Skip to main content
Log in

Soybean molasses-based bioindicator system for monitoring sterilization process: Designing and performance evaluation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A novel cost-effective Bacillus atrophaeus Sterilization Bioindicator System (BIS) with a high quality and performance was developed from a soybean byproduct and compared with the commercial BIS. It was composed of recovery medium and dry-fermented spores with sand as the support. The BIS was developed and optimized using a sequential experimental design strategy. The recovery medium contained soluble starch (1.0 g/L), soybean molasses (30.0 g/L), tryptone (40.0 g/L), and bromothymol blue (0.02 g/L) at pH 8.5. The solid-state fermentation conditions of the bioreactor and environmental humidity had no significant effects on the spore yield and dry-heat resistance. The only substrate mineral that showed a positive effect was Mn2+, allowing Mg2+, K+, and Ca2+ to be eliminated from the formulation. Validation of optimized medium indicated D 160°C = 6.8±1.0 min (3.6 min more than the minimum) and spore yield = 2.3 ± 0.5 × 109 CFU/g dry sand (10,000 × initial values). BIS performance resulted in D 160°C = 6.6 ± 0.1 min. Sporulation and germination kinetics allowed the sporulation process to be reduced to three days, and the growth of heat-damaged spores was sufficient to achieve visual identification of a non-sterile BIS within 21 h. Process economics was a minimum of 23.9%, and process cycle time was reduced from 29 to 15 days. The new BIS parameters demonstrated compliance to all regulatory requirements. No studies have yet described a BIS production from soybean molasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Drug Administration-FDA (2007) Guidance for industry and FDA Staff — Biological Indicator (BI) Intended to monitor sterilizers used in heath care facilities: Remarket notification [510(k)] submissions. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071261.htm.

    Google Scholar 

  2. International Standard ISO-11138-4 (2006) Sterilization of health care products-Biological indicators Part 4: Biological indicators for dry heat sterilization processes. ISO, Geneva.

    Google Scholar 

  3. Halfmann, H., B. Denis, N. Bibinov, J. Wunderlich, and P. Awakowicz (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J. Phys. D: Appl. Phy. 40: 5907–5911.

    Article  CAS  Google Scholar 

  4. Oliveira, E. A., N. G. Nogueira, M. D. Innocentini, and R. Pisani (2010) Microwave inactivation of Bacillus atrophaeus spores in healthcare waste. Waste Manag. 30: 2327–2335.

    Article  CAS  Google Scholar 

  5. Roth, S., J. Feichtinger, and C. Hertel (2010) Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. J. Appl. Microbiol. 108: 521–531.

    Article  CAS  Google Scholar 

  6. Szabo, J. G., E. W. Rice, and P. L. Bishop (2007) Persistence and decontamination of Bacillus atrophaeus subsp. globigii spores on corroded iron in a model drinking water system. Appl. Environ. Microbiol. 73: 2451–2457.

    Article  CAS  Google Scholar 

  7. Weber, D. J., E. Sickbert-Bennett, M. F. Gergen, and W. A. Rutala (2003) Efficacy of selected hand hygiene agents used to remove Bacillus atrophaeus (a surrogate of Bacillus anthracis) from contaminated hands. JAMA. 289: 1274–1277.

    Article  CAS  Google Scholar 

  8. Hirakuri, M. H. and J. J. Lazzarotto (2011) Trends and prospects economic performance associated with soybean production in the brazilian and world contexts. Embrapa soja, Londrina.

    Google Scholar 

  9. Siqueira, P. F., S. G. Karp, W. Sturm, J. A. Rodríguez-León, J. Tholozan, R. R. Singhania, A. Pandey, and C. R. Soccol (2008) Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresour. Technol. 99: 8156–8163.

    Article  CAS  Google Scholar 

  10. Sella, S. R. B. R., B. P. Guizelini, L. P. S. Vandenberghe, A. B. P. Medeiros, and C. R. Soccol (2009) Bioindicator production with Bacillus atrophaeus’ thermal-resistant spores cultivated by solidstate fermentation. Appl. Microbiol. Biotechnol. 82: 1019–1026.

    Article  CAS  Google Scholar 

  11. Sella, S. R. B. R., B. P. Guizelini, P. H. Zanello, L. P. S. Vandenberghe, C. A. O. Ribeiro, J. C. Minozzo, and C. R. Soccol (2012) Development of a low-cost sterilization biological indicator using bacillus atrophaeus by solid state fermentation. Appl. Microbiol. Biotechnol. 93: 151–158.

    Article  Google Scholar 

  12. Pflug, I. J., G. M. Smith, and R. Christensen (1981) Effect of soybean casein digest agar on number of Bacillus stearothermophilus spores recovered. Appl. Environ. Microbiol. 42: 226–230.

    CAS  Google Scholar 

  13. Shintani, H. and J. E. Akers (2000) On the cause of performance variation of biological indicator used for sterility assurance. PDA J. Pharm. Sci. Tech. 54: 332–342.

    CAS  Google Scholar 

  14. López, M., I. González, M. Mazas, J. González, R. Martin, and A. Bernardo (1997) Influence of recovery conditions on apparent heat resistance of Bacillus stearothermophilus spores. Int. J. Food Sci. Tech. 32: 305–311.

    Article  Google Scholar 

  15. Sasaki, K., H. Shintani, J. Itoh, T. Kamogawa, and Y. Kajihara (2000) Effect of calcium in assay medium on D value of Bacillus stearothermophilus ATCC7953 spores. Appl. Environ. Microbiol. 66: 5509–5513.

    Article  CAS  Google Scholar 

  16. Sella, S. R. B. R., R. E. F. Dlugokenski, B. P. Guizelini, L. P. S. Vandenberghe, A. B. P. Medeiros, A. Pandey, and C. R. Soccol (2008) Selection and optimization of Bacillus atrophaeus inoculum medium and its effect on spore yield and thermal resistance. Appl. Biochem. Biotech. 15: 380–392.

    Article  Google Scholar 

  17. United States Pharmacopeia XXXI (2008) Biological indicators resistance and performance tests. In: The United States Pharmacopeia, 31th rev. United States Pharmacopoeia Convection, Rockville.

    Google Scholar 

  18. Nelson, N. A. (1944) Photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  19. International Standard ISO 14644-1(1999) Cleanrooms and associated controlled environments, Part 1: Classification of air cleanliness. ISO, Geneva.

    Google Scholar 

  20. Gillis, J. R., G. A. Mosley, J. B. Kowaslski, G. Krushefski, P. T. Nigenau, and K. McCauley (2010) Understanding biological indicator grow-out times. Pharm. Tech. 34: 1–9.

    Google Scholar 

  21. De Vries, Y. P. (2004) The role of calcium in bacterial spore germination. Microb. Environ. 19: 199–202.

    Article  Google Scholar 

  22. Puri, S., Q. K. Beg, and R. Gupta (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44: 286–290.

    Article  CAS  Google Scholar 

  23. Xiao, Z. J., P. H. Liu, J. Y. Qin, and P. Xu (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl. Microbiol. Biotechnol. 74: 61–68.

    Article  CAS  Google Scholar 

  24. Mallidis, C. G. and J. Scholefield (1986) Evaluation of recovery media for heated spores of Bacillus stearothermophilus. J. Appl. Bacteriol. 61: 517–523.

    Article  Google Scholar 

  25. Penna, T. C. V., I. A. Machoshvili, M. E. S. Taqueda, and M. Ishii (2000) The effect of media composition on the thermal resistance of Bacillus stearothermophilus.PDA J. Pharm. Sci. Tech. 54: 398–412.

    CAS  Google Scholar 

  26. Penna, T. C. V., I. A. Machoshvili, and M. Ishii (2003) Effect of media on spore yield and thermal resistance of Bacillus stearothermophilus. Appl. Biochem. Biotechnol. 105–108: 287–294.

    Article  Google Scholar 

  27. Rose, R., B. Setlow, A. Monroe, M. Mallozzi, A. Driks, and P. Setlow (2007) Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J. Appl. Microbiol. 103: 691–699.

    Article  CAS  Google Scholar 

  28. Nguyen Thi Minh, H., A. Durand, P. Loison, J. Perrier-Cornet, and P. Gervais (2011) Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Appl. Microbiol. Biotechnol. 90: 1409–1417.

    Article  CAS  Google Scholar 

  29. Pandey, A., C. R. Soccol, J. A. Rodriguez-Leon, and P. Nigam (2001) Solidstate fermentation in biotechnology: Fundamentals and applications. Asiatech, New Delhi, India.

    Google Scholar 

  30. Gervais, P. and P. Molin (2003) The role of water in solid-state fermentation. Biochem. Eng. J. 13: 85–101.

    Article  CAS  Google Scholar 

  31. Nguyen Thi Minh, H., J. Perrier-Cornet, and P. Gervais (2008) Effect of the osmotic conditions during sporulation on the subsequent resistance of bacterial spores. Appl. Microbiol. Biotechnol. 80: 107–114.

    Article  Google Scholar 

  32. Grossman, A. D. and R. Losick (1988) Extracellular control of spore formation in Bacillussubtilis. Proc. Natl. Acad. Sci. USA. 85: 4369–4373.

    Article  CAS  Google Scholar 

  33. Sella, S. R. B. R., B. P. Guizelini, L. P. S. Vandenberghe, A. B. P. Medeirosand, and C. R. Soccol (2009) Lab-Scale production of Bacillus atrophaeus’ spores by solid state fermentation in different types of bioreactors. Braz. Arch. Biol. Technol. 52: 159–170.

    Article  Google Scholar 

  34. Cazemier, A. E., S. F. M. Wagenaars, and P. F. Ter Steeg (2001) Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from Bacilli. J. Appl. Microbiol. 90: 761–770.

    Article  CAS  Google Scholar 

  35. Oomes, S. J., A. C. van Zuijlen, J. O. Hehenkamp, H. Witsenboer, J. M. van der Vossen, and S. Brul (2007) The characterization of Bacillus spores occurring in the manufacturing of (low acid) canned products. Int. J. Food Microbiol. 120: 85–94.

    Article  CAS  Google Scholar 

  36. Beaman, T. C. and P. Gerhardt (1986) Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52: 1242–1246.

    CAS  Google Scholar 

  37. Nicholson, W. L., N. Munakata, G. Horneck, H. J. Meloshand, and P. Setlow (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548–572.

    Article  CAS  Google Scholar 

  38. Molin, G. and M. Svensson (1976) Formation of dry-heat resistant Bacillus subtilis var. niger spores as influenced by the composition of the sporulation medium. A. Van. Leeuw. J. Microb. 42: 387–395.

    Article  CAS  Google Scholar 

  39. Granger, A. C., E. K. Gaidamakova, V. Y. Matrosova, M. J. Daly, and P. Setlow (2011) Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Appl. Environ. Microbiol. 77: 32–40.

    Article  CAS  Google Scholar 

  40. Sanada, C. T. N., S. G. Karp, M. R. Spier, A. C. Portella, P. M. Gouvea, C. T. Yamaguishi, L. P. S. Vandenberghe, A. Pandey, and C. R. Soccol (2009) Utilization of soybean vinasse for α-galactosidase production. Food Res. Int. 42: 476–483.

    Article  CAS  Google Scholar 

  41. Yazdany, S. and K. B. Lashkari (1975) Effect of pH on sporulation of Bacillus stearothermophilus. Appl. Microbiol. 30: 1–3.

    CAS  Google Scholar 

  42. Stülk, J. and W. Hillen (2000) Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849–80.

    Article  Google Scholar 

  43. Chen, Z. M., Q. Li, H. M. Liu, N. Yu, T. J. Xie, M. Y. Yang, P. Shen, and X. D. Chen (2010) Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Appl. Microbiol. Biotechnol. 85: 1353–1360.

    Article  CAS  Google Scholar 

  44. Warriner, K. and W. M. Waites (1999) Enhanced sporulation in Bacillus subtilis grown on medium containing glucose: Ribose. Lett. Appl. Microbiol. 29: 97–102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Regina B. R. Sella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sella, S.R.B.R., Masetti, C., Figueiredo, L.F.M. et al. Soybean molasses-based bioindicator system for monitoring sterilization process: Designing and performance evaluation. Biotechnol Bioproc E 18, 75–87 (2013). https://doi.org/10.1007/s12257-012-0356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0356-z

Keywords

Navigation