Skip to main content
Log in

High throughput screening methods for ω-transaminases

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, ω-transaminases have been increasingly used to synthesize amine compounds by reductive amination of prochiral ketones which are of high pharmacological significance. However, the conventional methods for evaluating these enzymes are time consuming and have often been regarded as a bottle neck in developing these enzymes as industrial biocatalysts. In the past few years, several high throughput screening methods have been developed for fast evaluation and identification of ω-transaminase. This review summarizes the various methodologies developed for rapidly screening ω-transaminases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cassimjee, K. E., C. Branneby, V. Abedi, A. Wells, and P. Berglund (2010) Transaminations with isopropyl amine: Equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem. Commun. 46: 5569–5571.

    Article  CAS  Google Scholar 

  2. Bea, H. S., H. J. Park, S. H. Lee, and H. Yun (2011) Kinetic resolution of aromatic β-amino acids by ω-transaminase. Chem. Commun. 47: 5894–5896.

    Article  CAS  Google Scholar 

  3. Abrahamson, M. J., E. Vazquez-Figueroa, N. B. Woodall, J. C. Moore, and A. S. Bommarius (2012) Development of an amine dehydrogenase for synthesis of chiral amines. Angew. Chem. Int. Ed. Engl. 51: 3969–3972.

    Article  CAS  Google Scholar 

  4. Mutti, F. G., C. S. Fuchs, D. Pressnitz, J. H. Sattler, and W. Kroutil (2011) Stereoselectivity of four (R)-selective transaminases for the asymmetric amination of ketones. Adv. Synth. Catal. 353: 3227–3233.

    Article  CAS  Google Scholar 

  5. Hwang, B. Y., B. K. Cho, H. Yun, and B. G. Kim (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Catal. B: Enzym. 37: 47–55.

    Article  CAS  Google Scholar 

  6. Shin, J. S. and B. G. Kim (2002) Exploring the active site of amine: Pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: How the enzyme controls substrate specificity and stereoselectivity. J. Org. Chem. 67: 2848–2853.

    Article  CAS  Google Scholar 

  7. Shin, J. S. and B. G. Kim (1997) Kinetic resolution of α-methylbenzylamine with ω-transaminase screened from soil microorganisms: Application of a biphasic system to overcome product inhibition. Biotechnol. Bioeng. 55: 348–358.

    Article  CAS  Google Scholar 

  8. Bea, H. S., Y. M. Seo, M. N. Cha, B. G. Kim, and H. Yun (2010) Kinetic REsolution of α-methylbenzylamine by recombinant Pichia pastoris expressing ω-transaminase. Biotechnol. Bioeng. 15: 429–434.

    CAS  Google Scholar 

  9. Yun, H. and B. G. Kim (2008) Asymmetric synthesis of (S)-α-methylbenzylamine by recombinant Escherichia coli co-expressing omega-transaminase and acetolactate synthase. Biosci. Biotechnol. Biochem. 72: 3030–3033.

    Article  CAS  Google Scholar 

  10. Malik, M. S., E. S. Park, and J. S. Shin (2012) ω-Transaminasecatalyzed kinetic resolution of chiral amines using l-threonine as an amino acceptor precursor. Green Chem. 14: 2137–2140.

    Article  CAS  Google Scholar 

  11. Seo, Y. M., S. Mathew, H. S. Bea, Y. H. Khang, S. H. Lee, B. G. Kim, and H. Yun (2012) Deracemization of unnatural amino acid: homoalanine using D-amino acid oxidase and ω-transaminase. Org. Biomol. Chem. 10: 2482–2485.

    Article  CAS  Google Scholar 

  12. Hohne, M. and U. T. Bornscheuer (2009) Biocatalytic routes to optically active amines. Chemcatchem. 1: 42–51.

    Article  Google Scholar 

  13. Mathew, S. and H. Yun (2012) ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal. 2: 993–1001.

    Article  CAS  Google Scholar 

  14. Weingart, U., Y. Lavi, and D. Horn (2009) Data mining of enzymes using specific peptides. BMC Bioinformatics 10: 446–455.

    Article  Google Scholar 

  15. Sharan, R., I. Ulitsky, and R. Shamir (2007) Network-based prediction of protein function. Mol. Syst. Biol. 3: 88.

    Article  Google Scholar 

  16. Eisenberg, D., E. M. Marcotte, I. Xenarios, and T. O. Yeates (2000) Protein function in the post genomic era. Nature 405: 823–826.

    Article  CAS  Google Scholar 

  17. Kazlauskas, R. J. and U. T. Bornscheuer (2009) Finding better protein engineering strategies. Nat. Chem. Biol. 5: 526–529.

    Article  CAS  Google Scholar 

  18. Savile, C. K., J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, and G. J. Hughes (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329: 305–309.

    Article  CAS  Google Scholar 

  19. Desai, A. A. (2011) Sitagliptin manufacture: A compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew. Chem. Int. Ed. Engl. 50: 1974–1976.

    Article  CAS  Google Scholar 

  20. Koszelewski, D., K. Tauber, K. Faber, and W. Kroutil (2010) ω-Transaminases for the synthesis of non-racemic a-chiral primary amines. Trends Biotechnol. 28: 324–332.

    Article  CAS  Google Scholar 

  21. Malik, M. S., E. S. Park, and J. S. Shin (2012) Features and technical applications of ω-transaminases. Appl. Microbiol. Biotechnol. 94: 1163–1171.

    Article  CAS  Google Scholar 

  22. Tufvesson, P., J. Lima-Ramos, J. S. Jensen, N. Al-Haque, W. Neto, and J. M. Woodley (2011) Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol. Bioeng. 108: 1479–1493.

    Article  CAS  Google Scholar 

  23. Hwang, B. Y. and B. G. Kim (2004) High-throughput screening method for the identification of active and enantioselective ω-transaminases. Enz. Microb. Technol. 34: 429–436.

    Article  CAS  Google Scholar 

  24. Shin, J. S. and B. G. Kim (2001) Comparison of the w-transaminases from different microorganisms and application to production of chiral Amines. Biosci. Biotechnol. Biochem. 65: 1782–1788.

    Article  CAS  Google Scholar 

  25. Yun, H., S. Lim, B. K. Cho, and B. G. Kim (2004) ω-amino acid: Pyruvate transaminase from alcaligenes denitrificans Y2k-2: A new catalyst for kinetic resolution of ω-amino acids and amines Appl. Environ. Microbiol. 70: 2529–2534.

    Article  CAS  Google Scholar 

  26. Hanson, R. L., B. L. Davis, Y. Chen, S. L. Goldberg, W. L. Parker, T. P. Tully, M. A. Montana, and R. N. Patel (2008) Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium Adv. Synth. Catal. 350: 1367–1375.

    Article  CAS  Google Scholar 

  27. Kim, J., D. Kyung, H. Yun, B. K. Cho, and B. G. Kim (2006) Screening and purification of a novel transaminase catalyzing the transamination of Aryl β-Amino Acid from Mesorhizobium sp. LUK. J. Microbiol. Biotechnol. 16: 1832–1836.

    CAS  Google Scholar 

  28. Iwasaki, A., Y. Yamada, N. Kizaki, Y. Ikenaka, and J. Hasegawa (2006) Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168 Appl. Microbiol. Biotechnol. 69: 499–505.

    Article  CAS  Google Scholar 

  29. Liszka, M. J., M. E. Clark, E. Schneider, and D. S. Clark (2012) Nature versus nurture: Developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 3: 77–102.

    Article  CAS  Google Scholar 

  30. Bornscheuer, U. T. and M. Pohl (2001) Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5: 137–143.

    Article  CAS  Google Scholar 

  31. Street, A. G. and S. L. Mayo (1999) Computational protein design. Structure 7: 105–109.

    Article  Google Scholar 

  32. Yun, H., B. Y. Hwang, J. H. Lee, and B. G. Kim (2005) Use of enrichment culture for directed evolution of the vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl. Environ. Microbiol. 71: 4220–4224.

    Article  CAS  Google Scholar 

  33. Truppo, M. D., J. D. Rozzell, J. C. Moore, and N. J. Turner (2009) Rapid screening and scale-up of transaminase catalysed reactions. Org. Biomol. Chem. 7: 395–398.

    Article  CAS  Google Scholar 

  34. Truppo, M. D. and N. J. Turner (2010) Micro-scale process development of transaminase catalysed reactions. Org. Biomol. Chem. 8: 1280–1283.

    Article  CAS  Google Scholar 

  35. Hopwood, J., M. D. Truppo, N. J. Turner, and R. C. Lloyd (2011) A fast and sensitive assay for measuring the activity and enantioselectivity of transaminases. Chem. Commun. 47: 773–775.

    Article  CAS  Google Scholar 

  36. Schatzle, S. M. Hohne, E. Redestad, K. Robins, and U. T. Bornscheuer (2009) Rapid and sensitive kinetic assay for characterization of ω-transaminases. Anal. Chem. 81: 8244–8248.

    Article  Google Scholar 

  37. Cassimjee K. E., M. S. Humble, V. Miceli, C. G. Colomina, and P. Berglund (2011) Active site quantification of an ω-transaminase by performing a half transamination reaction. ACS Catal. 1: 1051–1055.

    Article  CAS  Google Scholar 

  38. Schatzle S., M. Hohne, K. Robins, and U. T. Bornscheuer (2010) Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases. Anal. Chem. 82: 2082–2086.

    Article  Google Scholar 

  39. Sehl, T., R. C. Simon, H. C. Hailes, J. M. Ward, U. Schell, M. Pohl, and D. Rother (2012) TTC-based screening assay for omega-transaminases: A rapid method to detect reduction of 2-hydroxy ketones. J. Biotechnol. 159: 188–194.

    Article  CAS  Google Scholar 

  40. Martin, A. R., R. DiSanto, I. Plotnikov, S. Kamat, D. Shonnar, and S. Pannuri (2007) Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine Biochem. Eng. J. 37: 246–255.

    CAS  Google Scholar 

  41. Hwang, B. Y., S. H. Ko, H. Y. Park, J. H. Seo, B. S. Lee, and B. G. Kim (2008) Identification of ω-aminotransferase from caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity. J. Microbiol. Biotechnol. 18: 48–54.

    CAS  Google Scholar 

  42. Kaulmann, U., K. Smithies, M. E. B. Smith, H. C. Hailes, and J. M. Ward (2007) Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enz. Microb. Technol. 41: 628–637.

    Article  CAS  Google Scholar 

  43. Park, E., M. Kim, and J. S. Shin (2010) One-pot conversion of LThreonine into L-homoalanine: Biocatalytic production of an unnatural amino acid from a natural one. Adv. Synth. Catal. 352: 3391–3398.

    Article  CAS  Google Scholar 

  44. Park, E. S., M. Kim, and J. S. Shin (2012) Molecular determinants for substrate selectivity of ω-transaminases. Appl. Microbiol. Biotechnol. 93: 2425–2435.

    Article  CAS  Google Scholar 

  45. Hohne, M., S. Schatzle, H. Jochens, K. Robins, and U. T. Bornscheuer (2010) Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 6: 807–813.

    Article  Google Scholar 

  46. Schatzle, S., F. Steffan-Munsberg, A. Thontowi, M. Hohne, K. Robins, and U. T. Bornscheuer (2011) Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-Selective amine transaminases. Adv. Synth. Catal. 353: 2439–2445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungdon Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, S., Shin, G., Shon, M. et al. High throughput screening methods for ω-transaminases. Biotechnol Bioproc E 18, 1–7 (2013). https://doi.org/10.1007/s12257-012-0544-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0544-x

Keywords

Navigation