Skip to main content
Log in

Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The first-attempt study employed a proteomics strategy for the identification of abundant proteins from a bioelectricity generation and dye decolorization bacterium Proteus hauseri ZMd44. By using the degenerated primers designed based on the peptide sequences from tandem mass spectroscopy and the whole genomics annotation of the closely associated strain, Proteus penneri ATCC 35198, the genes were successfully obtained for two full-length genes of 543 bp (laccase) and 1,086 bp (Omp F, porin) encoding to 181 amino acids and 362 amino acids, respectively. It explored laccase and NADH dehydrogenase involvement in the oxidation-reduction reaction as well, as porin played an important role in providing channels for related proteins in the accomplishment of electron transportation in P. hauseri. Detailed enzymatic assays indicated that laccase activity of 542.2 U/DCW could be stimulated by 2.5 mM copper induction in LB medium (ca. 293-fold to those without copper induction). Among intracellular proteins, NADH dehydrogenase activity of 257.2 U/mg via mediator riboflavin was in parallel with the decolorizing capability of azo dye Rb160 that only took place in LB medium. From the evaluation of kinetic parameters (Vmax and Km were 0.272 U/min and 0.393 mM with ABTS, 0.046 U/min and 43.8 μM with NADH), it is better to decipher the decolorization mechanism of ZMd44 indicating that laccase and NADH dehydrogenase played the most crucial role for azo dye decolorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, B., M. Wang, L. Liu, Z. Zhou, S. Wen, A. Rozalski, and L. Wang (2009) 16S-23S rDNA internal transcribed spacer regions in four Proteus species. J. Microbiol. Methods 77: 109–118.

    Article  CAS  Google Scholar 

  2. O’Hara, C. M., F. W. Brenner, A. G. Steigerwalt, B. C. Hill, B. Holmes, P. A. Grimont, P. M. Hawkey, J. L. Penner, J. M. Miller, and D. J. Brenner (2000) Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int. J. Syst. Evol. Microbiol. 50: 1869–1875.

    Google Scholar 

  3. Chen, B. Y., M. M. Zhang, C. T. Chang, Y. Ding, K. L. Lin, C. S. Chiou, C. C. Hsueh, and H. Xu (2010) Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour. Technol. 101: 4737–4741.

    Article  CAS  Google Scholar 

  4. Zhang, M. M., W. M. Chen, B. Y. Chen, C. T. Chang, C. C. Hsueh, Y. Ding, K. J. Lin, and H. Xu (2010) Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresour. Technol. 101: 2651–2656.

    Article  CAS  Google Scholar 

  5. Chen, B. Y., Y. M. Wang, and I. S. Ng (2011) Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Bioresour. Technol. 102: 1159–1165.

    Article  CAS  Google Scholar 

  6. Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21: 999–1015.

    Article  CAS  Google Scholar 

  7. Logan, B. E. (2008) Microbial Fuel Cells, Wiley Bicenetennial-Knowledge for Generations (1807–2007).

    Google Scholar 

  8. Chen, B. Y., Y. M. Wang, I. S. Ng, S. Q. Liu, and J. Y. Hung (2011) Deciphering simultaneous bioelectricity generation and dye decolorization using Proteus hauseri. J. Biosci. Bioeng. 113: 502–507.

    Article  Google Scholar 

  9. Patterson, S. D. and R. H. Aebersold (2003) Proteomics: The first decade and beyond. Nat. Genet. 33: 311–323.

    Article  CAS  Google Scholar 

  10. Bumpus, S. B., B. S. Evans, P. M. Thomas, I. Ntai, and N. L. Kelleher (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat. Biotechnol. 27: 951–956.

    Article  CAS  Google Scholar 

  11. Choi, J., W. A. Joo, S. J. Park, S. H. Lee, and C. W. Kim (2005) An efficient proteomics based strategy for the functional characterization of a novel halophilic enzyme from Halobacterium salinarum. Proteomics 5: 907–917.

    Article  CAS  Google Scholar 

  12. Dawkar, V. V., U. U. Jadhav, G. S. Ghodake, and S. P. Govindwar (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20: 777–787.

    Article  CAS  Google Scholar 

  13. Telke, A. A., G. S. Ghodake, D. C. Kalyani, R. S. Dhanve, and S. P. Govindwar (2011) Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR. Bioresour. Technol. 102: 1752–1756.

    Article  CAS  Google Scholar 

  14. Pricelius, S., C. Held, M. Murkovic, M. Bozic, V. Kokol, A. Cavaco-Paulo, and G. M. Guebitz (2007) Enzymatic reduction of azo and indigoid compounds. Appl. Microbiol. Biotechnol. 77: 321–327.

    Article  CAS  Google Scholar 

  15. Zimmermann, T., H. G. Kulla, and T. Leisinger (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem. 129: 197–203.

    Article  CAS  Google Scholar 

  16. Wariishi, H., M. Kabuto, J. Mikuni, M. Oyadomari, and H. Tanaka (2002) Degradation of water-insoluble dyes by microperoxidase-11, an effective and stable peroxidative catalyst in hydrophilic organic media. Biotechnol. Prog. 18: 36–42.

    Article  CAS  Google Scholar 

  17. Matis, M., M. Zakelj-Mavric, and J. Peter-Katalinic (2005) Mass spectrometry and database search in the analysis of proteins from the fungus Pleurotus ostreatus. Proteomics 5: 67–75.

    Article  CAS  Google Scholar 

  18. Wilm, M., A. Shevchenko, T. Houthaeve, S. Breit, L. Schweigerer, T. Fotsis, and M. Mann (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466–469.

    Article  CAS  Google Scholar 

  19. Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783–795.

    Article  Google Scholar 

  20. Jyothisri, K., V. Deepak, and M. R. Rajeswari (1999) Purification and characterization of a major 40 kDa outer membrane protein of Acinetobacter baumannii. FEBS Lett. 443: 57–60.

    Article  CAS  Google Scholar 

  21. Guzev, K. V., M. P. Isaeva, O. D. Novikova, T. F. Solov’eva, and V. A. Rasskazov (2005) Molecular characteristics of OmpF-like porins from pathogenic Yersinia. Biochem. 70: 1104–1110.

    CAS  Google Scholar 

  22. Wang, B., M. Xu, and G. Sun (2011) Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe (III) citrate as sole terminal electron acceptor. Appl. Microbiol. Biotechnol. 86: 1513–1523.

    Article  Google Scholar 

  23. Sirim, D., F. Wagner, L. Wang, R. D. Schmid, and J. Pleiss (2011) The Laccase Engineering Database: A classification and analysis system for laccases and related multicopper oxidases. Database (Oxford), bar006.

    Google Scholar 

  24. Linke, D., H. Bouws, T. Peters, M. Nimtz, R. G. Berger, and H. Zorn (2005) Laccases of Pleurotus sapidus: Characterization and cloning. J. Agric. Food. Chem. 53: 9498–9505.

    Article  CAS  Google Scholar 

  25. Neifar, M., A. Jaouani, R. Ellouze-Ghorbel, S. Ellouze-Chaabouni, and M. J. Penninckx (2009) Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117. Lett. Appl. Microbiol. 49: 73–78.

    Article  CAS  Google Scholar 

  26. Telke, A.A., A. A. Kadam, S. S. Japtap, J. P. Jadhav, and S. P. Govindwar (2010) Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioproc. Eng. 15: 696–703.

    Article  CAS  Google Scholar 

  27. Zhu, Y., H. Zhang, M. Cao, Z. Wei, F. Hung, and P. Gao (2011) Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnol. Bioproc. Eng. 16: 1027–1035.

    Article  CAS  Google Scholar 

  28. Wu, J., K. S. Kim, J. H. Lee, and Y. C. Lee (2010) Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J. Environ. Sci. 22: 635–640.

    Article  CAS  Google Scholar 

  29. Hickman, F. W., A. G. Steigerwalt, J. J. Farmer, and D. J. Brenner (1982) Identification of Proteus penneri sp. nov., formerly known as Proteus vulgaris indole negative or as Proteus vulgaris biogroup 1. J. Clin. Microbiol. 15: 1097–1102.

    CAS  Google Scholar 

  30. Olukanni, O. D., A. A. Osuntoki, D. C. Kalyani, G. O. Gbenle, and S. P. Govindwar (2010) Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater. 184: 290–298.

    Article  CAS  Google Scholar 

  31. Rodriguez Couto, S. and J. L. Toca Herrera (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24: 500–513.

    Article  CAS  Google Scholar 

  32. Forgacs, E., T. Cserhati, and G. Oros (2004) Removal of synthetic dyes from wastewaters: A review. Environ. Int. 30: 953–971.

    Article  CAS  Google Scholar 

  33. Chen, B. Y., M. Y. Wang, W. B. Lu, and J. S. Chang (2007) Use of active consortia of constructed ternary bacterial cultures via mixture design for azo-dye decolorization enhancement. J. Hazard. Mater. 145: 404–409.

    Article  CAS  Google Scholar 

  34. Saratale, R. G., G. D. Saratale, D. C. Kalyani, J. S. Chang, and S. P. Govindwar (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour. Technol. 100: 2493–2500.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. -Son Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, I.S., Zheng, X., Chen, BY. et al. Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44. Biotechnol Bioproc E 18, 8–17 (2013). https://doi.org/10.1007/s12257-012-0340-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0340-7

Keywords

Navigation