Skip to main content
Log in

Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin

  • Research Article
  • Published:
Virologica Sinica

Abstract

For subunit vaccines, adjuvants play a key role in shaping the magnitude, persistence and form of targeted antigen-specific immune response. Flagellin is a potent immune activator by bridging innate inflammatory responses and adaptive immunity and an adjuvant candidate for clinical application. Calcium phosphate nanoparticles are efficient carriers for different biomolecules like DNA, RNA, peptides and proteins. Flagellin-functionalized calcium phosphate nanoparticles were prepared and their immunostimulatory effect on the innate immune system, i.e. the cytokine production, was studied. They induced the production of the proinflammatory cytokines IL-8 (Caco-2 cells) and IL-1β (bone marrow-derived macrophages; BMDM) in vitro and IL-6 in vivo after intraperitoneal injection in mice. The immunostimulation was more pronounced than with free flagellin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amicizia D, Domnich A, Panatto D, Lai P L, Cristina M L, Avio U, and Gasparini R. 2013. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother, 9: 1163–1171.

    Article  PubMed  Google Scholar 

  • Blutt S E, Miller A D, Salmon S L, Metzger D W, and Conner M E. 2012. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol, 5: 712–719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffman R L, Sher A, and Seder R A. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity, 4: 492–503.

    Article  Google Scholar 

  • Demento S L, Siefert A L, Bandyopadhyay A, Sharp F A, and Fahmy T M. 2011. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol., 29: 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Dorozhkin S V, and Epple M. 2002. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 41: 3130–3146.

    Article  CAS  Google Scholar 

  • Epand R M, and Vogel H J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta, 1462: 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw M H, Kim Y G, and Núñez G. 2012. NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol., 13: 449–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman M J, Huby T, Guerin M, and Le Goff W. 2011. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem., 35: 30926–30936.

    Article  Google Scholar 

  • Harandi A M, Medaglini D, and Shattock R J. 2010. Vaccine adjuvants: a priority for vaccine research. Vaccine, 28: 2363–2366.

    Article  PubMed  Google Scholar 

  • Honko A N, and Mizel S B. 2005. Effects of flagellin on innate and adaptive immunity. Immunol Res, 33: 83–101.

    Article  CAS  PubMed  Google Scholar 

  • Klinman D M, Klaschik S, Sato T, and Tross D. 2009. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev., 61: 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, and Westendorf A M. 2013. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol., 190: 6221–6229.

    Article  CAS  PubMed  Google Scholar 

  • Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf A M, and Epple M. 2012. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J. Mater. Chem., 22: 396–404.

    Article  CAS  Google Scholar 

  • Krishnamachari Y, and Salem A K. 2009. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev., 61: 205–217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W, Shi W, Li Q, Tien P, and Yan H. 2010. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem. Biophys. Res. Commun., 392: 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Mbow M L, De Gregorio E, Valiante N M, and Rappuoli R. 2010. New adjuvants for human vaccines. Curr. Opin. Immunol., 22: 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Miao E A, Andersen-Nissen E, Warren S E, and Aderem A. 2007. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin. Immunopathol., 29: 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Mizel S B, and Bates J T. 2010. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol., 185: 5677–5682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann S, Kovtun A, Dietzel I D, Epple M, and Heumann R. 2009. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials, 30: 6794–6802.

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Li Y H, Liu F, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Han C, Fan M W, and Yan H M. 2012. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. J. Dent. Res., 91: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova V, Knuschke T, Buer J, Westendorf A M, and Epple M. 2011. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater., 7: 4029–4036.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, and Westendorf A M. 2010. The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials, 31: 5627–5633.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf A M, and Epple M. 2013. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater., 9: 7527–7535.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova V, Rotan O, Klesing J, Nalbant P, Buer J, Knuschke T, Westendorf A M, and Epple M. 2012. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. J. Nanopart. Res., 14: 910.

    Article  Google Scholar 

  • Sun Y, Shi W, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Zhong M H, Li Y M, Cao Y, Xiao Y, Li W, Yu J, Li Y H, Fan M W, and Yan H M. 2012. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J. Dent. Res., 91: 941–947.

    Article  CAS  PubMed  Google Scholar 

  • Vijay-Kumar M, Carvalho F A, Aitken J D, Fifadara N H, and Gewirtz A T. 2010. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur. J. Immunol., 12: 3528–3534.

    Article  Google Scholar 

  • Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert H H, Peters J H, Nesselhut T, and Lorenzen D R. 2009. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm., 1–2: 61–68.

    Article  Google Scholar 

  • Yan H, Lamm M E, Björling E, and Huang Y T. 2002. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol., 76: 10972–10979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y, Li Y, Zhou D, He B, Chen Y, Yang Y, Yu J, and Yan H. 2013. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum. Vaccin. Immunother., 9: 1084–1092.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y, Zhou D, Chen Y, Cao Y, Xiao Y, He B, Yang Y, Sun Y, Lu M, and Yan H. 2013. Flagellins of Salmonella Typhi and non-pathogenic Escherichia coli are differentially recognized through NLRC4 pathway in macrophages. J. Innate Immunity: (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Epple or Huimin Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlova, D., Sokolova, V., Zhong, M. et al. Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol. Sin. 29, 33–39 (2014). https://doi.org/10.1007/s12250-014-3379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-014-3379-0

Keywords

Navigation