Skip to main content

Advertisement

Log in

Biologic Evaluation of Diabetes and Local Recurrence in Non-Small Cell Lung Cancer

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

A recent multicenter study led by our institution demonstrated that local recurrence of non-small cell lung cancer (NSCLC) was significantly more frequent in patients with diabetes, raising the possibility of different tumor biology in diabetics. Epithelial-to-mesenchymal transition (EMT) plays a key role in local tumor recurrence and metastasis. In the present study, we investigated differences of tumor microenvironment between patients with and without diabetes by examining expression of EMT markers. Seventy-nine NSCLC patients were selected from the cohort of our early multicenter study. These patients were classified into 4 groups: 39 with adenocarcinoma with (n = 19) and without (n = 20) diabetes, and 40 with squamous cell carcinoma with (n = 20) and without (n = 20) diabetes. Immunohistochemical expression of eight EMT markers was analyzed, including transforming growth factor-beta (TGF-β), epidermal growth factor receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), vimentin, E-cadherin, N-cadherin, HtrA1, and beta-catenin. Five markers (E-cadherin, HtrA1, TGF-β, IGF-1R and vimentin) demonstrated significantly higher expression in diabetics than in non-diabetics in both histology types. N-cadherin had higher expression in diabetics, though the difference did not reach statistical significance. EGFR showed a higher expression in diabetics in squamous cell carcinoma only. Beta-catenin was the only marker with no difference in expression between diabetics versus non-diabetics. Our findings suggest that diabetes is associated with enhanced EMT in NSCLC, which may contribute to growth and invasiveness of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Sherif A, Fernando HC, Santos R, Pettiford B, Luketich JD, Close JM, et al. (2007) Margin and local recurrence after sublobar resection of non-small cell lung cancer. Ann Surg Oncol 14(8):2400–2405

    Article  PubMed  Google Scholar 

  2. Martini N, Bains MS, Burt ME, Zakowski MF, McCormack P, Rusch VW, et al. (1995) Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg 109(1):120–129

    Article  CAS  PubMed  Google Scholar 

  3. Varlotto JM, Recht A, Flickinger JC, Medford-Davis LN, Dyer AM, Decamp MM (2009) Factors associated with local and distant recurrence and survival in patients with resected nonsmall cell lung cancer. Cancer 115(5):1059–1069

    Article  PubMed  Google Scholar 

  4. Varlotto J, Medford-Davis LN, Recht A, Flickinger J, Schaefer E, Shelkey J, et al. (2012) Confirmation of the role of diabetes in the local recurrence of surgically resected non-small cell lung cancer. Lung Cancer 75(3):381–390

    Article  CAS  PubMed  Google Scholar 

  5. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hills CE, Squires PE (2010) TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 31(1):68–74

    Article  CAS  PubMed  Google Scholar 

  8. Chien J, Staub J, SI H, Erickson-Johnson MR, Couch FJ, Smith DI, et al. (2004) A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23(8):1636–1644

    Article  CAS  PubMed  Google Scholar 

  9. Baldi A, De LA, Morini M, Battista T, Felsani A, Baldi F, et al. (2002) The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 21(43):6684–6688

    Article  CAS  PubMed  Google Scholar 

  10. Boyd JA, Hubbs JL, Kim DW, Hollis D, Marks LB, Kelsey CR (2010) Timing of local and distant failure in resected lung cancer: implications for reported rates of local failure. J Thorac Oncol 5(2):211–214

    Article  PubMed  Google Scholar 

  11. Brundage MD, Davies D, Mackillop WJ (2002) Prognostic factors in non-small cell lung cancer: a decade of progress. Chest 122(3):1037–1057

    Article  PubMed  Google Scholar 

  12. Pollack JR (2007) A perspective on DNA microarrays in pathology research and practice. Am J Pathol 171(2):375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neal JW, Gainor JF, Shaw AT (2015) Developing biomarker-specific end points in lung cancer clinical trials. Nat Rev Clin Oncol 12(3):135–146

    Article  CAS  PubMed  Google Scholar 

  14. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  15. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R (2009) Diabetes and cancer. Endocr Relat Cancer 16(4):1103–1123

    Article  CAS  PubMed  Google Scholar 

  16. Eliasz S, Liang S, Chen Y, De Marco MA, Machek O, Skucha S, et al. (2010) Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 29(17):2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hills CE, Siamantouras E, Smith SW, Cockwell P, Liu KK, Squires PE (2012) TGFbeta modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia 55(3):812–824

    Article  CAS  PubMed  Google Scholar 

  18. Nerlich AG, Hagedorn HG, Boheim M, Schleicher ED (1998) Patients with diabetes-induced microangiopathy show a reduced frequency of carcinomas. In Vivo 12(6):667–670

    CAS  PubMed  Google Scholar 

  19. Fuxe J, Vincent T, Garcia d HA (2010) Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 9(12):2363–2374

    Article  CAS  PubMed  Google Scholar 

  20. Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5(8):1145–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26(2):209–221

    Article  CAS  PubMed  Google Scholar 

  23. Wang N, Eckert KA, Zomorrodi AR, Xin P, Pan W, Shearer DA et al. (2012) Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways. PLoS One 7(6):e39446.

  24. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28(1–2):151–166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Rassaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, Y., Mani, H. et al. Biologic Evaluation of Diabetes and Local Recurrence in Non-Small Cell Lung Cancer. Pathol. Oncol. Res. 23, 73–77 (2017). https://doi.org/10.1007/s12253-016-0086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0086-1

Keywords

Navigation