Skip to main content
Log in

Effects of ginkgo biloba on in vitro osteoblast cells and ovariectomized rat osteoclast cells

  • Articles
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Ginkgo biloba extract (GBE) has a selective estrogen receptor modulator (SERM)-like biphasic effect on estrogen, and could be a potential alternative to hormone replacement therapy (HRT). Here, we investigated whether GBE can ameliorate estrogen-depleted osteoporosis in in vitro osteoblast cells and in estrogen-deprived ovariectomized (OVX) rats, a classical animal model for postmenopausal osteoporosis. GBE (50–150 μg/mL) significantly increased ALP (Alkaline phosphatase) activity of osteoblast cells, indicating that GBE promotes osteoblast mineralization. OVX rats exposed to GBE (100 and 200 mg/kg/day, oral treatment), raloxifene (3 mg/kg/day, oral treatment) or estradiol (E2, 10 μg/kg/day, subcutaneous injection) decreased osteoclast resorptive activity compared with OVX rats. GBE and raloxifene did not increase uterine weight compared with OVX rats, while E2 and Sham control did, suggesting that GBE has no uterotrophic activity, which is a disadvantage of estrogen therapy. In OVX rats, GBE did not restore severe bone density loss induced by OVX, indicating that GBE may be insufficient as therapeutic material for severe osteoporosis. However, despite its no effects on bone density loss in OVX rats, GBE did stimulate osteoblast differentiation and antiosteoclastic activity in vitro. Therefore, GBE may have preventive potential on osteoporosis as do other phytoestrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adlercreutz, H. and Mazur, W., Phytoestrogens and western diseases. Ann. Med., 29, 95–120 (1997).

    PubMed  CAS  Google Scholar 

  • Arjmandi, B. H., Birnbaum, R. S., Juma, S., Barengolts, E., and Kukreja, S. C., The synthetic phytoestrogen, ipriflavone, and estrogen prevent none loss by different mechanisms. Calcif. Tissue Int., 66, 61–65 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Beck, V., Rohr, U., and Jungbauer, A., Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol., 94, 499–518 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bellows, C. G., Aubin, J. E., and Heersche, J. N. M., Initiation and progression of mineralization of bone nodules formed in vitro-the role of alkaline-phosphatase and organic phosphate. Bone Miner., 14, 27–40 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Bellows, C. G., Heersche, J. N., and Aubin, J. E., Inorganic phosphate added exogenously or released from β-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner., 17, 15–29 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Boyle, W. J., Simonet, W. S., and Lacey, D. L., Osteoclast differentiation and activation. Nature, 423, 337–342 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Brayboy, J. R., Chen, X. W., Lee, Y. S., and Anderson, J. J. B., The protective effects of ginkgo biloba extract (EGb 761) against free radical damage to osteoblast-like bone cells (MC3T3-E1) and the proliferative effects of EGb 761 on these cells. Nutr. Res., 21, 1275–1285 (2001).

    Article  CAS  Google Scholar 

  • Brzexinski, A. and Debi, A., Phytoestrogens: the “Natural” selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol., 85, 47–51 (1999).

    Article  Google Scholar 

  • Dempster, D. W. and Lindsay, R., Pathogenesis of osteoporosis. Lancet, 341, 797–805 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Dew, J., Eden, J., Beller, E., Magarcy, C., Schwartz, P., Crca, P., and Wren, B., A cohort study of hormone replacement therapy given to women previously treated for breast cancer. Climacteric, 1, 137–142 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Faber, A., Bouvy, M. L., Loskamp, L., van de Berg, P. B., Egberts, T. C., and de Jong-van den Berg, L. T., Dramatic change in prescribing of hormone replacement therapy in The Netherlands after publication of the Million Women Study: a follow-up study. Br. J. Clin. Pharmacol., 60, 641–647 (2005).

    Article  PubMed  Google Scholar 

  • Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D., and Malluche, H. H., The phytoestrogens genistein reduces bone loss in short-term ovariectomized rats. Osteoporos. Int., 8, 274–281 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Felsen, D. T., Zhang, Y., Hannan, M. T., Kiel, D. P., Wilson, P. W., and Anderson, J. J., The effect of postmenopausal estrogen therapy on bone density in elderly woman. N. Engl. J. Med., 329, 1141–1146 (1993).

    Article  Google Scholar 

  • Genge, B. R., Sauer, G. R., Wu, L. N. Y., McLean, F. M., and Wuthier, R. E., Correlation between loss of alkaline-phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J. Biol. Chem., 263, 18513–18519 (1988).

    PubMed  CAS  Google Scholar 

  • Greendale, G. A., Reboussin, B. A., Hogan, P., Barnabei, V. M., Shumaker, S., Johnson, S., and Barrett-Connor, E., Symptom relief and side effects of postmenopausal hormone: results from the postmenopausal estrogen/progestin interventions trial. Obstet. Gynecol., 92, 982–988 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hallworth, R. B., Prevention and treatment of postmenopausal osteoporosis. Pharm. World Sci., 20, 198–205 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hedblad, B., Merio, J., Manjer, J., Engstrom, G., Berglund, G., and Janzon, L., Incidence of cardiovascular disease, cancer and death in postmenopausal women affirming use of hormone replacement therapy. Scand. J. Public Health, 30, 12–19 (2002).

    Article  PubMed  Google Scholar 

  • Hiroi, H., Inoue, S., Watanabe, T., Goto, W., Orimo, A., Momoeda, M., Tsutsumi, O., Taketani, Y., and Muramatsu, M., Differential immunolocalization of estrogen receptor a and b in rat ovary and uterus. J. Mol. Endocrinol., 22, 37–44 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H., Lacey, D. L., Dunstan, C. R., Solovyev, I., Colombero, A., Timms, E., Tan, H. L., Elliott, G., Kelley, M. J., Sarosi, I., Wang, L., Xia, X. Z., Elliott, R., Chiu, L., Black, T., Scully, S., Capparelli, C., Morony, S., Shimamoto, G., Bass, M. B., and Boyle, W. J., Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA, 96, 3540–3545 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim, N. K. and Hortobagyi, G. N., The evolving role of specific estrogen receptor modulators (SERMs). Surg. Oncol., 8, 103–123 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, S., Tsurukami, H., Ito, M., Sakai, A., Sakata, T., Nishida, S., Takeda, S., Shiraishi, A., and Nakamura, T., Effect of trabecular bone contour on ultimate strength of lumbar vertebra after bilateral ovariectomy in rats. Bone, 28, 625–633 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ishida, H., Uesugi, T., Hirai, K., Toda, T., Nukaya, H., Yokotsuka, K., and Tsuji, K., Preventive effects of the plant isoflavones, daidzin and genistin, on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol. Pharm. Bull., 21, 62–66 (1998).

    PubMed  CAS  Google Scholar 

  • Kalu, D. N., The ovariectomized rat model of postmenopausal bone loss. Bone Miner., 15, 175–191 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Kanno, S., Anuradha, C. D., and Hirano, S., Localization of zinc after in vitro mineralization in osteoblastic cells. Biol. Trace Elem. Res., 83, 39–47 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kanno, S., Hirano, S., and Kayama, F., Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology, 196, 137–145 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. J., Bae, Y. C., Park, R. W., Choi, S. W., Cho, S. H., Choi, Y. S., and Lee, W. J., Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif. Tissue Int., 71, 88–94 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kwan, T. S., Padrines, M., Theoleyre, S., Heymann, D., and Fortun, Y., IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev., 15, 49–60 (2004).

    Article  CAS  Google Scholar 

  • Lieberman, S., A review of the effectiveness of Cimicifuga racemosa (black cohosh) for the symptoms of menopause. J. Women’s Health, 7, 525–529 (1998).

    Article  CAS  Google Scholar 

  • Mackie, E. J., Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol., 35, 1301–1305 (2003).

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, A. H., Lawton, B., and Baber, R. J., Hormone replacement therapy and the breast. Studies must determine the evidence. BMJ, 324, 915 (2002).

    Article  PubMed  Google Scholar 

  • Manolagas, S. C., Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 21, 115–137 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Manolagas, S. C. and Jilka, R. L., Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med., 332, 305–311 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Messina, M. and Hughes, C., Efficacy of soyfoods and soybean isoflavones supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J. Med. Food, 6, 1–11 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Miyake, M., Arai, N., Ushio, S., Iwaki, K., Ikeda, M., and Kurimoto, M., Promoting effect of kaempferol on the differentiation and mineralization of murine pre-osteoblastic cell line MC3T3-E1. Biosci. Biotechnol. Biochem., 67, 1199–1205 (2003).

    Article  PubMed  CAS  Google Scholar 

  • MWS, Million Women Study Collaborators, Breast cancer and hormonereplacement therapy in the Million Women Study. Lancet 362, 419–427 (2003).

    Google Scholar 

  • Novack D. V., Estrogen and bone: Osteoclasts take center stage. Cell Metabolism, 6, 254–256 (2007).

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, D., Robertson, J., Henry, D., and Gillespie, W., A systemic review of the skeletal effects of estrogen therapy in postmenopausal women II. An assessment of treatment effects. Climacteric, 1, 112–123 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. M. and Chung, K. H., Estrogenic activities of Ginkgo biloba extracts. Life Sciences, 74, 1325–1335 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. M. and Chung, K. H., Antiestrogenic activities of Ginkgo biloba extracts. J. Steroid Biochem. Mol. Biol., 100, 167–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Pang, J. L., Ricupero, D. A., Huang, S., Fatma, N., Singh, D. P., Romero, J. R., and Chattopadhyay, N., Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol., 71, 818–826 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Pepping, J., Black cohosh: Cimicifuga racemosa. Am. J. Health Syst. Pharm., 56, 1400–1402 (1999).

    PubMed  CAS  Google Scholar 

  • Picherit, C., Coxam, V., Bennetau-Pelissero, C., Kati-Coulibaly, S., Davicco, M. J., Lebecque, P., and Barlet, J. P., Daidzein is more efficient than genistein in preventing ovariectomy induced bone loss in rats. J. Nutr., 130, 1675–1681 (2000).

    PubMed  CAS  Google Scholar 

  • Prouillet, C., Mazière, J. C., Mazière, C., Wattel, A., Brazier, M., and Kamel, S., Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 67, 1307–1313 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Riggs, B. L. and Melton, L. J., Involutional osteoporosis. N. Engl. J. Med., 26, 1676–1684 (1986).

    Article  Google Scholar 

  • Sagraves, R., Estrogen therapy for postmenopausal symptoms and prevention of osteoporosis. J. Clin. Pharmacol., 35, 2S–10S (1995).

    PubMed  CAS  Google Scholar 

  • Setchell, K. D. and Lydeking-Olsen, E., Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am. J. Clin. Nutr., 78(suppl), 593S–609S (2003).

    PubMed  CAS  Google Scholar 

  • Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., Hendrix, S. L., Jones, B. N., Assaf, A. R., Jackson, R. D., Kotchen, J. M., Wassertheil-Smoller, S., and Wactawski-Wende, J., WHIMS Investigators, Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. The Women’s Health Initiative Memory study: a randomized controlled trial. JAMA, 289, 2654–2662 (2003).

    Article  Google Scholar 

  • Stanford, C. M., Jacobson, P. A., Eanes, E. D., Lembke, L. A., and Midura, R. J., Rapidly forming apatite mineral in an osteoblastic cell-line (UMR 106-01 BSP). J. Biol. Chem., 270, 9420–9428 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T., and Martin, T. J., Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrinol. Rev., 20, 345–347 (1999).

    Article  CAS  Google Scholar 

  • Ukeda, H., Shimamura, T., Tsubouchi, M., Harada, Y., Nakai, Y., and Sawamura, M., Spectrophotometric assay of superoxide anion formed in maillard reaction based on highly water-soluble tetrazolium salt. Anal. Sci., 18, 1151–1154 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wattel, A., Kamel, S., Mentaverri, R., Lorget, F., Prouillet, C., Petit, J. P., Fardelonne, P., and Brazier M., Potent inhibitory effect of naturally occurring flavonids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmcol., 65, 35–42 (2003).

    Article  CAS  Google Scholar 

  • Weistein, R. S. and Manolagas, S. C., Apoptosis and osteoporosis. Am. J. Med., 108, 153–164 (2000).

    Article  Google Scholar 

  • Weitzmann, M. N. and Pacifici, R., Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest., 116, 1186–1194 (2006).

    Article  PubMed  CAS  Google Scholar 

  • WHI, Writing Group for the Women’s Health Initiative Investigators, Risks and benefits of estrogen plus progestin in healthy postmenopausal women. Principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  Google Scholar 

  • WHI, Writing Group for the Women’s Health Initiative Investigators, Effects of conjugated equine estrogen in postmenopausal women with hysterectomy. JAMA 291, 1701–1712 (2004).

    Article  Google Scholar 

  • Wuttke, W., Jarry, H., Westphalen, S., Christoffel, V., and Seidlová-Wuttke, D., Phytoestrogens for hormone replacement therapy? J. Steroid Biochem. Mol. Biol., 83, 133–147 (2003).

    Article  CAS  Google Scholar 

  • Xie, F., Wu, C. F., Lai, W. P., Yang, X. J., Cheung, P. Y., Yao, X. S., Leung, P. C., and Wong, M. S., The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evid. Based Complement Alternat. Med., 2, 353–361 (2005).

    Article  PubMed  Google Scholar 

  • Yamazaki, I. and Yamaguchi, H., Characteristics of an ovariectomized osteopenic rat model. J. Bone Miner. Res., 4, 13–22 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, H., Shima, N., and Nakagawa, N., Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A., 95, 3597–3602 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yudoh, K., Matsuno, H., Nakazawa F., Katayama, R., and Kimura, T., Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res., 16, 1453–1464 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyuck Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S.M., Kim, H.R. & Chung, K.H. Effects of ginkgo biloba on in vitro osteoblast cells and ovariectomized rat osteoclast cells. Arch. Pharm. Res. 31, 216–224 (2008). https://doi.org/10.1007/s12272-001-1144-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-1144-z

Key words

Navigation