin (4), luteolin-7-O-β-d-glucopyranoside (5), luteolin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (6), isorhamnetin-3-Oneohesperidoside (7), 4-O-caffeoylquinic acid (8), chlorogenic acid methyl ester (9), 4-O-β-d-glucopyranosylcaffeic acid (10), lobetyolin (11), cordifolioidyne C (12), isomultiflorenyl acetate (13), β-sitosterol glucoside (14), and α-spinosterol (15), were isolated from an EtOAc-soluble fraction of the flowers of Platycodon grandiflorum (balloonflower; Campanulaceae). The structures of the compounds were identified by physical and spectroscopic methods, as well as by comparison of their data with literature values. All the isolates were evaluated in vitro for inhibitory activity on the formation of advanced glycation end products and rat lens aldose reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, N., Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 67, 3–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bae, K., The Medicinal Plants of Korea. Kyo-Hak Publishing Co., Seoul, pp. 485, (2002).

    Google Scholar 

  • Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes, 34, 15–21 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M., The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia, N. and Wichtl, M., Flavonol glycosides from Urtica dioica. Planta Med., 53, 432–434 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Choi, S. Z., Lee, S. O., Choi, S. U., and Lee, K. R., A new sesquiterpene hydroperoxide from the aerial parts of Aster oharai. Arch. Pharm. Res., 26, 521–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Cui, C. -B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T., and Park, J. -H., Constituent of a fern, Davallia mariesii Moore. I. Isolation and structures of davallialactone and a new glucuronide. Chem. Pharm. Bull., 38, 3218–3225 (1990).

    CAS  PubMed  Google Scholar 

  • Cui, C. -B., Jeong, S. K., Lee, Y. S., Lee, S. O., Kang, I. -J., and Lim, S. S., Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductas and on the formation of advanced glycation end products. J. Korean Soc. Appl. Biol. Chem., 52, 655–662 (2009).

    Article  CAS  Google Scholar 

  • Dufrane, S. P., Malaisse, W. J., and Sener, A., A micromethod for the assay of aldose reductase, its application to pancreatic islets. Biochem. Med., 32, 99–105 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Engerman, R. L. and Kern, T. S., Experimental galactosemia produces diabetes-like retinopathy. Diabetes, 33, 97–100 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Faure, R. and Gaydou, E. M., Application of inverse-detected two-dimensional heteronuclear-correlated NMR spectroscopy to the complete carbon-13 assignment of isomultiflorenyl acetate. J. Nat. Prod., 54, 1564–1569 (1991).

    Article  CAS  Google Scholar 

  • Han, X. H., Hong, S. S., Hwang, J. S., Lee, M. K., Hwang, B. Y., and Ro, J. S., Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res., 30, 13–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru, K., Yonemitsu, H., and Shimomura, K., Lobetyolin and lobetyol from hairy root culture of Lobelia inflata. Phytochemistry, 30, 2255–2257 (1991).

    Article  CAS  Google Scholar 

  • Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C. S., Yoo, J. L., and Kim, J. S., Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull., 30, 2207–2210 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jang, D. S., Yoo, N. H., Lee, Y. M., Yoo, J. L., Kim, Y. S., and Kim, J. S., Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch. Pharm. Res., 31, 900–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Jung, H. A., Park, J. C., Chung, H. Y., Kim, J., and Choi, J. S., Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res., 22, 213–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. S., Kim, N. H., Lee, S. W., Lee, Y. M., Jang, D. S., and Kim, J. S., Effect of protocatechualdehyde on receptor for advanced glycation end products and TGF-β1 expression in human lens epithelial cells cultured under diabetic conditions and on lens opacity in streptozotocindiabetic rats. Eur. J. Pharmacol., 569, 171–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. Y., Chang, E. J., Kim, H. J., Park, J. H., and Choi, S. W., Antioxidant flavonoids from leaves of Carthamus tinctorius. Arch. Pharm. Res., 25, 313–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Kim, K. S., Jang, J. M., Park, Y., Kim, Y. B., and Kim, B. -K., Phytochemical constituents from the herba of Artemisia apiacea. Arch. Pharm. Res., 25, 285–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. H., Lee, I. R., Won, W. S., and Park, C. H., Flavonoids of Elscholtzia cristata. Arch. Pharm. Res., 11, 247–249 (1988).

    Article  CAS  Google Scholar 

  • Logendra, S., Ribnicky, D. M., Yang, H., Poulev, A., Ma, J., Kennelly, E. J., and Raskin, I., Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry, 67, 1539–1546 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, H., Morikawa, T., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids and related compounds for aldos reductase inhibitory activity. Chem. Pharm. Bull., 50, 788–795 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, H., Wang, T., Managi, H., and Yoshikawa, M., Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem., 11, 5317–5323 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mei, R. -Q., Lu, Q., Hu, Y. -F., Liu, H. -Y., Bao, F. -K., Zhang, Y., and Cheng, Y. -X., Three new polyyne (= polyacetylene) glucosides from the edible roots of Codonopsis cordifolioidea. Helv. Chim. Acta, 91, 90–96 (2008).

    Article  CAS  Google Scholar 

  • Peyroux, J. and Sternberg, M., Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes, Pathol. Biol., 54, 405–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Reddy, V. P. and Beyaz, A., Inhibitors of the Maillard reaction and AGE breakers as therapeutic s for multiple diseases. Drug Discov. Today, 11, 646–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Švehlíková, V., Bennet, R. N., Mellon, F. A., Needs, P. W., Piacente, S., Kroon, P. A., Bao, Y., Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry, 65, 2323–2332 (2004).

    Article  PubMed  Google Scholar 

  • Takeuchi, M. and Yamagishi, S., Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 14, 973–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tatefuji, T., Izumi, N., Ohta, T., Arai, S., Ikeda, M., and Kurimoto, M., Isolation and identification of compounds from Brazilian propolis which enhance macrophage spreading and mobility. Biol. Pharm. Bull., 19, 966–970 (1996).

    CAS  PubMed  Google Scholar 

  • Tomlinson, D. R., Stevens, E. J., and Diemel, L. T., Aldose reductase inhibitors and their potential for the treatment of diabetes complications. Trends Pharmacol. Sci., 15, 292–298 (1994).

    Article  Google Scholar 

  • Yabe-Nishimura, C., Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev., 50, 21–33 (1998).

    CAS  PubMed  Google Scholar 

  • Yoo, N. H., Jang, D. S., Yoo, J. L., Lee, Y. M., Kim, Y. S., Cho, J. H., and Kim, J. S., Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J. Nat. Prod., 71, 713–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa, M., Morikawa, T., Murakami, T., Toguchida, I., Harima, S., and Matsuda, H., Medicinal flowers. I. Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull., 47, 340–345 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, D.S., Lee, Y.M., Jeong, I.H. et al. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro . Arch. Pharm. Res. 33, 875–880 (2010). https://doi.org/10.1007/s12272-010-0610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0610-x

Key words

Navigation