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Abstract
We consider a convex set � and look for the optimal convex sensor ω ⊂ � of a given
measure that minimizes the maximal distance to the points of �. This problem can be
written as follows

inf{dH (ω,�) | |ω| = c and ω ⊂ �},

where c ∈ (0, |�|), dH being the Hausdorff distance. We show that the parametriza-
tion via the support functions allows us to formulate the geometric optimal shape
design problem as an analytic one. By proving a judicious equivalence result, the
shape optimization problem is approximated by a simpler minimization problem of a
quadratic function under linear constraints. We then present some numerical results
and qualitative properties of the optimal sensors and exhibit an unexpected symmetry
breaking phenomenon.
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1 Introduction

The optimal shape and placement of sensors frequently arises in industrial applica-
tions such as urban planning and temperature and pressure control in gas networks.
Roughly, a sensor is optimally designed and placed if it assures the maximum observa-
tion of the phenomenon under consideration. Naturally, it is often designed in a goal
oriented manner, constrained by a suitable PDE, accounting for the physics of the
process. For more examples and details, we refer to the following non exhaustive list
of works [12, 19–21]. Recently, with the emergence of data driven methods, several
authors considered approaches based on Machine Learning in order to accelerate the
computations, we refer for example to [22, 24, 26, 28].

Here, we address the problem in a purely geometric setting, without involving
the specific PDE model. We consider a simple and natural geometric criterion of
performance, based on distance functions. But, as we shall see, tackling it will require
to employ geometric analysis methods.

Moreprecisely,we address the issueof designing anoptimal sensor inside agiven set
in such a way to minimize the maximal distance from the sensor to all the points of the
largest domain. This type of questions naturally arises in optimal resources distribution
problems as one wants to minimize the maximal distance between the resources and
the species present in the considered environment. Also in urban planning, it makes
sense to look for the optimal design and placement of some facility (for example a
park or an artificial lake) inside a city while taking into account a certain equity and
accessibility criterion that consists in minimizing the maximal distance from any point
in the city to the facility.

These problems can then be formulated in a shape optimization framework. Indeed,
given a set � ⊂ R

2, and a mass fraction c ∈ (0, |�|), the problem can be mathemat-
ically formulated as follows:

inf

{
sup
x∈�

d(x, ω) | |ω| = c and ω ⊂ �

}
,

where d(x, ω) := inf y∈ω ‖x − y‖ is the minimal distance from x to ω. In fact, the
problem can be written in terms of the classical Hausdorff distance dH (see Sect. 2.2)
as when ω ⊂ �, one has

sup
x∈�

d(x, ω) = dH (ω,�).

We are then interested in considering the following problem

inf{dH (ω,�) | |ω| = c and ω ⊂ �}, (1)

where c ∈ (0, |�|).
By using a homogenization strategy, which consists in uniformly distributing the

mass of the sensor over� (see Fig. 1), we see that problem (1) does not admit a solution
as the infimum vanishes and is asymptotically attained by a sequence of disconnected
setswith an increasing number of connected components. It is then necessary to impose
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Fig. 1 The homogenization
strategy

additional constraints on ω in order to obtain the existence of optimal solutions. In the
present paper, we focus on the convexity constraint and assume that both the set� and
the sensorω are planar convex bodies. Then, given a convex bounded domain� ∈ R

2,

we are interested in the numerical and theoretical study of the following problem:

inf{dH (ω,�) | ω is convex, |ω| = c and ω ⊂ �}, (2)

where c ∈ (0, |�|).
Wenote that the convexity constraint is classically considered in shape optimization

and sometimes appears as a natural simplifying hypothesis in physical problems. For
example, one of the first problems in the calculus of variations is a least resistance
problem posed by Newton in his Principia.

The problem is to consider a convex body that moves forward in a homogeneous
medium composed of point particles. The medium is extremely rare, so as to assume
that there is no mutual interaction. The particles are assumed to be initially at rest.
When colliding with the body, each particle is reflected elastically. As a result of
collisions, there appears a drag force that acts on the body and slows down its motion.

Take a coordinate system in R
3 and assume that the body is travelling in positive

z-direction. Let the upper part of the convex body’s surface be the graph of a concave
function u : � −→ R, where � is the projection of the body on the (x, y)-plane. By
elementary physics arguments, Newton obtained the following resistance functional

J (u) =
∫

�

1

1 + |∇u|2 dx

and introduced the following natural problem

inf{J (u) | u : � −→ R is concave},

which consists in looking for the shape of the convex body that minimizes the resis-
tance. We refer to [5] for a detailed discussion of the model and the history of this
problem.

Let us now state the main results of the present paper. A first important theorem is
the following:
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Theorem 1 The function f : c ∈ [0, |�|] �−→ inf{dH (ω,�) | ω is convex, |ω| =
c and ω ⊂ �} is continuous and strictly decreasing. Moreover, for every c ∈ [0, |�|],
problem (2) admits solutions and is equivalent to the following shape optimization
problems:
(I) min{dH (ω,�) | ω is convex, |ω| ≤ c and ω ⊂ �},
(II) min{|ω| | ωis convex, dH (ω,�) = f (c) and ω ⊂ �},
(III) min{|ω| | ω is convex, dH (ω,�) ≤ f (c) and ω ⊂ �},
in the sense that any solution of one of the problems also solves the other ones.

Let us give a few comments on this theorem:

• The results hold in higher dimensions. Nevertheless, we have made the choice to
state them in the planar framework for readability sake and coherence with the
qualitative and numerical results obtained in the planar case, see Sects. 4 and 5.

• On the other hand, in addition to its importance from a theoretical point of view (as
we shall see in Sect. 4), the equivalence result above allows to drastically simplify
the numerical resolution of problem (2): indeed, as it is explained in Sect. 5.1, the
equivalent problem (III) can be reformulated via the support functions h and h�

of the sets ω and � in the following analytical form:

⎧⎨
⎩
infh∈H1per(0,2π)

1
2

∫ 2π
0 (h′2 − h2)dθ,

h′′ + h ≥ 0 (in the sense of distributions),
h� − f (c) ≤ h ≤ h�,

where H1
per(0, 2π) is the set of H1 functions that are 2π -periodic and c ∈ [0, |�|].

This analytical problem is then approximated by a finite dimensional one, involv-
ing the truncated Fourier series of the support functions h as in [2, 3], which yields
to a simple minimization problem of a quadratic function under linear constraints.
For more details on the support function parametrization, we refer to Sect. 2.1

and for the complete description of the numerical scheme used in the paper, we
refer to Sect. 5.

One could expect that solutions of (2) will inherit the symmetries of the set �. We
show that this is not always the case and highlight a symmetry breaking phenomenon
appearing when � is a square, see Fig. 2. Our result can be stated as follows:

Theorem 2 Let � = [0, 1] × [0, 1] be the unit square. There exists a threshold c0 ∈
(0, 1) such that:
• If c ∈ [c0, 1], then the solution of (2) is given by the square of area c and same
axes of symmetry as �.

• If c ∈ [0, c0), then the solution of (2) is given by a suitable rectangle.

The paper is organized as follows: in Sect. 2, we present the notations used and recall
some classical results on the support function which is a classical parametrization of
convex sets that allows to formulate the considered geometric problems as purely
analytic ones. In Sect. 3, we present the proof of Theorem 1. Section4 is devoted to
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c = 0.7 c = 0.5 c = 0.2 c = 0.1 c = 0

Fig. 2 Optimal shapes when � is a square, for c ∈ {0.7, 0.5, 0.2, 0.1, 0}

the proof of Theorem 2 and some qualitative properties of intrinsic interest: namely, we
prove that when the set� is a polygon, the optimal sensor is also a polygon. At last, in
Sect. 5,wepresent a numerical framework for solving the problemand show that thanks
to the equivalence result of Theorem 1, problem (2) can be numerically addressed by
a simple minimization of a quadratic function under some linear constrains.

2 Notations and Useful Results

2.1 Definition of the Support Function and Classical Results

If � is convex (not necessarily containing the origin), its support function is defined
as follows:

h� : x ∈ R
2 �−→ sup{〈x, y〉 | y ∈ �}.

Since the functions h� satisfy the scaling property h�(t x) = th�(x) for t > 0, it can
be characterized by its values on the unit sphere S

1 or, equivalently, on the interval
[0, 2π ]. We then adopt the following definition:

Definition 3 The support function of a planar bounded convex set � is defined on
[0, 2π ] as follows (Fig. 3):

h� : [0, 2π) �−→ sup

{〈(
cos θ

sin θ

)
, y

〉
| y ∈ �

}
.

The support function has some interesting properties:

• It allows to provide a simple criterion of the convexity of�. Indeed,� is convex if
and only if h′′

� +h� ≥ 0 in the sense of distributions, see for example [23, (2.60)].
• It is linear for the Minkowski sum and dilatation. Indeed, if �1 and �2 are two
convex bodies and α, β > 0, we have

hα�1+β�2 = αh�1 + βh�2 ,

see [23, Section 1.7.1].
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Fig. 3 The support function of
the convex �

• It allows to parametrize the inclusion in a simple way. Indeed, if �1 and �2 are
two convex sets, we have

�1 ⊂ �2 ⇐⇒ h�1 ≤ h�2 .

• It also provides elegant formulas for some geometric quantities. For example, the
perimeter and the area of a convex body � are respectively given by

P(�) =
∫ 2π

0
h�(θ)dθ and |�| = 1

2

∫ 2π

0
h�(θ)(h′′

�(θ) + h�(θ))dθ

= 1

2

∫ 2π

0
(h′

�
2 − h2�)dθ

and the Hausdorff distance between two convex bodies �1 and �2 is given by

dH (�1,�2) = max
θ∈[0,2π ] |h�1(θ) − h�2(θ)|,

see [23, Lemma 1.8.14].

2.2 Notations

• Kc corresponds to the class of planar, closed, bounded and convex subsets of �,

of area c, where c ∈ [0, |�|].
• If X and Y are two subsets of Rn, the Hausdorff distance between the sets X and
Y is defined as follows

dH (X ,Y ) = max

(
sup
x∈X

d(x,Y ), sup
y∈Y

d(y, X)

)
,

where d(a, B) := infb∈B ‖a − b‖ quantifies the distance from the point a to the
set B. Note that when ω ⊂ �, as it is the case in the problems considered in the
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present paper, the Hausdorff distance is given by

dH (ω,�) := sup
x∈�

d(x, ω).

• If � is a convex set, then h� corresponds to its support function as defined in
Sect. 2.1.

• Given a convex set �, we denote by �−t its inner parallel set at distance t ≥ 0,
which is defined by

�−t := {x | d(x, ∂�) ≥ t}.

• H1
per(0, 2π) is the set of H1 functions that are 2π -periodic.

3 Proof of Theorem 1

For the convenience of the reader, we decomposed the proof in 3 parts: first, we
prove the existence of solutions of problem (2). Then, we prove the monotonicity and
continuity of the function f : c ∈ [0, |�|] �−→ min{dH (ω,�) | ω ∈ Kc}. At last, we
present the proof of the equivalence between the four shape optimization problems
stated in Theorem 1.

3.1 Existence of Minimizers

Proposition 4 Problem (2) admits at least one solution.

Proof First, we note that the functional ω �−→ dH (ω,�) is 1-Lipschitz (thus contin-
uous) with respect to the Hausdorff distance. Indeed, for every convex sets ω1 and ω2,

we have

|dH (ω1,�) − dH (ω2,�)| = ∣∣‖h� − hω1‖∞ − ‖h� − hω2‖∞
∣∣

≤ ‖hω1 − hω2‖∞ = dH (ω1, ω2).

Let (ωn) be a minimizing sequence for problem (2), i.e., such that ωn ∈ Kc and

lim
n→+∞ dH (ωn,�) = inf{dH (ω,�) | ω ∈ Kc}.

Since all the convex sets ωn are included in the bounded set �, we have, by
Blaschke’s selection Theorem (see [23, Th 1.8.7]), that there exists a convex set
ω∗ ⊂ � such that (ωn) converges up to a subsequence (that we also denote by (ωn)) to
ω∗ with respect to the Hausdorff distance. By the continuity of the volume functional
with respect to the Hausdorff distance, we have

|ω∗| = lim
n→+∞ |ωn| = c,
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which means that ω∗ ∈ Kc. Moreover, by the continuity of ω �−→ dH (ω,�) with
respect to the Hausdorff distance, we have that

lim
n→+∞ dH (ωn,�) = dH (ω∗,�).

This shows that ω∗ is a solution of problem (2). ��

3.2 Monotonicity and Continuity

Proposition 5 The function f : c ∈ [0, |�|] �−→ min{dH (ω,�) | ω ∈ Kc} is contin-
uous and strictly decreasing.

Proof Continuity: Let c0 ∈ (0, |�|). By Proposition 4, for every c ∈ [0, |�|], there
exists ωc solution of the problem

min{dH (ω,�) | ω ∈ Kc}.

• We first show an inferior limit inequality. Let (cn)n≥1 be a sequence converging
to c0 such that

lim inf
c→c0

dH (ωc,�) = lim
n→+∞ dH (ωcn ,�).

Since all the convex sets ωcn are included in the bounded set �, we have, by
Blaschke selection theorem and the continuity of the functional ω �−→ d(ω,�)

and the volume, the existence of a set ω∗ ∈ Kc0 as a limit of a subsequence still
denoted by (ωcn ) with respect to the Hausdorff distance.
We then have

f (c0) ≤ dH (ω∗,�) = lim
n→+∞ dH (ωcn ,�) = lim inf

c→c0
dH (ωc,�) = lim inf

c→c0
f (c).

• It remains to prove a superior limit inequality. Let (cn)n≥1 be a sequence con-
verging to c0 such that

lim sup
c→c0

f (c) = lim
n→+∞ f (cn).

Let us now consider the following family of convex sets

Qc :=
{

(ωc0)−τc if c ≤ c0,
(1 − tc)ωc0 + tc� if c > c0,

where τc is chosen in R+ in such a way that

|(ωc0)−τc | = c
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and tc is chosen in [0, 1] in such a way that

|(1 − tc)ωc0 + tc�| = c.

Themap c ∈ [0, |�|] �−→ Qc is continuous with respect to the Hausdorff distance
and Qc0 = ωc0 .

Using the definition of f , we have

∀n ∈ N
∗, f (cn) ≤ dH (Qcn ,�).

Passing to the limit, we get

lim sup
c→c0

f (c) = lim
n→+∞ f (cn) ≤ lim

n→+∞ dH (Qcn ,�) = dH (ωc0 ,�) = f (c0).

As a consequence, we finally get limc→c0 f (c) = f (c0), which proves the continuity
of f .

Monotonicity: Let 0 ≤ c < c′ ≤ |�|. We consider ω ∈ Kc such that f (c) =
dH (ω,�). We have

f (c′) ≤ dH ((1 − tc′)ω + tc′�,�) = ‖h(1−tc′ )ω+tc′� − h�‖∞
= (1 − tc′)‖hω − h�‖∞ = (1 − tc′) f (c) < f (c),

where tc′ ∈ (0, 1] is chosen such that |(1 − tc′)ω + tc′�| = c′. ��

3.3 The Equivalence Between the Problems

We then obtain the following important proposition that provides the equivalence
between four different shape optimization problems.

Proposition 6 Let c ∈ [0, |�|]. The following shape optimization problems are equiv-
alent

(I) min{dH (ω,�) | ω is convex, |ω| = c and ω ⊂ �},
(II) min{dH (ω,�) | ω is convex, |ω| ≤ c and ω ⊂ �},
(III) min{|ω| | ω is convex, dH (ω,�) = f (c) and ω ⊂ �},
(IV) min{|ω| | ω is convex, dH (ω,�) ≤ f (c) and ω ⊂ �},
in the sense that any solution to one of the problems also solves the other ones.

Proof Let us prove the equivalence between the four problems.

• We first show that any solution of (I) solves (II): let ωc be a solution to (I). Then
for every convex ω ⊂ � such that |ω| ≤ c, one has

dH (ω,�) ≥ f
(|ω|) ≥ f (c) = dH (ωc,�),

where we used the monotonicity of f given by Theorem 5: therefore ωc solves
(II).
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• Reciprocally, let now ωc be a solution of (II): we want to show that ωc must be of
volume c. We notice that

f (c) ≥ dH (ωc,�) ≥ f
(|ωc|) ≥ f (c),

where the first inequality follows as the problem (II) allows more candidates than
in the definition of f , and the last inequality uses again the monotonicity of f .
Therefore f (c) = f

(|ωc|), and since f is continuous and strictly decreasing, we
obtain |ωc| = c, which implies that ωc solves (I).

We proved the equivalence between problems (I) and (II); the equivalence between
problems (III) and (IV) is shown by similar arguments. It remains to prove the equiv-
alence between (I) and (III).

• Let ωc be a solution of (I), which means that ωc ∈ Kc and dH (ωc,�) = f (c).
Then for every convex ω ⊂ � such that dH (ω,�) = f (c), we have

f (c) = dH (ω,�) ≥ f
(|ω|).

Thus, since f is decreasing, we get c = |ωc| ≤ |ω|, which means that ωc solves
(III).

• Let now ω′
c be a solution of (III). We have

f (c) = dH (ω′
c,�) ≥ f

(|ω′
c|

)
.

Thus, by the monotonicity of f we get c ≥ |ω′
c|. On the other hand, since ω′

c
solves (III) and there exists a solution ωc of (I), we have |ω′

c| ≥ c, which finally
gives |ω′

c| = c and shows that ω′
c solves (I).

��
Remark 7 For clarity purposes, the results of Sect. 3 have been stated and proved in
the planar case. Nevertheless, it is not difficult to see that all the results hold in higher
dimensions n ≥ 2. Indeed, one just has to consider support functions defined on the
unit sphere Sn−1 (see for example [23, Section 1.7.1]) and reproduce the exact same
steps.

4 Proof of Theorem 2 and Some Qualitative Results

4.1 Saturation of the Hausdorff Distance

Proposition 8 Let ω be a solution of problem (2). Then, there exist (at least) two
different couples of points (x1, y1), (x2, y2) ∈ ∂ω × ∂� such that

‖x1 − y1‖ = ‖x2 − y2‖ = dH (ω,�).
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Fig. 4 The sets ω (in red) and ωε (in blue)

Proof Let us argue by contradiction. We assume that there exists only one couple
(x1, y1) ∈ ∂ω × ∂� such that

‖x1 − y1‖ = dH (ω,�).

Let x ∈ ∂ω be a point different from x1. By cutting an infinitesimal portion of the
convex ω (see Fig. 4), we obtain a set ωε such that dH (ω,�) = dH (ωε,�) (because
we assumed that the Hausdorff distance is attained at only one couple of points) and
|ω| > |ωε|, for sufficiently small values of ε. Thus, ω is not a solution of the third
problem of Proposition 6, which is absurd since ω is assumed to be a solution of
problem (2) (which is proven to be equivalent to the later one in Proposition 6). ��

4.2 Polygonal Domains

Proposition 9 If the set � is a polygon of N sides, then any solution of problem (2) is
also a polygon of at most N sides.

Proof Let us denote by v1, . . . , vN , with N ≥ 3, the vertices of the polygon � and
consider a solution ω of problem (3).

The distance function x �−→ miny∈ω ‖x − y‖ is convex, thus, it is well known
that its maximal value on the convex polygon � is attained at some vertices that we
denote by (v′

k)k∈�1,K �, where K ≤ N . Note that since ω a solution of problem (3), we
have K ≥ 2 by Proposition 8. Moreover, for every k ∈ �1, K � there exists a unique
uk ∈ ∂ω such that ‖v′

k − uk‖ = dH (ω,�), which is the projection of the vertex v′
k

onto the convex sensor ω. Let us consider two successive projection points u1 and u2
and assume without loss of generality that their coordinates are given by (0, 0) and
(x0, 0), with x0 > 0, see Fig. 5.

We consider the altitude h ≥ 0 defined as follows

h := sup{s | ∃x ∈ [0, x0], such that (x, s) ∈ ω}.
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Fig. 5 The polygon � and the sensor ω (Color figure online)

Let us argue by contradiction and assume that h > 0. For ε > 0, we consider
ωε := ω ∩ {y ≤ h − ε}, see Fig. 5. For sufficiently small values of ε > 0, we have

dH (ωε,�) = dH (ω,�) and |ωε| < |ω|,

which means that ω is not a solution of the problem

min{|ω| | dH (ω,�) = f (c) and ω ⊂ �},

that is equivalent to problem (2) by Proposition 6. This provides a contradiction since
ω is assumed to be a solution of problem (2). We then have that h = 0, which means
that the segment of extremities u1 and u2 is included in the boundary of the optimal
set ω. By repeating the same argument with the successive couple of points uk and
uk+1 (with the convention uk+1 = u1), we prove that the boundary of the optimal
set ω is exactly given by the union of the segments of extremities uk and uk+1 which
means that ω is a polygon (of K sides). ��

4.3 Application to the Square: Symmetry Breaking

In this section, we combine the results of Propositions 6 and 9 to solve problem (3)
when � is a square. This leads to observe the non uniqueness of the optimal shape
and a symmetry breaking phenomenon. The phenomenon might seem surprising as
one could expect that the optimal sensor will inherit all the symmetries of �.

Let � = [0, 1] × [0, 1]. We are interested in solving problem (2) stated as follows

min{dH (ω,�) | ω ⊂ � is convex and |ω| = c}, (3)

with c ∈ [0, |�|].
Before presenting the proof, we exhibit the solutions for different values of c,when

� is a square.
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c = 0.7 c = 0.5 c = 0.2 c = 0.1 c = 0

Fig. 6 Optimal shapes when � is a square, for c ∈ {0.7, 0.5, 0.2, 0.1, 0}

Remark 10 As one observes in Fig. 6, for values of c close to |�| = 1, the optimal
sensor is a squarewith the same symmetries of�, but for small values of c, the optimal
sensor is no longer the square but a certain rectangle. One should then note that the
optimal sensor is not necessarily unique (as one can consider rotating the rectangle
with an angle π/2) and it does not necessarily inherit all the symmetries of the shape
� (as it is not symmetric with respect to the diagonals of �).

Let us now present the details of the proof. By Propositions 6 and 9, problem (3) is
equivalent to the following one:

min{|ω| | ω ⊂ � is a convex quadrilateral and dH (ω,�) = δ}, (4)

with δ ∈ [0, 1
2 ]. In the following proposition, we completely solve problem (4).

Proposition 11 Let� = [0, 1]×[0, 1] be the unit square and δ ∈ [0, 1
2 ). The solution

of problem (4) is given by

• the square of vertices

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1(δ
√
2
2 , δ

√
2
2 ),

M2(1 − δ
√
2
2 , δ

√
2
2 ),

M3(1 − δ
√
2
2 , 1 − δ

√
2
2 ),

M4(δ
√
2
2 , 1 − δ

√
2
2 ),

if δ ≤ 1
2
√
2
,

• and by one of the two rectangles of vertices

⎧⎪⎪⎨
⎪⎪⎩

M1(δ cos θδ, δ sin θδ),

M2(1 − δ cos θδ, δ sin θδ),

M3(1 − δ cos θδ, 1 − δ sin θδ),

M4(δ cos θδ, 1 − δ sin θδ),

with θδ ∈ {arcsin
(

1
2
√
2δ

)
− π

4 , 3π
4 − arcsin

(
1

2
√
2δ

)
}, if δ ∈ [ 1

2
√
2
, 1
2 ].

Proof We denote by A1(0, 0), A2(1, 0), A3(1, 1) and A4(0, 1) the vertices of the
square � and by B1, B2, B3 and B4 the balls of radius δ and centers respectively A1,

A2, A3 and A4, see Fig. 7.
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Fig. 7 The polygon in red has a smallest area than the one in green and its Hausdorff distance to the square
� is equal to δ (Color figure online)

Let ω be a solution of problem (4) (it is then also a solution of problem (3) by
Proposition 6). By the result of Proposition 9, since � is a square (in particular a
polygon), the optimal shape ω is also a polygon with at most four vertices. Since
dH (ω,�) = δ, the polygonω has four different vertices. Each one of them is contained
in a set Bk ∩ �, with k ∈ �1, 4�.

In fact, since the optimal set ω minimises the area for a given Hausdorff distance,
we deduce that all its vertices are located on the arcs of circles ∂Bk ∩ � given by the
intersection of the boundaries of the balls Bk and the square �. Indeed, if it were not
the case, one could easily construct a convex polygon strictly included inω (thus, with
strictly less volume) such that its Hausdorff distance to the square � is equal to δ, see
Fig. 7

Now that we know that each vertex of the optimal sensorω is located on a (different)
arc of circle ∂Bk ∩ �, with k ∈ �1, 4�, let us denote them by

⎧⎪⎪⎨
⎪⎪⎩

M1(δ cos θ1, δ sin θ1),

M2(1 − δ cos θ2, δ sin θ2),

M3(1 − δ cos θ3, 1 − δ sin θ3),

M4(δ cos θ4, 1 − δ sin θ4),

where θ1, θ2, θ3, θ4 ∈ [0, π
2 ], see Fig. 8.

The area of the polygon ω can be expressed via the coordinates of its vertices as
follows:

|ω| = 1

2

4∑
k=1

(xk yk+1 − xk+1yk),
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Fig. 8 Parametrization via the angles θ1, θ2, θ3 and θ4

where (xk, yk) correspond to the coordinates of the points Mk, with the convention
(x5, y5) := (x1, y1).

By straightforward computations, we obtain

|ω| = 1 − 1

2
δ

4∑
k=1

cos θk − 1

2
δ

4∑
k=1

sin θk + 1

2
δ2

4∑
k=1

(cos θk sin θk+1 + cos θk+1 sin θk),

with the convention θ5 = θ1.

We then perform a judicious factorization to obtain the following formula

|ω| = 1

2

(
(1 − δ cos θ1 − δ cos θ3)(1 − δ sin θ2 − δ sin θ4)

+(1 − δ cos θ2 − δ cos θ4)(1 − δ sin θ1 − δ sin θ3)
)
.
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We then use the inequality a + b ≥ 2
√
ab, where the equality holds if and only if

a = b, and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − δ cos θ1 − δ cos θ3 = ( 12 − δ cos θ1) + ( 12 − δ cos θ3) ≥ 2
√

( 12 − δ cos θ1)(
1
2 − δ cos θ3),

1 − δ sin θ2 − δ sin θ4 = ( 12 − δ sin θ2) + ( 12 − δ sin θ4) ≥ 2
√

( 12 − δ sin θ2)(
1
2 − δ sin θ4),

1 − δ cos θ2 − δ cos θ4 = ( 12 − δ cos θ2) + ( 12 − δ cos θ4) ≥ 2
√

( 12 − δ cos θ2)(
1
2 − δ cos θ4),

1 − δ sin θ1 − δ sin θ3 = ( 12 − δ sin θ1) + ( 12 − δ sin θ3) ≥ 2
√

( 12 − δ sin θ1)(
1
2 − δ sin θ3),

with equality if and only if

θ1 = θ3 and θ2 = θ4. (5)

We then write

|ω| ≥
√(

1

2
− δ cos θ1

) (
1

2
− δ cos θ3

)√(
1

2
− δ sin θ2

) (
1

2
− δ sin θ4

)

+
√(

1

2
− δ cos θ2

) (
1

2
− δ cos θ4

)√(
1

2
− δ sin θ1

) (
1

2
− δ sin θ3

)

and use again the inequality a + b ≥ 2
√
ab to obtain

|ω| ≥ 2

((
1

2
− δ cos θ1

) (
1

2
− δ cos θ3

) (
1

2
− δ sin θ2

) (
1

2
− δ sin θ4

)) 1
4

·
((

1

2
− δ cos θ2

) (
1

2
− δ cos θ4

) (
1

2
− δ sin θ1

) (
1

2
− δ sin θ3

)) 1
4

, (6)

where the equality holds if and only if one has

(
1

2
− δ cos θ1

) (
1

2
− δ cos θ3

) (
1

2
− δ sin θ2

) (
1

2
− δ sin θ4

)

=
(
1

2
− δ cos θ2

) (
1

2
− δ cos θ4

)(
1

2
− δ sin θ1

) (
1

2
− δ sin θ3

)
. (7)

By combining the equality conditions (5) and (7), we show that the inequality (6)
is an equality if and only if θ1 = θ3, θ2 = θ4 and

(
1

2
− δ cos θ1

) (
1

2
− δ sin θ2

)
=

(
1

2
− δ sin θ1

)(
1

2
− δ cos θ2

)
,
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which is equivalent to

1
2 − δ cos θ1
1
2 − δ sin θ1

=
1
2 − δ cos θ2
1
2 − δ sin θ2

,

which holds if and only if θ1 = θ2, because the function θ �−→ 1
2−δ cos θ
1
2−δ sin θ

is a bijection

from [0, π
2 ] to [1 − 2δ, 1

1−2δ ].
We then conclude that the equality in (6) holds if and only if θ1 = θ2 = θ3 = θ4,

which means that the optimal sensor is a rectangle that corresponds to the value of θδ

that minimizes the function

fδ : θ ∈
[
0,

π

2

]
�−→

(
1

2
− δ cos θ

)(
1

2
− δ sin θ

)
.

Since we have fδ(
π
2 − θ) = fδ(θ) for every θ ∈ [0, π

4 ], we deduce by symmetry that
it suffices to study the function fδ on the interval [0, π

4 ]; we have

∀θ ∈
[
0,

π

4

]
, f ′

δ(θ) = δ(cos θ − sin θ)

(
−1

2
+ δ cos θ + δ sin θ

)
.

The function gδ : θ �−→ − 1
2 + δ cos θ + δ sin θ is continuous and strictly increasing

on [0, π
4 ]. Thus,

gδ

([
0,

π

4

])
=

[
gδ(0), gδ

(π

4

)]
=

[
−1

2
+ δ,−1

2
+ δ

√
2

]
.

Then, the sign of gδ on [0, π
4 ] (and thus the variation of fδ, see Fig. 9) depends on

the value of δ ∈ [0, 1
2 ). Indeed:

• If δ ≤ 1
2
√
2
(i.e., gδ(

π
4 ) ≤ 0), then g′ < 0 on (0, π

4 ),which means that fδ is strictly

decreasing on [0, π
4 ] and thus attains its minimal value at θδ = π

4 .

• If δ > 1
2
√
2
(i.e., gδ(

π
4 ) > 0), straightforward computations show that the

function fδ is strictly decreasing on [0, θδ] and increasing on [θδ,
π
4 ], with

θδ = arcsin
(

1
2
√
2δ

)
− π

4 . Thus, fδ attains its minimal value at θδ.

��

5 Numerical Simulations

In this section, we present the numerical scheme adopted to solve the problems under
consideration in the present paper. In particular, we focus on the following (equivalent)
problems:

min{dH (ω,�) | ω is convex, |ω| = c and ω ⊂ �}, (8)

123



253 Page 18 of 29 I. Ftouhi, E. Zuazua
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Fig. 9 The graphs of the function fδ for the cases: δ = 0.25 in the left and δ = 0.4 in the right

and

min{|ω| | ω is convex, dH (ω,�) ≤ d and ω ⊂ �}, (9)

where c, d ≥ 0.
Aswe shall see, even-though the problems are equivalent (see Theorem 6), problem

(9) is much easier to solve numerically as it is approximated by a simple problem of
minimizing a quadratic function under linear constraints.

5.1 Parametrization of the Functionals

In Sect. 2.1we recalled that if both� andω are convex,we have the following formulae
for the Hausdorff distance between ω and �

dH (ω,�) = ‖h� − hω‖∞ := max
θ∈[0,2π ] |h�(θ) − hω(θ)|

and the area of ω

|ω| = 1

2

∫ 2π

0
hω(h′′

ω + hω)dθ = 1

2

∫ 2π

0
(h2ω − h′

ω
2
)dθ,

where h� and hω respectively correspond to the support functions of the convex sets
� and ω.

On the other hand, the inclusion constraint ω ⊂ � can be expressed by hω ≤ h�

on [0, 2π ] and the convexity of the sensor ω can also be analytically expressed as
follows

h′′
ω + hω ≥ 0,

in the sense of distributions. We refer to [23] for more details and results on convexity.
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Therefore, the use of the support functions allows to respectively transform the
purely geometric problems (8) and (9) into the following analytical ones

⎧⎪⎪⎨
⎪⎪⎩

infh∈H1
per(0,2π) ‖h� − h‖∞,

h ≤ h�,

h′′ + h ≥ 0,
1
2

∫ 2π
0 h(h′′ + h)dθ = c

(10)

and

⎧⎪⎪⎨
⎪⎪⎩

infh∈H1
per(0,2π)

1
2

∫ 2π
0 h(h′′ + h)dθ,

h ≤ h�,

h′′ + h ≥ 0,
‖h� − h‖∞ ≤ d,

(11)

where H1
per(0, 2π) is the set of H1 functions that are 2π -periodic.

Since

{
h ≤ h�,

‖h� − h‖∞ ≤ d
⇐⇒ h� − d ≤ h ≤ h�,

problem (11) can be reformulated as follows

⎧⎪⎨
⎪⎩
infh∈H1

per(0,2π)
1
2

∫ 2π
0 h(h′′ + h)dθ,

h′′ + h ≥ 0,
h� − d ≤ h ≤ h�.

(12)

To perform the numerical approximation of optimal shape, we have to retrieve a
finite dimensional setting. We then follow the same ideas in [2, 3] and parametrize
the sets via Fourier coefficients of their support functions truncated at a certain order
N ≥ 1. Thus, we look for solutions in the set

HN :=
{

θ �−→ a0 +
N∑

k=1

(
ak cos (kθ) + bk sin (kθ)

) ∣∣ a0, . . . , aN , b1, . . . , bN ∈ R

}
.

This approach is justified by the following approximation proposition:

Proposition 12 [23, Section 3.4] Let � ∈ K2 and ε > 0. Then there exists Nε and �ε

with support function h�ε ∈ HNε such that dH (�,�ε) < ε.

We refer to [2, 4] for other and applications to different problems and some theo-
retical convergence results.

Let us now consider the regular subdivision (θk)k∈�1,M� of [0, 2π ], where θk =
2kπ/M and M ∈ N

∗. The inclusion constraints h�(θ) − d ≤ h(θ) ≤ h�(θ) and the
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convexity constraint h′′(θ) + h(θ) ≥ 0 are approximated by the following 3M linear
constraints on the Fourier coefficients:

∀k ∈ �1, M�,

{
h�(θk) − d ≤ a0 + ∑N

j=1

(
a j cos ( jθk) + b j sin ( jθk)

) ≤ h�(θk),

a0 + ∑N
j=1

(
(1 − j2) cos ( jθk)a j + (1 − j2) sin ( jθk)b j

) ≥ 0.

At last, the area of the convex set corresponding to the truncated support function
of ω at the order N is given by the following quadratic formula:

|ω| = πa20 + π

2

N∑
j=1

(1 − j2)(a2j + b2j ).

Thus, the infinitely dimensional problems (10) and (12) are approximated by the
following finitely dimensional ones:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf(a0,a1,...,aN ,b1,...,bN )∈R2N+1 maxθ∈[0,2π] h�(θ) − a0 − ∑N
j=1

(
a j cos ( jθ) + b j sin ( jθ)

)
,

∀k ∈ �1, M�, a0 + ∑N
j=1

(
a j cos ( jθk) + b j sin ( jθk)

) ≤ h�(θk),

∀k ∈ �1, M�, a0 + ∑N
j=1

(
(1 − j2) cos ( jθk)a j + (1 − j2) sin ( jθk)b j

) ≥ 0,

πa20 + π
2

∑N
j=1(1 − j2)(a2j + b2j ) = c

(13)

and

⎧⎪⎨
⎪⎩

inf(a0,a1,...,aN ,b1,...,bN )∈R2N+1 πa20 + π
2

∑N
j=1(1 − j2)(a2j + b2j ),

∀k ∈ �1, M�, h�(θk) − d ≤ a0 + ∑N
j=1

(
a j cos ( jθk) + b j sin ( jθk)

) ≤ h�(θk),

∀k ∈ �1, M�, a0 + ∑N
j=1

(
(1 − j2) cos ( jθk)a j + (1 − j2) sin ( jθk)b j

) ≥ 0.

(14)

Remark 13 We conclude that the shape optimization problems considered in the
present paper are approximated by problem (14), which simply consists in minimizing
a quadratic function under linear constraints.

5.2 Computation of the Gradients

A very important step in shape optimization is the computation of the gradients. In
our case, the convexity and inclusion constraints are linear and the area constraint is
quadratic. Thus, its gradients are obtained by direct computations. Nevertheless, the
computation of the gradient of the objective function in Problem (13) is not straight-
forward as it is defined as a supremum. This is why we use a Danskin’s differentiation
scheme [9] to compute the derivative.

Proposition 14 Let us consider

g : (θ, a0, . . . , bN ) �−→ h�(θ) − a0 −
N∑

k=1

(
ak cos (kθ) + bk sin (kθ)

)
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and

j : (a0, . . . , bN ) �−→ max
θ∈[0,2π ] g(θ, a0, . . . , bN ).

The function j admits directional derivatives in every direction and we have

∂ j

∂a0
= −1,

and for every k ∈ �1, N�,

{
∂ j
∂ak

= maxθ∗∈� − cos (kθ∗),
∂ j
∂bk

= maxθ∗∈� − sin (kθ∗),

where

� := {θ∗ ∈ [0, 2π ] | G(θ∗, a0, . . . , bN ) = max
θ∈[0,2π ]G(θ, a0, . . . , bN )}.

Proof Since the same scheme is followed for every coordinate, we limit ourselves to
present the proof for the first coordinate a0. In order to simplify the notations, we will
write for every x ∈ R,

j(x) := j(a0, . . . , ak−1, x, ak+1 . . . , bN ) and

G(θ, x) := G(θ, a0, . . . , ak−1, x, ak+1 . . . , bN ).

For every t ≥ 0, we denote by θt ∈ [0, 2π ] a point such that

G(θt , ak + t) = j(ak + t) = max
θ∈[0,2π ]G(θ, ak + t).

We have

j(ak + t) − j(ak) = G(θt , ak + t) − G(θ0, ak)

≥ G(θ0, ak + t) − G(θ0, ak) = −t cos (kθ0).

Thus,

∀θ0 ∈ �, lim inf
t→0+

j(ak + t) − j(ak)

t
≥ − cos (kθ0),

which means that

lim inf
t→0+

j(ak + t) − j(ak)

t
≥ max

θ0∈�
− cos (kθ0). (15)
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Let us now consider a sequence (tn) of positive numbers decreasing to 0, such that

lim
n→+∞

j(ak + tn) − j(ak)

tn
= lim sup

t→0+

j(ak + t) − j(ak)

t
.

We have, for every n ≥ 0,

j(ak + tn) − j(ak) = G(θtn , ak + tn) − G(θ0, ak) ≤ G(θtn , ak + tn) − G(θtn , ak)

= −tn cos (kθtn ).

Thus,

lim sup
t→0+

j(ak + t) − j(ak)

t
= lim

n→+∞
j(ak + tn) − j(ak)

tn
≤ lim sup

n→+∞
− cos (kθn) = − cos (kθ∞),

where θ∞ is an accumulation point of the sequence (θn). It is not difficult to check
that θ∞ ∈ �. Thus, we have

lim sup
t→0+

j(ak + t) − j(ak)

t
≤ max

θ0∈�
− cos (kθ0). (16)

By the inequalities (15) and (16) we deduce the announced formula for the derivative.
��

5.3 Numerical Results

Now that we have parameterized the problem and computed the gradients, we are
in position to perform numerical shape optimization. We use the ‘fmincon’ Matlab
routine. In the following figures we present the results obtained for different shapes
and different mass fractions c0 := α0|�|, where α0 ∈ {0.01, 0.1, 0.4, 0.7}.

Remark 15 The numerical simulations presented in Fig. 10 suggest that for large mass
fractions (α0 ≈ 1), the optimal sensor is exactly given by an inner parallel set of
the domain � (see Sect. 2.2 for the definition of inner parallel sets). In the work in
preparation [10], we prove that this statement holds under some regularity assumptions
on the set� and investigate its relation with the apparition of caustics when computing
the distance function to the boundary ∂� by solving following the eikonal equation

{ |∇u| = 1 in �,

u = 0 on ∂�.
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α0 = 0.7 α0 = 0.4 α0 = 0.1 α0 = 0.01

Fig. 10 Obtained optimal shapes for α0 ∈ {0.01, 0.1, 0.4, 0.7} and different choices of �

5.4 Optimal Spherical Sensors and Relation with Chebyshev Centers

In this section, we show that the ideas developed in the last sections can be efficiently
used to numerically solve the problemof optimal placement of a spherical sensor inside
the convex set �. We show also that this problem is related to the task of finding the
Chebyshev center of the set, i.e., the center of the minimal-radius ball enclosing the
entire set �.

We are then considering the following optimal placement problem

min{dH (B,�) | B is a ball included in � and of radiusR}, (17)

with R ∈ [0, r(�)], where r(�) is the inradius of �, that is the radius of the biggest
ball contained in �.

Since the support function of a ball B of center (x, y) and radius R is simply given
by hB : θ �−→ R + x cos θ + y sin θ, problem (17) can be formulated in terms of
support functions as follows:

min
(x,y)

{‖h� − R + x cos θ + y sin θ‖∞ | ∀θ ∈ [0, 2π ],
R + x cos θ + y sin θ ≤ h�(θ)}. (18)
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R = 3 R = 2 R = 1 R = 0.25

Fig. 11 Optimal placement of spherical sensors with different radii R ∈ {0.25, 1, 2, 3}

Here also, as in Sect. 5.1, the inclusion constraint B ⊂ � (i.e., hB ≤ h�) can be
approximated by a finite number of linear inequalities

R + x cos θk + y sin θk ≤ h�(θk),

where θk := 2kπ/M, with k ∈ �1, M� and M chosen equal to 500.
Thus, we retrieve a problem of minimizing the non linear function (x, y) �−→

‖h� − R + x cos θ + y sin θ‖∞ (whose gradient is computed by using the result of
Proposition 14) with a finite number of linear constraints.

In Fig. 11, we present some numerical results.
At last, we note that solving problem (17) with R = 0 is equivalent to finding

the Chebyshev center of � that is the center of the minimal-radius ball enclosing the
entire set�, see Fig. 12. This center has been considered by several authors in different
settings, especially in functional analysis, we refer for example to [1, 14, 17, 18].

Fig. 12 Chebyshev centers and circumcircles of different convex sets
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6 Conclusion and Perspectives

The present paper is devoted to the design of one convex sensor inside a given convex
domainminimizing the farthest distance between the two sets.Manynatural extensions
could be considered. In this sectionwe discuss some possible development and present
some ideas that we are planning to develop for future works.

• Multiple sensors on domains and networks. A natural extension would be the
optimal placement and design of multiple sensors inside a given region or a net-
work. These cases are out of the scope of the present work and we believe that
different techniques should be considered for their treatment. Indeed, our approach
is mainly based on parametrizing the boundaries of the set � and the sensor ω via
their support functions h� and hω and use them to compute the Hausdorff distance
between � and ω via the formula

dH (ω,�) = ‖h� − hω‖∞.

We believe that no similar formula for the Hausdorff distance between the union
of two or more sensors and the set � could be found. Indeed, in contrary to the
case of one sensor where the Hausdorff distance is always attained at points on
the boundaries of the sets ω and � (see Fig. 4), in the case of multiple sensors the
Hausdorff distance may be attained at a point inside the domain � (see Fig. 13),
which makes the parametrization via support functions irrelevant.

It is then natural to investigate the optimal design and placement of N sensors
(Sk) inside a domain or a network � in such a way that any point in � is “easily"
reachable from one of the sensors. This problem can bemathematically formulated
as follows

min

{
dH (�,∪N

k=1Sk) = max
y∈�

d(y,∪N
k=1Sk) | ∀k ∈ �1, N�, Sk ⊂ �

}
, (19)

where d(y,∪N
k=1Sk) is the minimal (geodesic if � is a network) distance from the

point y to the union of the sensors.

Fig. 13 The Hausdorff distance between the disconnected sensor ω1 ∪ ω2 and the set �
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If we consider (vε) a family of functions approximating the distance function
y �−→ d(y,∪N

k=1Sk) when ε goes to 0 (such as the ones defined below in Theo-
rems 16 and 17), we may consider approximating problem (19) by the following
one

min

{
max
y∈�

vε | ∀k ∈ �1, N�, Sk ⊂ �

}
. (20)

The advantage of such approximated problems is that they involve elliptic equa-
tions that are much easier to deal with from the theoretical and numerical points
of views.

Once problem (20) is solved, the next natural step would be to justify that the
obtained solutions converge to those of the initial problem (19). This is classically
done by proving 
-convergence results, see for example [16, Section 6].

• Approximation of the distance function. The problems studied in the present
paper involve the distance function, that satisfies the classical eikonal equation

|∇u| = 1.

Such equation is nonlinear and hyperbolic, which makes it quite difficult to deal
with from a numerical perspective, especially in the context numerical shape opti-
mization.

It may then be interesting to use a suitable approximation of the distance function
basedon somePDEresults in the spirit ofCrane et al. in [8],where the authors introduce
a new approach to compute distances based on a heat flow result of Varadhan [27],
which says that the geodesic distance φ(x, y) between any pair of points x and y on a
Riemannian manifold can be recovered via a simple pointwise transformation of the
heat kernel

φ(x, y) = lim
t−→0

√−4t log kt,x (y),

where kt,x (y) is the heat kernel, which measures the heat transferred from a source x
to a destination y after time t . We refer to [8, 27] for more details and to [25] for an
extension to graphs.

In the same spirit, one could use a suitable approximation of the distance function
in terms of the solution of an elliptic PDE, inspired by the following classical result:

Theorem 16 [27, Th. 2.3] Let � be an open subset of Rn and ε > 0, we consider the
problem {

wε − ε�wε = 0 in �,

wε = 1 on ∂�.
(21)

We have

lim
ε→0

−√
ε lnwε(x) = d(x, ∂�) := inf

y∈∂�
‖x − y‖,

uniformly over compact subsets of �.
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Fig. 14 Approximation of the distance function to the boundary via Varadhan’s result of Theorem 16, where
we have used Matlab’s toolbox ‘PDEtool’ to solve problem (21), with ε = 10−4

In Fig. 14, we plot the approximation of the distance function to the boundary
obtained via the result of Theorem 16.

We note that there are other results of approximation of the distance function via
PDEs, see [11] and references therein. We recall for example the following result of
Bernd Kawohl:

Theorem 17 [13, Th. 1]We consider the problem

{−�pu p = 1 in �,

u p = 0 on ∂�,

where �p corresponds to the p-Laplace operator, defined as follows

�pv = div(|∇v|p−2∇v).

We have

lim
p→+∞ u p(x) = d(x, ∂�) uniformly in �.

One advantage of such approximation methods is that they allow to introduce
relevant PDE based problems that may be easier to consider from a numerical point
of view than the initial ones involving the distance function and that are of intrinsic
interest. Let us conclude by presenting some examples of such problems:

• The average distance problem. Given a set � ⊂ R
n and a subset � ⊂ �, the

average distance to � is defined as follows:

Jp(�) :=
∫

�

d(x, �)pdx,

where p is a positive parameter.
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Themain focus here is to study the shapes� that minimize the average distance and
investigate their properties such as symmetries and regularity. This problem has been
introduced in [6, 7] and studied by many authors in the last years. For a presentation
of the problem, we refer to [15] and to the references therein for related results.

Even if these problems are easy to formulate, they are quite difficult to tackle
both theoretically and numerically. It is then interesting to use the approximation
results of the distance function to approximate the functional Jp by some functional
Jp,ε(�) := ∫

�
v
p
ε dx, where (vε) is a family of functions uniformly converging to

d(·, �) on � when ε goes to 0.
We are then led to consider shape optimization problems of functionals involving

solutions of simple elliptic PDEs. Several results for such functionals are easier to
obtain such as Hadamard formulas for the shape derivatives, which are of crucial
importance for numerical simulations.
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