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Abstract
Multi-material design optimization problems can, after discretization, be solved by
the iterative solution of simpler sub-problems which approximate the original prob-
lem at an expansion point to first order. In particular, models constructed from convex
separable first order approximations have a long and successful tradition in the design
optimization community and have led to powerful optimization tools like the promi-
nently used method of moving asymptotes (MMA). In this paper, we introduce several
new separable approximations to amodel problem and examine them in terms of accu-
racy and fast evaluation. The models can, in general, be nonconvex and are based on
the Sherman–Morrison–Woodbury matrix identity on the one hand, and on the math-
ematical concept of topological derivatives on the other hand. We show a surprising
relation between two models originating from these two—at a first sight—very dif-
ferent concepts. Numerical experiments show a high level of accuracy for two of our
proposed models while also their evaluation can be performed efficiently once enough
data has been precomputed in an offline stage. Additionally it is demonstrated that
suboptimal decisions can be avoided using our most accurate models.
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1 Introduction

The goal of computational design optimization is to find an optimal arrangement
of possibly multiple materials inside a design region of a computational domain.
Here, optimality is considered with respect to a given cost function, which most often
depends on the solution of a constraining partial differential equation (PDE). Thus, a
general PDE-constrained design optimization problem reads

�∗ = arg min
�

J (�, u) subject to e(�; u) = 0 (1)

where e(·; ·) represents the PDE constraint and � can also be understood as a set
of subdomains corresponding to different materials. There exist different classes of
approaches to solving problems of this type. While shape optimization methods [1]
can only modify existing boundaries or interfaces between subdomains in a smooth
way, topology optimization approaches [2] can also alter the topology of a design
and can thus admit more general solutions. In topology optimization, the design is
most often represented by either a level set function [3, 4] or by means of a density
function [5] that interpolates between different material properties. Note that both
kinds of approaches can be extended to the case of multiple materials, see, e.g., [6,
7] or [8]. Typically, the constraining PDE is solved by a numerical method, most
often by the finite element method. When approaching a design optimization problem
of the type (1) by a gradient-based approach, one first has to decide whether the
differentiation with respect to the design variable should be carried out before or
after discretization of the problem. It should be noted that, depending on the chosen
discretization and parametrization of the design, these two ways need not yield the
same discrete sensitivities [9]. We mention that, of course, the numerical analysis in
finite dimensions is only a part of the solution of shape and topology optimization
problems. Such an analysis should be completemented by the results on the infinite
dimensional model including the existence of an optimal shape and the convergence
of derivative based optimization methods. Such results are obtained usually by using
appropriate regularization techniques. We refer the reader, e.g., to [10].

In this paper we are interested in a (multi-material) topology optimization problem
which we parametrize by a density function. Here, we focus on the approach where we
first discretize the problem and then aim to solve the discretized, finite-dimensional
problem. Given a computational domain D ⊂ R

2 which is discretized using a fixed
structured mesh consisting ofm triangular elements with n vertices, we aim at finding
the optimal material distribution λ∗ ∈ R

m minimizing the heat compliance,

λ∗ = arg min
λ∈[λ,λ]m

J (λ) (2)

with J (λ) := f�K (λ)−1 f . Here, K (λ) ∈ R
n×n and f ∈ R

n represent, respectively,
the (invertible) stiffness matrix and the load vector corresponding to a discretization
by means of piecewise linear, globally continuous finite elements where the material
coefficient in the �-th element T� is given by λ�, � ∈ {1, . . . ,m}. The problem may be
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subject to additional constraints, e.g., on the volume of given materials, or enriched
by terms that penalize the appearance of intermediate materials or that regularize the
obtained designs by filtering [11].

The idea of sequential global programming (SGP) [12] is the following: Instead of
solving an optimization problem like (2) over Rm directly, one solves a sequence of
simpler optimization problems with cost function Ĵ [λ(k)](λ) which approximate the
original problem with cost function J (λ) at an expansion point λ(k) to first order. The
solution of the simpler optimization problem at iteration k is subsequently used as an
expansion point λ(k+1) in iteration k + 1, i.e.,

λ(k+1) = arg min
λ∈[λ,λ]m

Ĵ [λ(k)](λ).

A class of approximate models that is of particular interest is the class of separable
models. The use of convex, separable approximations has a long tradition in design
optimization, see, e.g., [13–15] and have lead to powerful software realizations like
CONLIN [16] or the method of moving asymptotes [17]. Such models allow to solve
the approximate optimization problem that is posed overRm by solvingmerelym one-
dimensional optimization problems. These one-dimensional sub-problems can often
be solved to global optimality. This observation holds true trivially for the more tradi-
tional convex separable approximations, used, e.g., in MMA. However, for separable
approximations, convexity is not a strict requirement. It is clear that the convergence
speed of an SGP algorithm strongly depends on the quality of the approximatingmodel
Ĵ [λ(k)]. In this paper, we propose different first order separable models Ĵ [λ(k)] and
numerically examine them in terms of accuracy and efficiency of evaluation. But it is
not only the efficiency, which is of interest. This becomes particularly evident, when
topology optimization or discrete material optimization problems are studied. The
usual way to deal with such problems is to use a combined relaxation and penalization
scheme, see, e.g., [5] for an introduction to that topic. While such approaches are very
successful in practice, in extreme cases it can happen that any feasible integer solution
satisfies first order optimality conditions for the continuous relaxations. Thus, there
is a certain risk that rather poor local minimizers are obtained. While in literature
so-called continuation strategies provide a viable concept to cope with that situation,
in this paper we demonstrate that it is in particular the approximation quality in the
sub-problem, which can help to avoid ’wrong’ decisions taken in the course of the
iterations.

Wewill investigatemodels Ĵ that exploit theSherman–Morrison–Woodburymatrix
identity on the discrete level and are thus purely algebraic. On the other hand, we will
consider the mathematical concept of topological derivatives [18] which is a notion
defined on a purely continuous setting. We will draw some, at a first glance, surprising
connections between these two types of approaches and present some models that
are at the same time accurate approximations of the original problem and cheap to
evaluate.

The rest of this paper is organized as follows: In Sect. 2, we introduce the con-
tinuous model problem and its finite element discretization and recall the notions
of topological derivatives, separable approximations of optimization problems and
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also the Sherman–Morrison–Woodbury formula. Next, we introduce a first efficient
model based on this formula that is based on a diagonal approximation of the stiffness
matrix in Sect. 3. Subsequently, we introduce a different model that is motivated by the
concept of topological derivatives in Sect. 4. In Sect. 5, inspired by the procedure of
the previous section, we introduce another accurate and efficient to evaluate approx-
imation to the exact Sherman–Morrison–Woodbury model. A relation between these
latter two models is established in Sect. 6. Finally, we examine all introduced models
numerically in Sect. 7.

2 Preliminaries

In this section, we will introduce the model problem and collect some mathematical
preliminaries, which we will make use of in later sections. In particular, we introduce
the mathematical concept of topological derivatives, the concept of separable first
order approximations of a continuously differentiable function f : R

N → R and
recall the Sherman–Morrison–Woodbury matrix identity.

Notation.Vector quantities and matrices will be denoted by bold-face symbols and
we will denote the j-th component of a vector v ∈ R

N by a sub-index v j . We will
denote the i-th Cartesian unit vector in R

N by e(i). The identity matrix of dimension
N will be denoted by the symbol IN and for a square matrix A ∈ R

N×N we denote
by diagA ∈ R

N×N the diagonal matrix corresponding to A, i.e., (diagA)i,i = Ai,i

and (diagA)i, j = 0 for i �= j , i, j ∈ {1, . . . N }. We denote by Br (x) the ball of radius
r centered at the point x . Moreover, given a set A ⊂ R

d , we denote the characteristic
function of the set A by χA(x), i.e., χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.
The space of square integrable functions over a domain D is denoted by L2(D) and the
subspace of L2(D) functions whose weak gradient is also a L2(D) function is denoted
by H1(D). Finally, given a function f defined on a domainD and a subdomain� ⊂ D,
we will denote the restriction of f to � by f |�.

2.1 Model Problem

As a model problem, we consider a stationary heat equation on a bounded Lipschitz
domain D ⊂ R

d . We are interested in finding the optimal material distribution within
D such that the heat compliance is minimized. We first state the model problem in its
continuous version before introducing the discretized problem, which we are actually
interested in. In this paper, we restrict ourselves to space dimensions d = 1 and d = 2,
but remark that most concepts treated here can be extended (with some effort) also to
three space dimensions.

2.1.1 Continuous Model Problem for TwoMaterials

For the spatial dimension d ∈ {1, 2}, we consider the bounded Lipschitz domain
D = (0, 1)d ⊂ R

d and a given heat source f ∈ L2(D). Given a polygonal set � ⊂ D,
let the piecewise constant heat conductivity λ be defined by
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λ�(x) =
{

λin, x ∈ �,

λout, x ∈ D \ �,
(3)

for two positive constants λin, λout > 0.We assume the boundary of the computational
domain to be composed of a Dirichlet and a Neumann boundary, ∂D = �D ∪�N with
�D ∩ �N = ∅, where inhomogeneous Dirichlet data gD and Neumann data gN are
prescribed, respectively. We are interested in minimizing the heat compliance,

J (u) :=
∫
D
f (x) u(x) dx +

∫
�N

gN (x) u(x) dsx (4)

subject to a stationary heat equation. The weak formulation of the problem at hand
reads

inf
�

J (u) (5a)

s.t. u ∈ Vg :
∫
D

λ�(x)∇u(x) · ∇v(x) dx =
∫
D
f (x)v(x) dx

+
∫

�N

gN (x)v(x) dsx ∀v ∈ V0 (5b)

with the ansatz and test spaces

Vg := {v ∈ H1(D) : v|�D = gD}, V0 := H1
�D

(D) := {v ∈ H1(D) : v|�D = 0}.

For a given subdomain � and assuming that |�D| > 0, due to the Lemma of Lax-
Milgram, problem (5b) admits a unique solution which we denote by u�. Thus, we
introduce the reduced cost function J (�) := J (u�). We assume that the solution
u� is sufficiently regular such that a point evaluation of its gradient ∇u�(z) is well-
defined for all points z ∈ D \ ∂�. When the set � is clear from the context, we
will drop the index � and just write u instead of u�. For simplicity and without loss
of generality, we assume gD = 0 and thus have Vg = V0. The general case can be
obtained by homogenization of the Dirichlet data. Note that, in the case d = 1, the
boundary of D consists of two points, ∂D = {0, 1}. Thus, integrals over �N ⊂ ∂D
have to be understood as point evaluations.

The adjoint state corresponding to optimization problem (5) is the unique solution
p ∈ V0 of

∫
D

λ�(x)∇v(x) · ∇ p(x) dx = −
∫
D
f (x)v(x) dx −

∫
�N

gN (x)v(x) dsx ∀v ∈ V0.

(6)

Thus, it can be seen that p = −u.
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2.1.2 Discrete Model Problem

Next, we introduce the discretization of (5) by means of piecewise linear, globally
continuous finite elements. For that purpose, let T = {T1, . . . , Tm} denote a set of open
simplicial elements (i.e., intervals in 1D or triangles in 2D) which form a subdivision
of the computational domain D, i.e.,

D =
m⋃

�=1

T �, Ti ∩ Tj = ∅ for i �= j .

Moreover, we assume that the subdomain� is resolved by the mesh T , i.e., ∂�∩T� =
∅ for all � ∈ {1, . . . ,m}. Let n ∈ N denote the number of vertices in the mesh,
{ϕ1, . . . , ϕn} the nodal basis and Vh := span{ϕ1, . . . , ϕn} ∩ H1

�D
(D).

Let a vector of conductivity values λ ∈ R
m be given. Note that we will sometimes

identify a vectorλ ∈ R
m ofmaterial valueswith a piecewise constantmaterial function

λ(x) := ∑m
�=1 χT�

(x)λ�. For given λ ∈ R
m , the discrete version of the boundary value

problem (5b) reads

K (λ)u = f (7)

where the stiffness matrix K (λ) ∈ R
n×n and the load vector f ∈ R

n can be written
as

K (λ) =
m∑

�=1

λ� B̃�K
(�)
loc B̃

�
� , f =

m∑
�=1

B̃� f
(�)
loc (8)

with the local stiffnessmatrix K (�)
loc ∈ R

(d+1)×(d+1) and local load vector f (�)
loc ∈ R

d+1,

(
K (�)
loc

)
i, j

=
∫
T�

∇ϕ�, j · ∇ϕ�,i dx, i, j ∈ {1, . . . , d + 1},
(
f (�)
loc

)
i
=

∫
T�

f ϕ�,i dx +
∫

�N∩T̄�

gNϕ�,i dsx , i ∈ {1, . . . , d + 1},

and the local-to-global operator B̃� ∈ R
n×(d+1) satisfying (B̃�)i, j = 1 if i is the

global index of the j-th vertex of element T�, and (B̃�)i, j = 0 else. Here, ϕ�,i ,
i = 1, . . . , d + 1, denotes the i-th basis functions that has non-zero support on T�.
Since we are dealing with piecewise linear and globally continuous finite elements,
the local stiffness matrix can be written as

K (�)
loc = D�D�

� (9)

with some constant matrices D� ∈ R
(d+1)×d depending solely on the coordinates of

the vertices of element T�. Thus, defining B� := B̃�D� ∈ R
n×d , the stiffness matrix

can also be written as
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K (λ) =
m∑

�=1

λ�B�B�
�. (10)

Remark 1 In dimension d = 1, the matrix D� ∈ R
2×1 corresponding to an element

T� = (x�−1, x�) is given by

D� = 1√
x� − x�−1

(−1
1

)
.

For d = 2 and a triangular element T� with vertices x�,1, x�,2, x�,3 in counter-
clockwise enumeration, the matrix D� ∈ R

3×2 reads

D� =
√
1

2
detJ�

⎛
⎝−1 −1

1 0
0 1

⎞
⎠ J−1

�

with J� = (
x�,2 − x�,1 x�,3 − x�,1

) ∈ R
2×2.

Finally, the Dirichlet boundary conditions on nodes v(i) on �D are incorporated by
setting (K (λ))i,i = 1 and (K (λ))i, j = (K (λ)) j,i = 0 for i �= j and f i = gD(vi ).
Note that, for λ ∈ [λ, λ]m with λ > 0, the stiffness matrix after incorporation of the
Dirichlet boundary conditions is invertible. Thus, we can define the solution vector

u(λ) := K (λ)−1 f (11)

and the corresponding discrete solution uh(x) := ∑n
i=1 uiϕi (x), and we introduce

the discrete compliance function J : [λ, λ]m → R,

J (λ) := f�K (λ)−1 f . (12)

Remark 2 In order to obtain practically interesting multi-material designs, the dis-
cretized problem should additionally include a mechanism to penalize intermediate
material. This can be done by adding a term of the form Jgray(λ) = ∑

� |T�|(λ� −
λin)(λout − λ�) (or an extension of this to multiple materials) to the cost function.
On the other hand, it is well-known that topology optimization problems of the type
(2) often lack a solution which can be observed numerically in the form of mesh-
dependent optimized designs. In order to obtain a well-defined problem, one typically
introduces a length scale in the form of a filter radius. This can be realized by adding
a term of the form Jreg(λ) = ‖FRλ − λ‖22 to the cost function. Here, FR is a filtering
operator with a given length scale R. Thus, one typically is interested in minimizing an
enriched cost function J̃ (λ) = J (λ) + γ1 Jgray(λ) + γ2 Jreg(λ). Since the functionals
Jgray(λ) and Jreg(λ) are often separable and can be evaluated efficiently by default,
we will ignore these terms for the rest of this paper. For a more detailed discussion on
this aspect for multi-material topology optimization, see [19, Sec. 2.2].

Later on, we will make use of the following relation.
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Fig. 1 Example of structured
mesh as used in this paper
consisting of only two different
types of elements

Lemma 1 Let uh a piecewise linear and globally continuous finite element function
on a given simplicial mesh in R

d , d ∈ {1, 2} with vector of basis coefficients u ∈ R
n

and let B� = B̃�D� defined as above. Then it holds for any � ∈ {1, . . . ,m}

B�
�u = √|T�| ∇uh |T�

. (13)

Proof First note that u�B� = u� B̃�D� and that u� B̃� is the vector of local degrees
of freedom on element T�. Thus, for d = 1, we get u�B� = [u�,1, u�,2]D� =√|T�|(u�,2 − u�,1)/|T�|. The assertion follows by recalling that |T�| is the length of
the interval T� and that uh is linear on T�.

In order to see the relation in the case d = 2, let
� denote the affine transformation
with Jacobianmatrix J� that maps the reference triangle with vertices (0, 0)�, (1, 0)�,
(0, 1)� to the given physical triangle T�. Recall that, by the chain rule (∇uh) ◦ 
� =
J−�

� ∇û with û = uh ◦ 
� and thus ∇û� J−1
� = ((∇uh) ◦ 
�)

�. Now we have

u�B� = [u�,1, u�,2, u�,3]D� =
√
1

2
detJ�[u�,2 − u�,1, u�,3 − u�,1]J−1

� ,

and noting that [u�,2−u�,1, u�,3−u�,1] = ∇û� and detJ� = 2|T�| finishes the proof.
��

Chosen meshes.
Given a refinement level nref ∈ {4, 5, 6}, we use a structured mesh with 2nref + 1
many uniformly distributed points per dimension. For d = 1 this corresponds to a
uniform grid with n = 2nref + 1 points and m = 2nref elements. For d = 2, we have
n = (2nref + 1)2 and m = 22nref+1 triangular elements. The triangles are obtained by
dividing each square in theCartesian grid created by the vertices into two triangleswith
a diagonal connecting the bottom left and top right vertex of a square, see Fig. 1. As a
result, our triangular mesh contains only two types of triangles (both being isosceles
right triangles): Element type 1 having the right angle on the bottom right, and element
type 2 having the right angle on the top left, see Fig. 1.

2.2 Topological Derivative

The topological derivative of a shape function J = J (�) represents the sensitivity
of J with respect to a local topological perturbation of the domain � around an inner

123



Efficient and Accurate Separable Models... Page 9 of 45   206 

point z. Consider the setting introduced in Sect. 2.1.1 where� denotes a subdomain of
a domainD. Letω ⊂ R

d with 0 ∈ ω represent the shape of the considered perturbation,
e.g., ω = B1(0) the unit ball for circular inclusion shapes, and let z ∈ �∪ (D\�). For
ε > 0, we define the perturbation of shape ω and size ε as ωε(z) := z + εω.

Definition 1 (topological derivative) The topological derivative of a shape function
J at the point z ∈ � ∪ (D \ �) with respect to the inclusion shape ω is defined by

dJ (�)(z, ω) :=
⎧⎨
⎩
lim
ε↘0

1
|ωε | (J (� \ ωε) − J (�)), z ∈ �,

lim
ε↘0

1
|ωε | (J (� ∪ ωε) − J (�)), z ∈ D \ �.

(14)

Remark 3 Note that Definition 1 is equivalent to stating that dJ (�)(z, ω) is the first
term in a topological asymptotic expansion of the form (here for z ∈ D\�)

J (� ∪ ωε) = J (�) + |ωε|dJ (�)(z, ω) + o(|ωε|). (15)

In general, the topological derivative of PDE-constrained topology optimization
problems with elliptic PDE constraints where the principal part of the PDE operator
is perturbed involves the solution to an exterior corrector equation, which we define
in the following. We refer the reader to [20] for a comprehensive introduction to the
numerical computation of topological derivatives for arbitrary inclusion shapes.

Definition 2 Let ω ⊂ R
d open with 0 ∈ ω and let

λi→ j
ω (x) = χω(x)λ j + χRd\ω(x)λi (16)

for i, j ∈ {in, out}, i �= j . Furthermore, for z ∈ � ∪ (D \ �), let ∇u(z) denote the
point evaluation of the gradient of the solution u to (5b) at z. For any given ζ ∈ R

d ,
we define the corrector function Kω[λi , λ j ; ζ ] ∈ ḂL(Rd) for switching frommaterial
λi to λ j , i, j ∈ {in, out}, i �= j , as the unique solution to

∫
Rd

λi→ j
ω ∇Kω[λi , λ j ; ζ ](x) · ∇v(x) dx = −(λ j − λi )

∫
ω

ζ · ∇v(x) dx (17)

for all v ∈ BL(Rd).

Here, BL(Rd) := {v ∈ H1
loc(R

d) : ∇v ∈ L2(Rd)d} denotes the so-called Beppo-
Levi space of locally square integrable functions whose gradient is square integrable
over the whole unbounded domain and ḂL(Rd) := BL(Rd)/R is the space of equiv-
alence classes where the constants are factored out, see also [21, 22].

Remark 4 Note that, for i, j ∈ {in, out}, i �= j , the mapping ζ �→ Kω[λi , λ j ; ζ ] is
linear and we have for d = 2

Kω[λi , λ j ; ∇u(z)] = ∂u

∂x1
(z)Kω[λi , λ j ; e(1)] + ∂u

∂x2
(z)Kω[λi , λ j ; e(2)].
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Proposition 2 Let ω ∈ R
d open with 0 ∈ ω. Let further p be the adjoint state defined

in (6) and Kω[λin, λout; ·], Kω[λout, λin; ·] according to Definition 2. The topological
derivative of problem (5) with respect to ω for z ∈ D\� reads

dJ [λout, λin](�)(z, ω)

= (λin − λout)
1

|ω|
∫

ω

(∇u(z) + ∇Kω[λout, λin; ∇u(z)](x)) · ∇ p(z) dx . (18)

Likewise, for z ∈ �, the topological derivative is given by

dJ [λin, λout](�)(z, ω)

= (λout − λin)
1

|ω|
∫

ω

(∇u(z) + ∇Kω[λin, λout; ∇u(z)](x)) · ∇ p(z) dx . (19)

Proof For a detailed proof, see, e.g., [22]. Moreover, the idea of the proof is outlined
in Sect. 4.1 where the focus is on triangular inclusion shapes. ��
Definition 3 (weak polarization matrix) For ω ∈ R

d open with 0 ∈ ω, ζ ∈ R
d and

i, j ∈ {in, out}, i �= j , let Kω[λi , λ j ; ζ ] be as defined in Definition 2. We introduce
the weak polarization matrix

Pω[λi , λ j ] =
[

1

|ω|
∫

ω

∇Kω[λi , λ j ; e(1)]dx 1

|ω|
∫

ω

∇Kω[λi , λ j ; e(2)]dx
]

∈ R
d×d .

(20)

Using (20) and Remark 4, in the case z ∈ D \ �, we can also write (18) as

dJ [λout, λin](�)(z, ω) = (λin − λout)∇u(z)�(I2 + Pω[λout, λin])∇ p(z), (21)

and an analogous formula is obtained for the case z ∈ �. For a detailed introduction
to the concept of polarization tensors, we refer the reader to the book [23].

It can be seen that the evaluation of the topological derivative at a single point z
involves the solution of problem (17) with ζ = ∇u(z). In the special cases where ω

is an interval (d = 1), a disk or ellipse (d = 2) or a ball or ellipsoid (d = 3), the
solution to problem (17) can be written explicitly in a closed form. For d ∈ {2, 3} and
ω = B1(0) we have ∇Kω[λi , λ j ; ∇u(z)]|ω = −(λ j − λi )/(λ j + (d − 1)λi )∇u(z)
and thus Pω[λi , λ j ] = −(λ j − λi )/(λ j + (d − 1)λi )Id and [24]

dJ [λi , λ j ](�)(z, B1(0)) = dλi
λ j − λi

λ j + (d − 1)λi
∇u(z) · ∇ p(z). (22)

For d = 1 and ω = (−1, 1) we have Pω[λi , λ j ] = −(λ j − λi )/λ j ∈ R and thus [25]

dJ [λi , λ j ](�)(z, B1(0)) = λi

λ j
(λ j − λi )u′(z)p′(z).
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Remark 5 For a general inclusion shapeω, (17) cannot be solved analytically. The same
holds true for the case of quasilinear PDEconstraintswhere the problemcorresponding
to (17) is quasilinear as well. In these cases, however, it is still possible to get a
good approximation to the topological derivative values (18), (19) by computing a
numerical approximation of the solution of (17) on a comparably large, but bounded
domain BR(0) ⊃ ω (e.g. R = 30) with homogeneous Dirichlet boundary conditions
at ∂BR(0). This procedure is motivated by the fact that the solution Ki→ j

ω to (17)
often can be shown to decay as |x | → ∞. We refer the reader to [20] for a detailed
discussion of this aspect. We will also follow this approach in Sect. 4 for triangular
shaped inclusions ω.

Note that, when no closed form solution is available, in the case of linear PDE
constraints with only two different materials λin, λout it is sufficient to have access
to (an approximation of) Kω[λin, λout; e(k)] and Kω[λout, λin; e(k)] for k = 1, . . . , d
in order to (approximately) evaluate the topological derivative in the full domain in
an efficient way. Thus, problem (17) has to be solved numerically only 2d many
times in a pre-computation stage. For the case of quasilinear PDE constraints this
precomputation stage is more involved, see [26, 27].

2.3 Separable Approximations

Problem (2) can be solved efficiently by the idea of sequential global programming
(SGP) [12] where the original optimization problem is replaced by a sequence of
simpler sub-problems. For these sub-problems it is beneficial to have approximations
of the original objective functions, which are separable, since then solving the sub-
problem reduces to the solution of several univariate optimization problems. The
following definitions can also be found in [19].

Definition 4 (separable function) Let N ∈ N. A function g : R
N → R is called

separable if there exist functions g1, . . . , gN : R → R and a constant g0 ∈ R such
that for all x ∈ R

N

g(x) = g0 +
N∑
i=1

gi (xi ).

We call a model g exact if it still coincides with the original function f when only
one component is perturbed.

Definition 5 (separable exact model) Let N ∈ N, x ∈ R
N and f : RN → R be given.

A separable function g : RN → R is called a separable exact model of f at x if

g(x + δx e(i)) = f (x + δx e(i)) (23)

for all i ∈ {1, . . . N } and all δx ∈ R.

Definition 6 (separable first order approximation) Let N ∈ N, I ⊂ R
N , x ∈ I and

f ∈ C1(I,R) be given. A function g ∈ C1(I,R) is called a separable first order
approximation of f at x if g is separable and
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f (x) = g(x) and ∇ f (x) = ∇g(x). (24)

Note that if a function g is a separable exact model of a function f it is also a
separable first order approximation. In the following lemma we show how, for any
given function f , a separable exact model can be constructed.

Lemma 3 Let N ∈ N, x ∈ R
N and f : RN → R be given. For j ∈ {1, . . . , N } define

g j (x; ·) : R → R, g j (x; s) = f (x + (s − x j )e( j)) − f (x). (25)

Then, g defined by

g : RN → R, g(x) = f (x) +
N∑
j=1

g j (x; x j ) (26)

is a separable exact model of f at x.

Proof It is obvious from (26) that g is separable. In order to see (23), let i ∈ {1, . . . , N }
be fixed. Noting that

(x + δx e(i)) j =
{
xi + δx, j = i,

x j , j ∈ {1, . . . , N } \ {i},

we have

g(x + δx e(i)) = f (x) +
N∑
j=1

g j (x; (x + δx e(i)) j )

= f (x) + gi (x; xi + δx) +
∑
j �=i

g j (x; x j )

= f (x) + f (x + δx e(i)) − f (x) = f (x + δx e(i)),

where we used g j (x; x j ) = 0. This finishes the proof. ��
While Lemma 3 defines a separable exact model g for any function f , it should be

noted that the evaluation of g involves N + 1 function evaluations of f , which can in
practice be prohibitively expensive (in particular when a function evaluation involves
the solution of a PDE). Thus, considering the problem at hand (2), our goal in this
paper is to find close approximations of the separable exact model defined by (26)
which are cheap to evaluate.

2.4 The Sherman–Morrison–Woodbury Formula in a Finite Element Context

The following linear algebra result will prove useful for defining exact models in the
context of discretized PDE-constrained material optimization. It gives a formula for
the inverse of a perturbedmatrix only in terms of the inverse of the unperturbedmatrix.
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Lemma 4 (Sherman–Morrison–Woodbury formula [28]) Let N , k ∈ N and matrices
A ∈ R

N×N invertible, U ∈ R
N×k , V ∈ R

k×N be given. It holds

(A + UV )−1 = A−1 − A−1U(Ik + V A−1U)−1V A−1. (27)

Lemma 4 gives rise to a separable exact model of the discrete compliance functional
J = J (λ) defined in (12). For that purpose, let thematerial distribution λ ∈ [λ, λ]m ∈
R
m be given and fix an element T�, � ∈ {1, . . . ,m}. We consider a perturbation of λ in

this element and define the perturbed vector η := λ+(η−λ�)e(�) for some η ∈ [λ, λ].
Note that η coincides with λ in all components except for component � where it has
value η rather than λ�. Recall the definition of the matrices B�, � ∈ {1, . . . ,m} from
Sect. 2.1.2.

Proposition 5 Let λ ∈ R
m, � ∈ {1, . . . ,m} fixed and η := λ + (η − λ�)e(�). Then

J (η) = J (λ) − |T�|(η − λ�)(∇uh |T�
)�(Id + (η − λ�)B�

�K (λ)−1B�)
−1∇uh |T�

.

(28)

Proof The stiffness matrices according to λ and η read

K (λ) =
m∑

k=1

λk Bk B
�
k and K (η) =

m∑
k=1

ηk Bk B
�
k = K (λ) + (η − λ�)B�B�

�.

(29)

Thus, the inverse of K (η) can be obtained by means of Lemma 4 by setting A =
K (λ) ∈ R

n×n , U = (η − λ�)B� ∈ R
n×d and V = B�

� ∈ R
d×n as

K (η)−1=K (λ)−1−(η−λ�)K (λ)−1B�(Id+(η−λ�)B�
�K (λ)−1B�)

−1B�
�K (λ)−1.

(30)

Thus, defining ũ = K (η)−1 f and using that u = K (λ)−1 f and K (λ) = K (λ)�, it
holds

f�ũ = f�u − (η − λ�)u�B�(Id + (η − λ�)B�
�K (λ)−1B�)

−1B�
�u. (31)

Noting that J (η) = f�ũ, J (λ) = f�u and, by Lemma 1, B�
�u = √|T�|∇uh |T�

finishes the proof. ��
Remark 6 We remark that this procedure can also be followed for non-selfadjoint
problems. Using the adjoint state ph ∈ Vh whose basis vector p is obtained as the
solution of K (λ)� p = −J ′(u), in the case of a linear cost function J we obtain

J (η) = J (ũ) = J (u) + J ′(u)(ũ − u)

= J (u) + J ′(u)(K (η)−1 − K (λ)−1) f
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= J (u) − J ′(u)(η − λ�)K (λ)−1B�(Id + (η − λ�)B�
�K (λ)−1B�)

−1B�
�K (λ)−1 f

= J (λ) + |T�|(η − λ�)(∇ ph |T�
)�(Id + (η − λ�)B�

�K (λ)−1B�)
−1∇uh |T�

If J is not linear the above identity only holds up to a remainder of second order.

From Lemma 3, we get the following result:

Proposition 6 Let λ, η ∈ R
m. The function ĴSMW defined by

ĴSMW(η) :=J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(Id + (η� − λ�)B�
�K (λ)−1B�)

−1∇uh |T�
(32)

is a separable exact model of J at λ.

Proof From Lemma 3 we know that

ĴSMW(η) = J (λ) +
m∑

�=1

(
J (λ + (η� − λ�)e(�)) − J (λ)

)
(33)

is a separable exact model of J at λ. Plugging in the result of Proposition 5 yields the
assertion. ��

Compared to the general separable exact model according to Lemma 3, which can
be defined for any function, using the Sherman–Morrison–Woodbury formula we have
found a closed form for a separable exact model for our given cost function in (32). Of
course, it can be seen that model (32) still involves the inverse of the stiffness matrix
for the material distribution given by λ which one typically does not have access to.
Even when the stiffness matrix has been factorized for computing the state u, the
evaluation of (32) involves m many forward/backward substitutions which amounts
to a total effort in the order of O(mn2) and is thus prohibitive for many real-world
applications. In the subsequent section, we will introduce an approximation of (32)
which can be evaluated efficiently.

3 An Efficient Separable Model Based on the
Sherman–Morrison–Woodbury Formula

Recall the separable exact first order model (32) which reads

ĴSMW(η) = J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(
Id − (η� − λ�)�

(�)
)−1 ∇uh |T�

(34)

with the definition �(�) := −B�
�K (λ)−1B� ∈ R

d×d for all � ∈ {1, . . . ,m}. Since
the evaluation of the model involves the solution of a linear system with the system
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matrix K (λ) for every element index �, we introduce an approximation which can be
evaluated more efficiently. For that purpose, we simply approximate the inverse of the
stiffness matrix by the inverse of the diagonal approximation of the stiffness matrix to
obtain the model

ĴSMWdiag(η) := J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(
Id − (η� − λ�)�

(�)
diag

)−1 ∇uh |T�
(35)

with

�
(�)
diag := −B�

�(diagK (λ))−1B� ∈ R
d×d . (36)

This model is a separable first order model, but it is no longer exact. Note that this
idea was already proposed in [19] in the context of a discrete dipole approximation
method in an application from optics and is transferred to a finite element setting here.

In the following, we investigate model (35) in the one-dimensional case, where
connections to the mathematical concepts of topological and shape derivatives can be
established. In spatial dimension d = 1, we can compute the matrix �

(�)
diag explicitly.

Lemma 7 Let d = 1 and let a uniformmesh {T1, . . . , Tm} of the computational domain
be given. Assume that element T� is occupied by material λout and also its two neigh-
bors T�−1, T�+1 are occupied by the same material, i.e., λ�−1 = λ� = λ�+1 = λout.
Then it holds

�
(�)
diag = − 1

λout
(37)

and, for η = λ + (λin − λout)e(�),

ĴSMWdiag(η) = J (λ) − |T�|λ
out

λin
(λin − λout)(u′

h |T�
)2. (38)

Proof Using the definition of B� from Sect. 2.1.2, we have

B�
�(diagK (λ))−1B� = h−1

(−1
1

)�
(B̃�)

�(diagK (λ))−1 B̃�

(−1
1

)

where h denotes the uniform mesh size. Using that (diagK (λ))−1
i i = 1

a(ϕi ,ϕi )
with

a(ϕi , ϕi ) = ∫
D λ(x)|∇ϕi |2 dx and

(B̃�)
�(diagK (λ))−1 B̃� =

(
1

a(ϕ�,1,ϕ�,1)
0

0 1
a(ϕ�,2,ϕ�,2)

)
(39)
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where ϕ�,1 and ϕ�,2 are the basis functions corresponding to the left and right node of
element T�, respectively, we get

�
(�)
diag = −B�

�(diagK (λ))−1B� = −h−1
(

1

a(ϕ�,1, ϕ�,1)
+ 1

a(ϕ�,2, ϕ�,2)

)
. (40)

Thefirst result follows by noting that a(ϕ�,1, ϕ�,1) = a(ϕ�,2, ϕ�,2) = 2λout
h . The second

identity follows by plugging in and noting that η� = λin, λ� = λout. ��
Remark 7 (Relation to topological derivative in 1D) As pointed out in Sect. 2.2, the
topological derivative of our optimization problem (5) at a point z ∈ D\� (i.e., where
λ�(z) = λout) with respect to ω = (−1, 1) the one-dimensional unit ball reads

dJ [λout, λin](�)(z, ω) = −λout

λin
(λin − λout)(u′(z))2, (41)

where we used that p = −u for our particular problem at hand. This means that, in
one space dimension, the model ĴSMWdiag introduced in (35) actually coincides with
the finite element discretization of the model that is naturally defined by the definition
of the topological derivative

J (� ∪ ωε) ≈ J (�) + |ωε|dJ (�)(z, ω), (42)

see also (15).
We mention that this direct correspondence of the discrete model ĴSMWdiag and

the closed-form formula of the topological derivative only works since the elements
T� in a 1D mesh are scaled versions of the 1D unit ball ω = B1(0) = (−1, 1). This
is no longer the case in two or three dimensions, where elements are polygonal or
polyhedral.

We remark that we also observed numerically that the finite element discretization
of (42) and the model (35) coincide in elements T� in homogeneous regions (i.e.,
where λ�−1 = λ� = λ�+1). In elements T� that are adjacent to the material interface
∂�, however, Lemma 7 and thus formula (38) are no longer valid. We observed that
the topological derivative model (42), however, still yielded very good results. This
can be explained by the following discussion on the relation between the topological
and shape derivative in 1D.

Remark 8 (Relation to shape derivative in 1D) The shape derivative for moving the
interface� := �∩(D\�) in the direction given by a vector field V ∈ C1(Rd ,Rd) can,
by the structure theorem of Hadamard-Zolesio [1], always (under suitable smoothness
assumptions) be written in the form

dJ (�; V ) =
∫

�

L(V · n) dsx ,
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Fig. 2 a Unperturbed configuration. b Perturbed configuration where the domain is perturbed in triangle
T� whose centroid is the point z

for some scalar function L . Here � ⊂ D is the domain where λ = λin and D\� is
where λ = λout, and n denotes the outer unit normal vector to �. For our problem (5),
L is given by the formula

L = (λin − λout)(∇u · τ)(∇ p · τ) −
(

1

λin
− 1

λout

)
(λ�∇u · n)(λ�∇ p · n)

with the tangential vector τ (see, e.g., [29]). In the case where d = 1 the tangential
derivative of u and thus the first term of L vanishes. Using that n is a scalar with
n2 = 1 and again that p = −u, we get

L =
(

1

λin
− 1

λout

)
(λoutu′

out|�)2 = −λout

λin
(λin − λout)(u′

out|�)2,

where u′
out|� denotes the limit at� of the discontinuous quantity u′ when coming from

D\�.
Note that this formula for the 1D shape derivative resembles the topological deriva-

tive formula (41), which explains why (42) is a very good model in 1D.

4 A Separable Model Based on the Topological Derivative

In this section, we propose a separable model that is based on the notion of the topo-
logical derivative. We fix the space dimension d = 2. The topological derivative of a
shape function J = J (�) with respect to a perturbation of shape ω around a spatial
point z was introduced in Sect. 2.2. We emphasize that, while closed-form formulas
for the topological derivative only exist in the case of circular or elliptic inclusion
shapes [24, 30, 31], a numerical approximation of the weak polarization matrix (20)
and thus of the topological derivative formulas (18) and (19) is possible for arbitrary
inclusion shapes ω with 0 ∈ ω, see also [20]. We will follow this idea for the case of
triangular inclusion shapes.
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Let � ⊂ D be given and consider an element T� ∈ T of type 1 (cf. Figure1)
with T� ⊂ D \ � with vertices x�,1, x�,2, x�,3 (in counter-clockwise enumeration)
and centroid z� := (x�,1 + x�,2 + x�,3)/3, see Fig. 2. Let T̂ (1) denote the reference
triangle defined by its three vertices 1

3 (−2,−1)�, 1
3 (1,−1)�, 1

3 (1, 2)
� and T̂ (2) the

reference triangle with vertices 1
3 (2, 1)

�, 1
3 (−1,−2)�, 1

3 (−1, 1)�. For the rest of

this section we restrict ourselves to elements of type 1. We set T̂ := T̂ (1) and define

h,� : T̂ → T�, x �→ z� + hx as the affine transformation satisfying 
h,�(T̂ ) = T�.
We remark that the procedure is completely analogous for elements of type 2 using
reference triangle T̂ (2).

4.1 Derivation of Topological Derivatives for Triangular Inclusion Shapes

Given a domain�, recall the notation λ�(x) = χ�(x)λin+χD\�(x)λout. For the fixed

triangular domain perturbation T�, let the perturbed solution u(�) ∈ Vg be defined as
the unique solution satisfying

∫
D

λ�∪T�
(x)∇u(�) · ∇v dx =

∫
D
f v dx +

∫
�N

gNv dsx (43)

for all v ∈ V0.We rewrite the difference of the perturbed and unperturbed cost function
by adding the equations (43) and (5b) defining u(�) and u, respectively. Using the
adjoint state p defined by (6) as test function, we obtain

J (� ∪ T�)−J (�) = J (u(�)) − J (u)

=J (u(�)) +
∫
D

λ�∪T�
(x)∇u(�) · ∇ p dx −

∫
D
f p dx −

∫
�N

gN p dsx

− J (u) −
∫
D

λ�(x)∇u · ∇ p dx +
∫
D
f p dx +

∫
�N

gN p dsx

=
∫
D
f (u(�) − u) dx +

∫
�N

gN (u(�) − u) dsx

+
∫
D

λ�(x)∇(u(�) − u) · ∇ p dx + (λin − λout)

∫
T�

∇u(�) · ∇ p dx

=(λin − λout)

∫
T�

∇(u(�) − u) · ∇ p dx + (λin − λout)

∫
T�

∇u · ∇ p dx

where we used the adjoint equation (6) in the last step. Making a change of variables
x �→ 
h,�(x) and defining Kh,�,T̂ [λout, λin] := 1

h (u(�) − u) ◦ 
h,�, we get

J (� ∪ T�) =J (�) + h2(λin − λout)

∫
T̂

∇Kh,�,T̂ [λout, λin] · (∇ p) ◦ 
h,� dx

+ h2(λin − λout)

∫
T̂
(∇u) ◦ 
h,� · (∇ p) ◦ 
h,� dx,

(44)
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Fig. 3 Rescaled perturbed domain

where we used that, according to the chain rule, (∇v) ◦ 
h,� = 1
h∇(v ◦ 
h,�) and

det(∂
h,�) = h2.
Subtracting the unperturbed state equation (5b) from the perturbed equation (43),

we see that u(�) − u ∈ V0 satisfies∫
D

λ�∪T�
∇(u(�) − u) · ∇v dx = −(λin − λout)

∫
T�

∇u · ∇v dx

for all v ∈ V0. Making the same change of variables, this amounts to

∫

−1

h,�(D)

λT̂∪
−1
h,�(�)

∇Kh,�,T̂ [λout, λin] · ∇ψ dx

= −(λin − λout)

∫
T̂
(∇u) ◦ 
h,� · ∇ψ dx (45)

for all ψ ∈ H1
0 (
−1

h,�(D)). The domain and material distribution of problem (45) is
depicted in Fig. 3.

Obviously, if Kh,�,T̂ [λout, λin] was known exactly then (44) would give rise to an
exact model for J (� ∪ T�). However, of course, this would require the solution of
a linear problem for every element � and is therefore computationally not tractable.
Instead, we now aim at obtaining an approximation of the quantity Kh,�,T̂ [λout, λin]
that is independent of the particular element index �. As it is often used in the derivation
of topological derivatives, we consider the limit of problem (45) as h → 0. This leads
to the problem to find KT̂ [λout, λin; ∇u(z�)] ∈ X satisfying [22]
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Fig. 4 a Rescaled perturbed domain after limit h → 0. b Truncation of (a) at radius R

∫
R2

λT̂∇KT̂ [λout, λin; ∇u(z�)] · ∇ψ dx = −(λin − λout)

∫
T̂

∇u(z�) · ∇ψ dx (46)

for all test functions ψ ∈ X where X is a Beppo-Levi space, see Sect. 2.2. For an
illustration of the corresponding material distribution, see Fig. 4a. Note that, if we had
access to the exact solution KT̂ [λout, λin; ∇u(z�)] of (46), the topological derivative
at the centroid z� of triangle T� ∈ D\� with respect to T̂ -shaped inclusion shapes
would follow from (44) as

dJ [λout, λin](�)(z�, T̂ )

= lim
h→0

J (� ∪ T�) − J (�)

|T�|
= (λin − λout)

1

|T̂ |
∫
T̂
(∇u(z�) + ∇KT̂ [λout, λin; ∇u(z�)](x)) · ∇ p(z�) dx (47)

which coincides with the statement of Proposition 2. Here we used |T�| = h2|T̂ |.

4.2 Our Proposed Topological Derivative Model

Unlike in the case of circular or elliptic inclusions, no closed-form solution to the
exterior problem (46) for triangular inclusion shapes ω = T̂ is known in the literature.
Thus, formula (47) cannot be evaluated exactly. However, as it was shown in [20],
it is feasible to numerically approximate the exterior problem (46) by truncating the
domain at a moderately large radius R (e.g., R = 30) and using a finite element
discretization with homogeneous Dirichlet boundary conditions on the boundary of
the truncated domain (see Fig. 4b). We remark that this truncation is justified, since it
is known that the solution to (46) exhibits a certain decay as |x | → ∞ [20].
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4.2.1 Topological Derivative Model in Homogeneous Regions

Werestrict ourselves to elements T� in the interior ofD\� such that also all neighboring
elements of T� (i.e., elements that share at least one vertex with T�) are in D \ �. Of
course, all results and statements follow analogously for elements T� in the interior of
�. For this setting, we propose the model that is based on the following procedure:

1. Compute a finite element approximation of (46) using afinite element discretization
of a truncated domain. More precisely, given a truncation radius R and a mesh
{τ1, . . . , τM } of the truncated domain BR(0) that resolves the inclusion T̂ , we aim
to find KT̂ ,h[λout, λin; e(k)] ∈ V R

h := {v ∈ C0(BR(0)) : v|∂BR(0) = 0, v|τi ∈
P1, i = 1, . . . , M} such that

∫
BR(0)

λT̂∇KT̂ ,h[λout, λin; e(k)] · ∇ψh dx = −(λin − λout)

∫
T̂
e(k) · ∇ψh dx

(48)

for all ψh ∈ V R
h for k = 1 and k = 2. Here, recall that λT̂ (x) = χT̂ (x)λin +

χ
R2\T̂ (x)λout.

2. Compute the approximate weak polarization matrix

PT̂ ,h[λout, λin]

=
[

1

|T̂ |
∫
T̂

∇KT̂ ,h[λout, λin; e(1)]dx 1

|T̂ |
∫
T̂

∇KT̂ ,h[λout, λin; e(2)]dx
]

∈ R
2×2. (49)

3. Evaluate dJh[λout, λin](z�, T̂ ) = −(λin −λout)(∇uh |T�
)�

(
I2 + PT̂ ,h[λout, λin]

)
∇uh |T�

.

With this, for a given material distribution λ ∈ R
m and η = λ+ (η −λ�)e(�) where

T� is in the interior of D \ �, we obtain the approximation

J (η) ≈J (λ) + |T�|dJh[λ�, η](z�, T̂ )

=J (λ) − |T�|(η − λ�)(∇uh |T�
)�

(
I2 + PT̂ ,h[λ�, η]

)
∇uh |T�

.

Remark 9 Concerning the numerical solution of (48), we make one important remark.
It is essential that the mesh {τ1, . . . , τM } is chosen in such a way that the triangle T̂ is
discretized by exactly one element τ j and that, thus, the solution is linear inside the
whole of T̂ . While a finer discretization of T̂ would yield a better approximation to
the true solution of limit problem (46), the term KT̂ ,h[λout, λin; e(k)] should actually

make up for the error u(�)
h − uh inside element T� which is a linear function inside

T� due to the chosen discretization. Figure5 shows the solution to (48) when T̂ is
resolved by exactly one element and when the whole mesh is twice uniformly refined.
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Fig. 5 Comparison of numerical solution KT̂ ,h [1, 1000; e(1)] to (48) on a mesh where T̂ is resolved by
exactly one element (a) and on a twice uniformly refined mesh. The mesh in (a) should be used for solving
(48)

4.2.2 Topological Derivative Model in Inhomogeneous Regions

Even if one is interested in binary designs without intermediate materials, in the
course of a density-based topology or material optimization procedure, one will of
course always encounter regions of intermediate materials. For elements T� in these
regions, the assumptions taken at the beginning of Sect. 4.2.1 are not satisfied and the
corresponding proposed model will not be very accurate in these regions. In order
to improve the quality of the approximation also in these regions, we recall the idea
behind the topological derivative model: The quantity KT̂ should approximate the
local variation of the (discretized) state with respect to a material perturbation in some
element T�, i.e., it should approximate u(�)

h − uh . In other words, problem (46) can be

interpreted as considering u(�)
h − uh and zooming in around the fixed triangle T� and

neglecting everything that is beyond a certain (small) distance from that triangle, see
also the illustrations in Figs. 3 and 4.

We follow this idea also in the case of inhomogeneous material around a fixed
triangle, i.e., we want to approximate the local material distribution in a truncated
rescaled domain BR(0) similar to Fig. 4b. For obtaining an approximation of the inho-
mogeneous material distribution within the computational domain D, we divide the
domain BR(0) into three sectors. The sectors are separated by three lines which are
chosen such as to halve the three interior angles of the triangle T̂ . Thus, we end up
with a domain BR(0) similar to the one depicted in Fig. 4b which is occupied by four
different materials (one inside the triangle T̂ and one in each of the three sectors), see
Fig. 6b. For the computation of average values within one of the sectors, we take a
weighted Hölder average of the values in the neighboring elements with parameter α,
i.e., the averaged value in Sector j , j = 1, 2, 3, is chosen as

λ
S j
T�

=
⎛
⎝ ∑

T∈N (T�)

wS j ,T (λT )α

⎞
⎠

1
α

. (50)
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Fig. 6 a Element inside inhomogeneous material distribution in computational domain D. Neighborhood
for averaging into sector values is marked. b Averaged material distribution in three sectors of truncated
unbounded domain BR(0). The average values per sector are obtained by a weighted Hölder mean of the
material values in the neighboring elements

Here, N (T�) denotes the set of triangles that have at least one common vertex with
triangle T�, see Fig. 6a, and wS j ,T = |T ∩ S j |/|T | ∈ [0, 1] is the volume fraction of
triangle T in Sector S j . Moreover, λT denotes the entry of the vector λ corresponding
to the triangle T . In our experiments, we chose the Hölder parameter as α = −0.5.
This choice will be motivated later in Remark 13 of Sect. 7.

Our proposed model in the case of inhomogeneous material around an element T�

with material coefficient λ� and averaged sector values λ
S1
T�

, λ
S2
T�

, λ
S3
T�
according to (50)

follows the same three steps outlined for the homogeneous setting in Sect. 4.2.1: We
numerically compute the corresponding correctors KT̂ ,h[(λout, λS1

T�
, λ

S2
T�

, λ
S3
T�

), λin; e(k)]
for k = 1, 2 as the finite element solutions to (48) where λT̂ is replaced by the new
three-sector material distribution

λT̂ (x) = χT̂ (x)λin +
3∑
j=1

χS j (x)λ
S j
T�

. (51)

Subsequently, the corresponding weak polarization matrix PT̂ ,h[(λout, λS1
T�

, λ
S2
T�

, λ
S3
T�

),

λin] and the quantity dJh[(λout, λS1
T�

, λ
S2
T�

, λ
S3
T�

), λin](z�, T̂ ) can be computed according
to steps 2 and 3 of Sect. 4.2.1.

Summarizing, we define the model

ĴTDnum(η) :=J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(
I2 + PT̂ ,h[(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

), η�]
)

∇uh |T�
. (52)

Note that the homogeneous setting of Sect. 4.2.1 is actually also covered by the more
general inhomogeneous setting treated here.

We next make an important remark concerning the efficient evaluation of the model
ĴTDnum.
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Remark 10 In the general inhomogeneous setting, the procedure described in this
section states that, in order to evaluate model (52), a problem of type (48) has to be
solved for each element T�. Of course, this is computationally expensive and therefore
not recommended by the authors. Instead, the approach followed here is to divide the
numerical computations into an offline and an online stage. In the offline stage, which
has to be performed only once for the particular type of PDE operator, we compute
the quantities

KT̂ ,h[(λout, λS1 , λS2 , λS3), λin; e(k)]

for k = 1, 2 and for a large number of combinations of relevant values (λout, λ
S1
T�

, λ
S2
T�

,

λ
S3
T�

, λin) and store the correspondingweak polarizationmatrices. This, initially, results
in a five-dimensional array of 2×2 matrices. Moreover, these precomputations should
be done for each type of reference triangle, i.e., in our case for T̂ = T̂ (1) and T̂ = T̂ (2),
see Fig. 1.

In the online stage, for each element T� the corresponding average sector values are
computed according to (50) and theweak polarizationmatrixPT̂ ,h[(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

),

η�] is approximately obtained by piecewise linear interpolation of the precomputed
values.

We finally remark that the precomputation can be reduced from five to four dimen-
sions by exploiting that problem (48) with λT̂ according to (51) depends on the
parameter λout only via the scaling of the right hand side by (λin − λout).

5 An Improved Separable Model Based on the
Sherman–Morrison–Woodbury Formula

In this section, we revisit the separable exact model defined in (32) and have a closer
look at the matrix

�(�) = −B�
�K (λ)−1B� ∈ R

2×2.

Recall that, in order to employ model (32), this matrix would have to be evaluated for
each element index �, which amounts to solving m many systems of linear equations
and is thus computationally prohibitive. Motivated by the procedure of Sect. 4, our
goal here is to find a good approximation of �(�) that is independent of the element
index � and can thus be precomputed in an offline stage.

Webegin bymaking the following observation.We assume the finite element setting
introduced in Sect. 2.1.2 with the mesh T and the finite element space Vh ⊂ H1

�D
(D)

of piecewise linear and globally continuous functions.

Lemma 8 Let T� ∈ T and, for k = 1, 2, define wk,h ∈ Vh the unique numerical
solution to the variational problem∫

D
λ(x)∇wk,h · ∇vh dx = −

∫
T�

e(k) · ∇vh dx (53)
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for all vh ∈ Vh. Then it holds

�(�) = [∇w1,h |T�
∇w2,h |T�

]. (54)

Proof We use the notation and symbols introduced in Sect. 2.1.2. The discretization
of (53) reads

K (λ)w(k) = f (�,k)

where K (λ) is the invertible stiffness matrix,w(k) denotes the coefficient vector of the
finite element function wk,h = ∑n

i=1 w
(k)
i ϕi , k ∈ {1, 2}, and f (�,k) ∈ R

n with

( f (�,k))i = −
∫
T�

e(k) · ∇ϕi dx, i = 1, . . . n.

Since the global load vector f (�,k) has contributions only from one element, it holds
f (�,k) = B̃� f

�,k
loc with the element load vector

f �,k
loc = −|T�|

⎛
⎝−1 −1

1 0
0 1

⎞
⎠ J−1

� e(k) = −√|T�|D�e(k).

Thus, it holds

B�
�w(k) = B�

�K (λ)−1 f (�,k) = B�
�K (λ)−1 B̃� f

�,k
loc = −√|T�|B�

�K (λ)−1B�e(k).

(55)

On the other hand, we know from (13) that

B�
�w(k) = √|T�| ∇wk,h |T�

. (56)

Comparing (55) and (56) for k = 1 and k = 2 yields the result. ��

Lemma 8 gives an interpretation of the matrix �(�), which appears in the Sherman–
Morrison–Woodburymodel (32) and is costly to evaluate, in terms of a boundary value
problem. In order to find an approximation of �(�) that is independent of the element
index �, we proceed similarly to Sect. 4. In boundary value problem (53), we zoom
in around the element T�, i.e., we apply the transformation 
−1

h,� that transforms T� to

the reference element T̂ , see Fig. 7 for an illustration in a homogeneous setting. Note
that, as opposed to the procedure in Sect. 4, here an unperturbed material distribution
is transformed.

Passing to the limit h → 0 yields an exterior problem on the unbounded domain,
see Fig. 8(a) and again truncating this domain leads to the boundary value problem
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Fig. 7 Rescaled unperturbed domain

on the truncated domain BR(0) to find WT̂ [λout; e(k)] ∈ H1
0 (BR(0)), k = 1, 2, as the

unique solution to

∫
BR(0)

λout∇WT̂ [λout; e(k)] · ∇ψ dx = −
∫
T̂
e(k) · ∇ψ dx (57)

for all ψ ∈ H1
0 (BR(0)), see Fig. 8(b). Note that this problem differs from problem

(48) only by a different scaling factor on the right hand side and by a homogeneous
material distribution λout.

In the case when T� is in an inhomogeneous region of the computational domain
D (i.e., not all neighbors of T� have the same material coefficient), we can follow the
same averaging procedure with three sectors as in Sect. 4.2.2 and obtain the problem
to findWT̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

); e(k)] ∈ H1
0 (BR(0)), k = 1, 2, as the unique solution to

∫
BR(0)

λT̂∇WT̂ [(λ�, λ
S1
T�

, λ
S2
T�

, λ
S3
T�

); e(k)] · ∇ψ dx = −
∫
T̂
e(k) · ∇ψ dx (58)

whereλT̂ (x) = χT̂ (x)λ�+∑3
j=1 χS j (x)λ

S j
T�
, cf. also thematerial distribution in Fig. 6.

Remark 9 concerning the numerical approximation of (57) and (58) with ameshwhere
the subdomain T̂ of BR(0) is discretized by exactly one element remains valid. We
define the 2 × 2 matrix

�T̂ ,�
:=�T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)]

:=
[
1

T̂

∫
T̂

∇WT̂ [(λ�, λ
S1
T�

, λ
S2
T�

, λ
S3
T�

); e(1)]dx 1

T̂

∫
T̂

∇WT̂ [(λ�, λ
S1
T�

, λ
S2
T�

, λ
S3
T�

); e(2)]dx
]

,
(59)
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Fig. 8 a Unbounded domain with reference triangle T̂ . b Truncated domain BR(0) with reference triangle
T̂

and remark that, in the same way as pointed out in Remark 10, we can also precom-
pute the matrices �T̂ ,�

for a four-dimensional array of values in an offline stage and
interpolate them efficiently in the online stage. This way, we get the separable model

ĴSMWapprox(η) := J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(
I2 − (η� − λ�)�T̂ ,�

)−1 ∇uh |T�

(60)

as an approximation to the separable exact model (32).

6 Relationships

We investigate the relationship between the model (52) of Sect. 4 that is motivated by
the continuous concept of topological derivatives and themodel (60) of Sect. 5which is
meant to approximate the Sherman–Morrison–Woodbury matrix identity model (32).
We restrict our presentation to the case of homogeneous material distribution around
the fixed element T� ∈ T .

We start by recalling the definitions of the discretized weak polarization matrix
PT̂ ,h[λout, λin] (49) and the discretization of the matrix �T̂ (59) in the homogeneous
setting,

PT̂ ,h[λout, λin] =
[

1

|T̂ |
∫
T̂

∇KT̂ ,h[λout, λin; e(1)]dx 1

|T̂ |
∫
T̂

∇KT̂ ,h[λout, λin; e(2)]dx
]
(61)

�T̂ ,h[λout] =
[
1

T̂

∫
T̂

∇WT̂ ,h[λout; e(1)]dx 1

T̂

∫
T̂

∇WT̂ ,h[λout; e(2)]dx
]

(62)
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where KT̂ ,h[λout, λin; e(k)] ∈ V R
h is the solution to (48) and WT̂ ,h[λout; e(k)] ∈ V R

h is
the finite element approximation to (57), i.e.,

∫
BR(0)

λT̂∇KT̂ ,h[λout, λin; e(k)] · ∇ψh dx = − (λin − λout)

∫
T̂
e(k) · ∇ψh dx (63)∫

BR(0)
λout∇WT̂ ,h[λout; e(k)] · ∇ψh dx = −

∫
T̂
e(k) · ∇ψh dx (64)

for all ψh ∈ V R
h . Here, recall that λT̂ (x) = χT̂ (x)λin + χBR(0)\T̂ (x)λout.

We show the following relation between PT̂ ,h[λout, λin] and �T̂ ,h[λout]:

Theorem 9 It holds that

PT̂ ,h[λout, λin] = (λin − λout)�T̂ ,h[λout]
(
I2 − (λin − λout)�T̂ ,h[λout]

)−1
(65)

and further

I2 + PT̂ ,h[λout, λin] = (I2 − (λin − λout)�T̂ ,h[λout])−1. (66)

Proof Recall that we use piecewise linear and globally continuous finite elements on a
triangularmesh ofM elements of BR(0)where, according to Remark 9, the subdomain
T̂ is resolved by exactly one triangle of the mesh. Let now the finite element stiffness
matrix of (63) be denoted by Ã and the one of (64) by Awhere we use the same mesh
and finite element space for both equations. Let �̂ ∈ {1, . . . , M} be the element index
corresponding to the triangle T̂ . Note that the material distribution in (63) differs from
that in (64) only in element �̂ and we have A = ∑M

k=1 λoutBk B�
k and

Ã = A + (λin − λout)B
�̂
B

�̂
�,

thus, an application of the Sherman–Morrison–Woodbury formula of Lemma 4 yields

Ã
−1 = A−1 − (λin − λout)A−1B

�̂

(
I2 + (λin − λout)B

�̂
�A−1B

�̂

)−1
B

�̂
�A−1.

(67)

On the other hand, we know from Lemma 8 that for the chosen piecewise linear
finite elements where T̂ is resolved by only one triangle (i.e. ∇WT̂ ,h[λout; e(k)](x),
∇KT̂ ,h[λout, λin; e(k)](x) are constant on T̂ ), we have

(λin − λout)�T̂ ,h[λout] = −(λin − λout)B
�̂
�A−1B

�̂

and PT̂ ,h[λout, λin] = −(λin − λout)B
�̂
� Ã

−1
B

�̂
.
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Thus, denoting �λ

T̂ ,h
:= (λin − λout)�T̂ ,h[λout] and plugging in (67) yields

PT̂ ,h[λout, λin] =�λ

T̂ ,h
+ �λ

T̂ ,h
(I2 − �λ

T̂ ,h
)−1�λ

T̂ ,h

=�λ

T̂ ,h
(I2 + (I2 − �λ

T̂ ,h
)−1�λ

T̂ ,h
)

=�λ

T̂ ,h
(I2 − �λ

T̂ ,h
)−1

where we used the identity (I − B)−1 = I + (I − B)−1B for any matrix B such that
I − B is invertible in the last step. This proves (65). In order to see (66) note that,
by (65), it holds I2 + PT̂ ,h[λout, λin] = I2 + �λ

T̂ ,h
(I2 − �λ

T̂ ,h
)−1 = (I2 − �λ

T̂ ,h
+

�λ

T̂ ,h
)(I − �λ

T̂ ,h
)−1 = (I − �λ

T̂ ,h
)−1. ��

Corollary 10 From Theorem 9 it follows immediately that the two models ĴTDnum

defined in (52) and ĴSMWapprox defined in (60) coincide.

Remark 11 We remark that the same proof can be conducted in the case of inhomo-
geneous material around the element of interest and the statements of Theorem 9 and
Corollary 10 remain valid also in that case.

At the first glance, Theorem 9 and Corollary 10 seem very surprising since they
state that the model that is based on the continuous concept of topological derivatives
brought to a discrete setting coincides with a model that is based on a certain approx-
imation of a term generated by the purely algebraic Sherman–Morrison–Woodbury
matrix identity. This resemblance, however, has been identified in [32] on the purely
continuous setting for the case of elliptic inclusions.

Lemma 11 ([32]) Assume that ω is an ellipse. Then

Pω[λout, λin] = −(λin − λout)
(
I2 + (λin − λout)�[λout]

)−1
�[λout] (68)

where �[λout] ∈ R
2×2 is given by

�[λout]i, j = −
(∫

∂ω

n(x)∇x
[λout](x)� dsx

)
i, j

= −
∫

∂ω

ni∂x j 
[λout](x) dsx
(69)

with the fundamental solution 
[λout] of the operator u �→ −div(λout∇u), i.e.,

[λout](x) = −1/(2πλout)ln(|x |).
Proof This follows straightforwardly from [32, Sec. 8] by restricting the (vector-
valued) elasticity problem treated there to the scalar Laplace-type problem considered
here. ��

From Lemma 11, it follows in the same way as in the proof of Theorem 9 that

I2 + Pω[λout, λin] = (I2 + (λin − λout)�[λout])−1, (70)
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and thus, from (21), we get the alternative representation of the topological derivative
for elliptic inclusion shapes ω

dJ [λout, λin](�)(z, ω) = (λin − λout)∇u(z)�(I2 + (λin − λout)�[λout])−1∇ p(z).
(71)

Thus, the matrix �T̂ ,h[λout] used in ĴSMWapprox can also be seen as an approxima-
tion to the negative fundamental matrix −�[λout]. Finally, note that the proof of
Lemma 11 in [32] is not valid for triangular inclusion shapes, however, at the dis-
crete level, relation (65) still holds. Furthermore, note that the matrix �[λout] is
symmetric such that the right hand side of (68) can also be written as −(λin −
λout)�[λout] (

I2 + (λin − λout)�[λout])−1
which coincideswith the structure of (65).

7 Numerical Experiments

In this section, we examine the models introduced in Sects. 4 and 5 and compare them
to the exact solution as well as the diagonal approximationmodel introduced in Sect. 3.
Since we noted in Sect. 6 that model (52) of Sect. 4 and model (60) of Sect. 5 coincide,
we will here only consider the latter model. We remark that coincidence of the two
models was observed also in all numerical examples.

All numerical results are illustrated for the model problem introduced in Sect. 2.1
with the two-dimensional computational domain D = (0, 1)2 with Dirichlet and Neu-
mann boundaries �D = {(0, y), y ∈ (0, 1)} ∪ {(x, 0), x ∈ (0, 1)}, �N = ∂D\�N

with corresponding data gD = 0, gN (x1, x2) = x1x2 and the constant source term
f (x1, x2) = 1. The material coefficient λ(x) will vary between the values λ = 1 and
λ = 1000.

We begin by considering a homogeneous setting.

7.1 Homogeneous Material Distribution

Here, we consider a constant material distribution, i.e., λ�(x) = λout for all x ∈ D,
which corresponds to setting � = ∅ for some value λout in the setting of Sect. 2.1.1.
See also Fig. 9 for plots of the material distribution and the finite element solution on
a mesh with n = 1089 nodes and m = 2048 elements.

7.1.1 Numerical Comparison of Different Models for Fixed Element

We fix the interior element T� ∈ T as that element of type 1 (cf. Fig. 1) that has
the point (0.5, 0.25) as its bottom right vertex and compare the different models we
introduced in the previous sections for the case where the homogeneous material dis-
tribution is perturbed only in that one element T�, i.e., η = λ+ (η−λ�)e(�). Figure10
shows the different models as functions of the perturbed value η ∈ [λ, λ] = [1, 1000]
for three different background material values λout = 1, λout ≈ 145.834, λout = 1000
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Fig. 9 a Material coefficient λ(x) for homogeneous setting. b Finite element solution uh of problem (5b)
with data specified in Sect. 7 for homogeneous material distribution

(cf. Remark 12). In Fig. 10 we can see the exact solution J (η) (where the per-
turbed stiffness matrix is inverted) for certain values of η along with the exact
Sherman–Morrison–Woodbury model ĴSMW (32) which shows, as expected, perfect
coincidence. Moreover, we can see the diagonal approximation of the Sherman–
Morrison–Woodbury model ĴSMWdiag (35) which shows a certain error, but can be
evaluated more efficiently. The models ĴTDnum (52) and ĴSMWapprox (60) can be seen
to match exactly, as was predicted by Theorem 9 and Corollary 10. Moreover, it can be
seen from Fig. 10 that these twomodels approximate the exact solution extraordinarily
well while being cheap to evaluate during the online stage (after precomputations have
been done in an offline stage, cf. Remark 10). For comparison, we also included the
linearization J (η) ≈ J (λ) − |T�|(η − λ�)|∇uh |T�

|2 and the topological derivative
model when the analytical formula for the topological derivative of circular inclusions
(22) is used. It can be seen that the linearization model is far away from the true solu-
tion. But also the latter model shows a significant error which confirms the necessity
to account for the triangular inclusion shape as it was done in Sect. 4.

In order to quantify these errors, let us define the relative error measure of a model
Ĵ in an element T� for a given material distribution λ by

δĴ [T�] := 1

�J [T�] max
η∈[λ,λ]

∣∣∣Ĵ (
λ + (η − λ�)e(�)

)
− J

(
λ + (η − λ�)e(�)

)∣∣∣ (72)

where �J [T�] = maxt∈(λ,λ)J (λ + (t − λ�)e(�)) − min t∈(λ,λ)J (λ + (t − λ�)e(�))

is the difference of maximal and minimal values of the exact model in T�. Thus,
δĴ [T�] measures the maximum relative error of a model Ĵ in element T� relative to
the variation of the exact cost function J . The relative errors according to (72) for
the three expansion points λ(x) = λout investigated in Fig. 10 are as follows: For the
linearizationmodel the errors are as high as (20 954%, 85.61%, 25.21%), for themodel
ĴSMWdiag they are (16.65%, 3.41%, 0.99%), for ĴTDcirc we have (57.93%, 27.23%,
49.43%) and for the coinciding models ĴTDnum and ĴSMWapprox we have the values
(1.18%, 0.74%, 1.46%).
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Fig. 10 Comparison of different models for homogeneous setting with background material a λout = 1, b
λout ≈ 145.834, c λout = 1000 as functions of the perturbed material coefficient in a fixed element T�

Table 1 Values η(k), k = 1, . . . , 16, used for visualization and precomputation

1 1.252 1.590 2.050 2.688 3.596 4.921 6.917

10.035 15.127 23.901 40.072 72.563 145.834 340.187 1000

Remark 12 In Fig. 10, themodels as well as the exact solutionwere evaluated at certain
perturbation values η(k) ∈ [1, 1000], k = 1, . . . , 16. These values have been chosen
in the following way: It was observed numerically that the exact solution in Fig. 10
behaves similarly to a + bη−0.5 for some constants a, b. Based on this observation,
the points η(k) were chosen in such a way that, using these points as interpolation
nodes, a piecewise linear interpolation of a + bη−0.5 yields an equilibrated error, see
Fig. 11. This was achieved by solving a system of nonlinear equations ensuring that
the maximum interpolation error between any two neighboring nodes is equal. The
values for N = 16 points are given in Table 1. While these points here are used
solely for visualization purposes, their role will become more important in Sect. 7.2
to decide for which values of the material coefficient the (computationally expensive)
precomputation should be carried out.

Remark 13 Also the choice of the Hölder parameter α = −0.5 in (50) was motivated
by the observation that the exact solution in Fig. 10a behaves roughly like a+bη−0.5 =:
f (η). Thus, an effective value for λ can be obtained by the relation f (λ) = ∑

wi f (λi )
for given values λi with corresponding weights wi such that

∑
wi = 1, which, by

inverting f , results in the chosen average value (50).

7.1.2 Numerical Comparison of Different Models onWhole Domain

In Fig. 10, we compared several different models for a fixed triangle in the mesh when
the material perturbation parameter is varied between λ = 1 and λ = 1000. Next,
we investigate the maximum relative error δĴ as defined in (72) of a model Ĵ as a
function of the position in space.

Given the findings of Fig. 10, we will focus on the two approximate Sherman–
Morrison–Woodbury models ĴSMWdiag and ĴSMWapprox (recall that ĴTDnum coincides
with ĴSMWapprox). In Fig. 12, we plot the maximum relative errors (72) for these two
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Fig. 11 The interpolation nodes η(k), k = 1, . . . , 16 are chosen in such a way that the maximum interpo-
lation error between the function x−0.5 and its piecewise linear interpolant attains the same value in each
interval (η(k), η(k+1))

models for all interior elements of the computational domain for the homogeneous
material distribution λ(x) = λout = 1, i.e., we are in the setting of Fig. 10a. Elements
touching the boundary are discussed separately in Sect. 7.3.1. Here, we can see that
the maximum relative error of the model ĴSMWdiag is around 47%whereas it is around
17% for ĴSMWapprox. The four different rows of Fig. 12 show different threshold values
for the relative errors in the color bars. Moreover, it can be seen from the right column
in Fig. 12 that the model ĴSMWapprox behaves particularly well in the center of the
homogeneous domain and that the error increases slightly the closer one gets to a
boundary. This was to be expected since the idea of the model ĴSMWapprox in Sect. 5
(and equivalently model ĴTDnum of Sect. 2.2) was to zoom in locally around the fixed
element T� and assume that all boundaries are sufficiently far away, cf. Figs. 7 and 8.
Nevertheless, the maximum error attained by ĴSMWapprox is still significantly smaller
than that of the model ĴSMWdiag.

7.1.3 Towards Topology Optimization Using Approximate Models

Wewant to illustrate the potential of the introduced models ĴSMWdiag and ĴSMWapprox

(which coincides with ĴTDnum) in the course of a binary topology optimization algo-
rithm. Here, we simply decide for each element T� if it should be occupied by λout = 1
or λin = 1000 based on the values of a model Ĵ (λ + (η − λ�)e(�)) at η = λout and
η = λin, i.e., we do not allow for intermediate material values. Here, we again start
out from the homogeneous design where λ ∈ R

m is the constant one vector. As a
reference, we consider the separable exact model ĴSMW (32). Due to this model’s
properties, the material distribution obtained by the mentioned procedure is a local
minimum, which cannot be improved by switching the state of only one element.
Note that this is a stronger notion of optimality than a design being solely a stationary
point of the relaxed optimization problem. From a theoretical point of view it is not
entirely clear that using approximations of exact separable models such as ĴSMWdiag
the same effect can be achieved. However, already in [19] it was reported that the SGP
concept combined with an approximation of the ĴSMWdiag type lead to a much better
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Fig. 12 Comparison of relative errors δĴ [T�] according to (72) for models ĴSMWdiag (35) in left column

and ĴSMWapprox (60) (= ĴTDnum (52)) in right column for all interior elements T� in homogeneous
setting. First line shows color plot according to their respective maximum errors. Second to fourth line show
threshold for maximum relative error at 100%, 50% and 10%, respectively. Errors in elements touching the
boundary are not computed
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local minimizer for a binary topology optimization problem than the MMA method
utilizing convex separable approximations. Here, we investigate this effect in more
detail using a selection of the previously suggested models. In addition, we also make
a comparison with an MMA model

ĴMMA(η) = J (λ) −
m∑

�=1

|T�|(η� − λ�)(∇uh |T�
)�

(
I2 − η� − λ�

L − λ�

I2

)−1

∇uh |T�

= J (λ) −
m∑

�=1

|T�||∇uh |T�
|2 (η� − λ�)(λ� − L)

(η� − L)
. (73)

Here L plays the role of a vertical asymptote, which is chosen individually for each
element by a heuristic update scheme in the original MMA method, see [17]. As we
consider only a single update step here, the heuristic for the choice of L can not be
applied. Instead we test three different constant choices of the asymptote, L = 0,
L = −5, L = −10. Note that (73) can be obtained from (34) by replacing �(�) by

1
L−λ�

I2.
Since, as it is well-known, the optimum material design for compliance minimiza-

tion without limitation on the volume is the full design, we here include a simple
volume penalization in the cost function and use the augmented cost function

L(λ) := J (λ) + ωVol(λ) (74)

with a fixed weight ω = 7.5 and the volume of the strong material Vol(λ) =∑m
�=1 |T�|(λ� − λout)/(λin − λout). Note that Vol(λ) itself is a separable function

which can be dealt with without approximation error. Figure13 shows the designs
obtained after one step of the procedure mentioned above when using (a) the exact
(but expensive) model ĴSMW, (b) the diagonal approximation ĴSMWdiag, (c) the pro-
posed model ĴSMWapprox and (d)–(f) the MMA model with L = 0, L = −5 and
L = −10. Comparing pictures (b) and (c) to (a), we see that the error in the design
produced by the model in (c) is almost zero, whereas it is a bit larger for the diagonal
approximation model in (b). The performance of the MMAmodel here depends heav-
ily on the choice of the parameter L . For illustration of the method, we also plotted
the curves corresponding to the exact and the two mentioned approximate models in
three fixed elements. Figure13g shows that, in the leftmost of the three highlighted
elements in (a)–(f), the value of all six considered models at λin = 1000 is higher than
at λout = 1, thus making a switching of the material from λout to λin unattractive. In
the same way, in the rightmost of the three marked elements, all models except for
MMA with L = 0 show smaller values at λin than at λout, thus suggesting switch-
ing the material to decrease the cost function, see Fig. 13i. In the central one out of
these three elements, however, the diagonal approximation model ĴSMWdiag suggests
to switch the material since its value is smaller at λin than at λout, whereas the exact
model as well as the proposed approximation ĴSMWapprox suggest not to switch it, see
Fig. 13h. The MMA model shows good behavior for the choice L = −5, but large
errors for the choices L = 0 and L = −10. Finally, we remark that, when comparing
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Fig. 13 Top and central row: Material distribution after one step of binary topology optimization for
(74) with ω = 7.5 starting out from homogeneous material λ(x) = 1 (see Fig. 9a) when using a exact
compliance model ĴSMW, b diagonal approximation to Sherman–Morrison–Woodbury model ĴSMWdiag,

c approximate compliance model ĴSMWapprox, d MMA model with L = 0, e MMA model with L = −5,
f MMA model with L = −10. Bottom row: Illustration of local models in three triangles marked in top
row from bottom left (g) to top right (i)

with the exact model ĴSMW, for ĴSMWdiag the wrong decision was taken for 280 out
of 1800 interior elements whereas this was the case only for 19 elements in the case
of ĴSMWapprox. For the MMA model with L = 0, L = −5, L = −10, the numbers of
wrongly switched elements were 930, 102 and 586 elements, respectively.

7.2 Inhomogeneous Material Distribution

Next we consider a numerical example with an inhomogeneous material distribution
as it may appear in the course of a density-based topology optimization algorithm,
which is the motivation for this work. We consider a material coefficient λ(x) that
continuously varies between λ = 1 and λ = 1000 as
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Fig. 14 a Material coefficient λ for inhomogeneous setting. b Finite element solution uh of problem (5b)
with data specified in Sect. 7 for inhomogeneous material distribution

λ(x) =

⎧⎪⎨
⎪⎩

λ, |x − m| ≥ r2,

λ + |x−m|−r1
r2−r1

(λ − λ), |x − m| ∈ (r1, r2),

λ, |x − m| ≤ r1,

with r1 = 0.15, r2 = 0.35 and m = (0.5, 0.5)�. The material distribution and the
corresponding finite element solution of (5b) with the data defined in the beginning
of Sect. 7 are depicted in Fig. 14.

7.2.1 Numerical Evaluation of ĴSMWapprox in Inhomogeneous Setting

In order to evaluate ĴSMWapprox in inhomogeneous regions of the computational

domain, recall that model (60) involves the matrix �T̂ ,�
= �T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)]
defined in (59) where λ

S1
T�

, λ
S2
T�

, λ
S3
T�

are averaged material coefficients according to
(50), see also Fig. 6. The matrix �T̂ ,�

, in turn, is based on the solution to the truncated
transmission problem (58) for the given averaged material values. Thus, in order to
evaluate ĴSMWapprox, that exterior problem would have to be solved for the averaged
material values of every single element, whichwouldmake themodel computationally
intractable.

For that reason, we introduce another approximation step: We precompute
the matrix �T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)] for a large discrete set of combinations of
material coefficients in an offline stage. More precisely, we precompute the
matrix �T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)] for all combinations of tuples (λ�, λ
S1
T�

, λ
S2
T�

, λ
S3
T�

) ∈
{η(1), . . . , η(N )}4 where λ = η(1) < · · · < η(N ) = λ and for the two types of elements
T̂ = T̂ (1) and T̂ = T̂ (2), cf. Fig. 1. Since (58) has to be solved for k = 1, 2, this
yields a total of 4N 4 finite element solutions of truncated transmission problems. In
the online stage, given averaged values (λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

) /∈ {η(1), . . . , η(N )}4, the
matrix �T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)] is approximated by piecewise linear interpolation of
the precomputed data.
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In our experiments, in order to numerically approximate (58), we used the moder-
ately large value R = 30 for the radius of the computational domain and discretized
it by a mesh consisting of about 4400 triangular elements and about 2300 vertices.
We chose N = 16 material points between λ = 1 and λ = 1000 which were chosen
as stated in Table 1. Since increasing the number of material points N will drastically
increase the precomputation time, the concrete choice of these points is of big impor-
tance. Thus, the points were chosen such that the interpolation error that is made in the
online stage is as small as possible, see Remark 12. The total precomputation time for
this setting was about two hours on a single core. Note that, for given PDE constraint,
discretization method and material catalogue {η(1), . . . , η(N )}, this precomputation
step has to be performed only once and can henceforth be used in all optimization
runs.

7.2.2 Numerical Comparison of Models on Computational Domain

We make the same comparison of the two most promising models ĴSMWdiag (35) and
ĴSMWapprox (60) as it was done for the homogeneous setting in Sect. 7.1.2. Again,
recall that ĴTDnum coincides with ĴSMWapprox and is thus not examined separately.

Figure15 again shows the maximum relative error δĴ of these two models over the
computational domain. Again, different thresholds of the color bar are shown. As it
was already observed in Sect. 7.1.2, the model ĴSMWapprox behaves particularly well
in regions of homogeneous material. For both models, the largest errors occur at the
transition from homogeneous material λ(x) = λ to inhomogeneous material.

From Fig. 15 it can also be seen that the largest error of ĴSMWapprox is around 315%
compared to only about 100% for ĴSMWdiag. However, we mention that this effect
disappears when a finer mesh is chosen as it is illustrated in Fig. 16. There, it can
be seen that the maximum error of ĴSMWapprox in the refined mesh is only around
86% which is in the same range as for ĴSMWdiag. The reason for this improvement of
ĴSMWapprox is that, for a given function λ(x), as the mesh size decreases, the range of
values to be averaged in the direct neighborhood of an element becomes smaller which
results in a smaller error when computing the average values λ

Sk
T�

(50), k = 1, 2, 3.

In general, the model ĴSMWapprox behaves well if material variations around a fixed
element are small andmakes larger approximation errorswhen large ranges ofmaterial
values have to be averaged.

7.3 Further Improvements

Finally, we point out several directions in which this research could be extended to
further improve the models ĴSMWapprox, ĴTDnum.

7.3.1 Boundary Regions

So far, we restricted our numerical results to regions away from the boundary and
did not treat elements that touch the boundary. The reason for this is that, in the
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Fig. 15 Comparison of relative errors δĴ [T�] according to (72) for models ĴSMWdiag (35) in left column

and ĴSMWapprox (60) (= ĴTDnum (52)) in right column for all interior elements T� in inhomogeneous
setting. First line shows color plot according to their respective maximum errors. Second to fourth line show
threshold for maximum relative error at 100%, 50% and 10%, respectively. Errors in elements touching the
boundary are not computed
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Fig. 16 Comparison of relative errors in inhomogeneous setting for different mesh sizes for models
ĴSMWdiag (top row) and ĴSMWapprox = ĴTDnum (bottom row). Errors in elements touching the boundary
are not computed

derivation of the models (52) and (60), the truncated exterior problems (48) and (58)
are obtained by zooming in around the fixed element T� and rescaling. Thus, in the
case where T� touches the boundary, the truncated domains depicted in Figs. 4 and
8 do not mimic the neighborhood of T�. Instead, it would be more appropriate to
perform precomputations on truncated half spaces as depicted in Fig. 17. The figure
shows the setting of problem (57) in the case of a homogeneous material distribution
corresponding to elements touching the top boundary. Also, here, inhomogeneous
material can be treated by precomputing a range of combinations of material values
in an offline stage and interpolating averaged sector values in the online stage. Here,
the precomputation becomes a bit more involved since, in addition to accounting for
different materials and different element types and k = 1, 2 in (57), one also has to
distinguish between a left, bottom, right or top boundary as well as between Dirichlet
orNeumann conditions imposed on that boundary. Thus, in order to also treat boundary
regions of a rectangular domain D, an additional 32N 4 truncated half space problems
have to be solved in the offline stage. Here, N is the number of used material values,
e.g., N = 16.

In Fig. 18, we illustrate the improvement when elements touching the top boundary
are given a special treatment by precomputing the matrix �T̂ [(λ�, λ

S1
T�

, λ
S2
T�

, λ
S3
T�

)] also
for the reference elements T̂ depicted in Fig. 17. In addition to the data presented in
Fig. 15, we also computed themaximum relative errors in all elements touching the top
boundary (of Neumann type). If the same data as in the interior is used, the maximum
relative error is attained in the elements at the boundary and is as high as 77.89%.
When the mentioned treatment of the boundary elements is used, the maximum error
is still attained at an interior element and is only 16.6%.
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Fig. 17 Setting for exterior problem (48) corresponding to elements a of type 1 or b of type 2 that touch a
top boundary. On the circular part of the boundary of BR , homogeneous Dirichlet conditions are set. The
boundary conditions at top can be either of Dirichlet or Neumann type, depending on the physical problem

Fig. 18 Comparison of model ĴSMWapprox in Neumann boundary region a without and b with special
precomputation using truncated half spaces as depicted in Fig. 17. For comparison, the same color scale
that is cut off at 16.6% is used in (a) and (b). The maximum relative error in (a) is 77.89% whereas it is
only 16.6% in (b)

7.3.2 Averaging of Inhomogeneous Material Distribution

Wemention thatwe observed that thewaymaterial values are averaged over sectors has
a strong impact on the obtained relative error. Figure19 shows the same experiments
as discussed in Sect. 7.2 for different values of α in the averaging process (50). For
α = 1, the weighted Hölder mean (50) reduces to the weighted arithmetic mean which
yields a large maximum error of about 1300%, see Fig. 19(a). Recall that our choice
α = −0.5 yielded the result in the right column of Fig. 15 with maximal value of
δĴ ≈ 315%. Further numerical studies for α = −0.2 and α = −0.1 are depicted
in Fig. 19b,c showing that for α = −0.2 the maximal error in the mesh is actually
smaller than for the model ĴSMWdiag.

Moreover, one might want to think of decomposing the domain BR(0) into more
than three sectors in order to reduce the error made by the averaging of inhomoge-
neous material parameters. However, here one should keep in mind that the number of
truncated exterior problems to be solved in the precomputation stage with nsec sectors
and N material points is of the order Nnsec+1 and thus grows very fast with nsec.

Finally, taking the average ofmaterial values onmore than one layer of elements (cf.
Fig. 6) together with suitable distance-dependent weights could lead to a better rep-
resentation of the local material configuration and thus to potentially higher accuracy
of the models ĴSMWdiag and ĴTDnum in an inhomogeneous setting.
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Fig. 19 Maximum relative error δĴSMWapprox over computational domain for different averaging param-
eters α in (50)

Conclusion and Outlook

In this paper, we introduced and examined different separable approximations to a dis-
cretized topology/material optimization problem. The Sherman–Morrison–Woodbury
formula applied to the perturbed finite element stiffness matrix yielded a first sepa-
rable exact model which, however, is prohibitively expensive to evaluate. A diagonal
approximation of the stiffness matrix yielded a first tractable model. We introduced
a model that is motivated by the continuous concept of topological derivatives for
triangular inclusion shapes. Moreover, we also introduced a model that approximates
the Sherman–Morrison–Woodbury model with high accuracy by performing similar
rescaling steps as in the topological derivative model. Subsequently, we showed the
somewhat surprising result that these latter two models coincide. Finally, we com-
pared the performances of all models numerically. While the diagonal approximation
of the Sherman–Morrison–Woodbury model can be evaluated very efficiently without
any problems, the new models need data to be precomputed in an offline stage. In our
model problem, however, we saw that the newly introduced models show significantly
higher accuracy in most regions of the domain.

This work presented here can be extended and continued in several directions.

• We illustrated our methods for the case of the compliance functional in a sta-
tionary heat equation. We emphasize that this model was chosen for compactness
of presentation and that extensions to other cost functions and other linear PDE
constraints (e.g., linear elasticity) can be obtained in a rather straight-forward
way (possibly yielding slightly more technical formulas). An extension to non-
selfadjoint problems (including also nonlinear cost functions) could be realized
taking into account Remark 6. An extension of models based on the Sherman–
Morrison–Woodbury formula to other linear PDE constraints is straightforward
since the structure of the discretized problem is the same as for our model prob-
lem. The topological derivative model can be extended to other PDE constraints
following the general systematic procedure presented in [20].

• In this paper,we always assumed a structuredmesh of a certainmesh topology to be
given.While this is a common assumption made in many publications on topology
optimization, an extension to general meshes with arbitrary element shapes and
sizeswould be an interesting topic of future research. In this setting, onemightwant
to parametrize the shape of triangles. Then one could perform the precomputation
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for a (small) number of sample triangle shapes and interpolate their data in order
to treat a family of element shapes.

• The extension of the proposed approaches to nonlinear PDE constraints such as
nonlinear elasticity or nonlinear magnetostatics is another interesting yet challeng-
ing task. Also, here, the general procedure for obtaining topological derivatives
[20] could be used to establish a model similar to ĴTDnum.

• Finally, the ultimate goal of this research is to obtain good approximate sub-
problems in an iterative optimization algorithm.While solving the actual optimiza-
tion problem was beyond the scope of this paper and subject of future research,
we mention that this can be carried out in a similar way to [19]. In particular, in
[19] it was shown that a sequential global programming approach with a diago-
nal approximation of a Sherman–Morrison–Woodbury model was superior to the
well-establishedmethod ofmoving asymptotes (MMA) [17] in terms of both num-
ber of optimization iterations and quality of obtained solutions. A similar or even
better behavior is expected when replacing the diagonal approximation model to
our model ĴSMWapprox.
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