Skip to main content
Log in

Electrospun form-stable phase change composite nanofibers consisting of capric acid-based binary fatty acid eutectics and polyethylene terephthalate

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The four binary fatty acid eutectics of capric-lauric acid (CA-LA), capric-myristic acid (CA-MA), capric-palmitic acid (CA-PA), and capric-stearic acid (CA-SA) were firstly prepared as solid-liquid phase change materials (PCMs); then, the composite phase change nanofibers consisting of CA-based binary fatty acid eutectic and polyethylene terephthalate (PET) were fabricated by electrospinning for thermal energy storage. The maximum mass ratios of fatty acid eutectics versus PET in the nanofibers could reach up to 2/1. The FE-SEM images revealed that the composite nanofibers possessed smooth and cylindrical morphological structure having diameters of about 100–300 nm. The fatty acid eutectic could be uniformly distributed in the three-dimension network structure of the PET nanofibers. The FT-IR results indicated that the fatty acid eutectic and PET had no chemical reaction and exhibited good compatibility with each other. The DSC measurements showed that the prepared composite nanofibers had appropriate phase transition temperatures (about 5–38 °C) based upon climatic requirement, whilst the phase change temperatures and the enthalpy values of the composite nanofibers could be adjusted by changing the contents and the types of binary fatty acid eutectics in the nanofibers. The TGA results suggested that the onset thermal degradation temperatures and charred residues at 700 °C of the composite nanofibers were lower than those of pure PET nanofibers, but higher than those of fatty acid eutectic, which were caused by the fact that the PET had better thermal stability than fatty acid eutectic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Sharma and K. Sagara, Inter. J. Green Energ., 2, 1 (2005).

    Article  Google Scholar 

  2. A. Pasupathy, R. Velraj, and R. V. Seeniraj, Renew. Sust. Energ. Rev., 12, 39 (2008).

    Article  Google Scholar 

  3. A. F. Regin, S. C. Solanki, and J. S. Saini, Renew. Sust. Energ. Rev., 12, 2438 (2008).

    Article  CAS  Google Scholar 

  4. M. Kenisarin and K. Mahkamov, Renew. Sust. Energ. Rev., 11, 1913 (2007).

    Article  CAS  Google Scholar 

  5. V. V. Tyagi and D. Buddhi, Renew. Sust. Energ. Rev., 11, 1146 (2007).

    Article  Google Scholar 

  6. K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, and H. Ogoshi, Appl. Therm. Eng., 24, 221 (2004).

    Article  CAS  Google Scholar 

  7. H. Benli and A. Durmus, Sol. Energ., 83, 2109 (2009).

    Article  CAS  Google Scholar 

  8. Q. H. Meng and J. L. Hu, Sol. Energ. Mater. Sol. Cells, 92, 1245 (2008).

    Article  CAS  Google Scholar 

  9. S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).

    Article  CAS  Google Scholar 

  10. F. Kuznik, D. David, K. Johannes, and J. J. Roux, Renew. Sust. Energ. Rev., 15, 379 (2011).

    Article  CAS  Google Scholar 

  11. K. Choi, H. J. Chung, B. Lee, K. H. Chung, G. S. Cho, M. Park, Y. Kim, and S. Watanuki, Fiber. Polym., 6, 343 (2005).

    Article  Google Scholar 

  12. A. Sari and A. Karaipekli, Sol. Energ. Mater. Sol. Cells, 93, 571 (2009).

    Article  CAS  Google Scholar 

  13. J. J. Zhang, J. L. Zhang, S. M. He, K. Z. Wu, and X. D. Liu, Thermochim. Acta, 369, 157 (2001).

    Article  CAS  Google Scholar 

  14. F. O. Cedeno, M. M. Prieto, A. Espina, and J. R. Garcia, Thermochim. Acta, 369, 39 (2001).

    Article  CAS  Google Scholar 

  15. T. Inoue, Y. Hisatsugu, R. Ishikawa, and M. Suzuki, Chem. Phys. Lipids, 127, 161 (2004).

    Article  CAS  Google Scholar 

  16. A. Sari, H. Sari, and A. Onal, Energ. Convers. Manag., 45, 365 (2004).

    Article  CAS  Google Scholar 

  17. A. Sari, Appl. Therm. Eng., 25, 2100 (2005).

    Article  CAS  Google Scholar 

  18. L. J. Wang and D. Meng, Appl. Energ., 87, 2660 (2010).

    Article  CAS  Google Scholar 

  19. C. Alkan and A. Sari, Sol. Energ., 82, 118 (2008).

    Article  CAS  Google Scholar 

  20. Y. Wang, T. D. Xia, H. X. Feng, and H. Zhang, Renew. Energ., 36, 1814 (2011).

    Article  CAS  Google Scholar 

  21. K. Pielichowska, S. G owinkowski, J. Lekki, D. Binias, K. Pielichowski, and J. Jenczyk, Eur. Polym. J., 44, 3344 (2008).

    Article  CAS  Google Scholar 

  22. K. Pielichowski and K. Flejtuch, Polym. Advan. Technol., 16, 127 (2005).

    Article  CAS  Google Scholar 

  23. K. Pielichowski and K. Flejtuch, Thermochim. Acta, 442, 18 (2006).

    Article  CAS  Google Scholar 

  24. A. Sari, M. Akcay, M. Soylak, and A. Onal, J. Sci. Ind. Res., 64, 991 (2005).

    CAS  Google Scholar 

  25. A. Sari, C. Alkan, U. Kolemen, and O. Uzun, J. Appl. Polym. Sci., 101, 1402 (2006).

    Article  CAS  Google Scholar 

  26. K. Kaygusuz, C. Alkan, A. Sari, and O. Uzun, Energ. Source. Part A, 30, 1050 (2008).

    Article  CAS  Google Scholar 

  27. A. Sari, C. Alkan, A. Karaipekli, and A. Onal, Energ. Convers. Manag., 49, 373 (2008).

    Article  CAS  Google Scholar 

  28. J. T. McCann, M. Marquez, and Y. N. Xia, Nano Lett., 6, 2868 (2006).

    Article  CAS  Google Scholar 

  29. C. Z. Chen, L. G. Wang, and Y. Huang, Polymer, 48, 5202 (2007).

    Article  CAS  Google Scholar 

  30. C. Z. Chen, L. G. Wang, and Y. Huang, AIChE J., 55, 820 (2009).

    Article  CAS  Google Scholar 

  31. C. Z. Chen, L. G. Wang, and Y. Huang, Mater. Lett., 63, 569 (2009).

    Article  CAS  Google Scholar 

  32. C. Z. Chen, L. G. Wang, and Y. Huang, Appl. Energ., 88, 3133 (2011).

    Article  CAS  Google Scholar 

  33. T. T. N. Thuy, J. G. Lee, and J. S. Park, Macromol. Res., 19, 3708 (2011).

    Google Scholar 

  34. M. Seifpoor, M. Nouri, and J. Mokhtari, Fiber. Polym., 12, 706 (2011).

    Article  CAS  Google Scholar 

  35. S. L. Lv, N. Zhu, and G. H. Feng, Energ. Buildings, 38, 708 (2006).

    Article  Google Scholar 

  36. Y. P. Zhang, Y. H. Su, and X. S. Ge, J. China Univer. Sci. Tech., 25 474 (1995).

    CAS  Google Scholar 

  37. X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

  38. L. Wang, P. D. Topham, O. O. Mykhaylyk, J. R. Howse, W. Bras, R. A. L. Jones, and A. J. Ryan, Adv. Mater., 19, 3544 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qufu Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, H., Li, D., Zhang, H. et al. Electrospun form-stable phase change composite nanofibers consisting of capric acid-based binary fatty acid eutectics and polyethylene terephthalate. Fibers Polym 14, 89–99 (2013). https://doi.org/10.1007/s12221-013-0089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0089-4

Keywords

Navigation