
The Journal of Geometric Analysis (2023) 33:243
https://doi.org/10.1007/s12220-023-01295-w

The Topological State Derivative: An Optimal Control
Perspective on Topology Optimisation

Phillip Baumann1 · Idriss Mazari-Fouquer2 · Kevin Sturm1

Received: 1 December 2022 / Accepted: 17 April 2023 / Published online: 15 May 2023
© The Author(s) 2023

Abstract
In this paper, we introduce the topological state derivative for general topological
dilatations and explore its relation to standard optimal control theory. We show that
for a class of partial differential equations, the shape-dependent state variable can be
differentiated with respect to the topology, thus leading to a linearised system resem-
bling those occurring in standard optimal control problems. However, a lot of care has
to be taken when handling the regularity of the solutions of this linearised system. In
fact,we should expect different notions of (very)weak solutions, dependingonwhether
the main part of the operator or its lower order terms are being perturbed. We also
study the relationship with the topological state derivative, usually obtained through
classical topological expansions involving boundary layer correctors. A feature of the
topological state derivative is that it can either be derived via Stampacchia-type regu-
larity estimates or alternately with classical asymptotic expansions. It should be noted
that our approach is flexible enough to cover more than the usual case of point per-
turbations of the domain. In particular, and in the line of (Delfour in SIAM J Control
Optim 60(1):22–47, 2022; J Convex Anal 25(3):957–982, 2018), we deal with more
general dilatations of shapes, thereby yielding topological derivatives with respect to
curves, surfaces or hypersurfaces. To draw the connection to usual topological deriva-
tives, which are typically expressed with an adjoint equation, we show how usual
first-order topological derivatives of shape functionals can be easily computed using
the topological state derivative.
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1 Introduction

1.1 Scope of the Paper

The main goal in shape optimisation problems is to optimise a certain set, the “design
variable” �, in order to maximise or minimise a certain functional. To achieve this
goal, it is necessary to understand how this functional varies under perturbations of
�. Of particular importance are perturbations obtained by drilling a small inclusion
ωε of size ε into �. The first order variation of the functional under this perturbation
is called the “topological derivative”. After its introduction in the pioneering works
[1–4] in the context of linear elasticity, the topological derivative framework was used
in several numerical algorithms; let us for instance mention level-set algorithms [3] or
Newton-type algorithm [5, Chapter 10]. We also refer to the monographs [6], where
several topological derivatives for various model problems are derived.

Recently [7] a Lagrangian technique, called the “averaged adjoint approach”, was
proposed as an efficient tool to compute topological derivatives. This technique allows
for a wide range of applications: topological derivatives for Dirichlet boundary con-
ditions [8], topological derivatives for nonlinear [9] and quasilinear problems [10] or
higher order topological derivatives [11] can be computed in a systematic way. We
also refer to [12] for another Lagrangian technique to compute topological derivatives.

In the even more recent paper [1], a way to compute the topological derivative
directly using the unperturbed adjoint equation was proposed. In this reference, more
general topological perturbations, called dilatations, are also considered; this leads to
a more general notion of topological derivative. In [1, Thm. 3.4], the difference of the
perturbed and unperturbed state variable are divided by the volume of the perturbation,
however, no analysis on the existence of this limit is provided. We will see that, for
the models we consider, that the limit of the quotient divided by the volume of the
perturbation for point perturbations and dilatations of hypersurfaces actually exists in
a suitable function space; this leads us to a new notion of topological derivative of
the state which we refer to as the topological state derivative. A difference between
[1] and our model problems is that in this reference homogenous Neumann boundary
conditions on the inclusion boundary are imposed, while we deal with transmission
problems, which can be seen as inhomogenous Neumann boundary conditions on the
inclusion boundary.

Let us mention other applications of asymptotic expansions, for instance in [13],
where a necessary condition for the existence of a nonsmooth domain is derived. In thi
paper the boundary components touch at an tangential point and thus the domain has,
for instance in dimension two, a cusp at this point. Then the interesting question is also
how does the asymptotic expansion of the solution look like when the two touching
components are moved by a small width ε > 0 and how does the solution behave.
This is examined in [14], where also the asymptotic of the solution with respect to the
distance ε > 0 is provided. Asymptotic expansions for a variety of shape functions can
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be found in [15] which includes the asymptotics of eigenvalues and energy functionals.
In [16, 17] an interesting self-adjoint extensions on the union of domain and ligament
of width h > 0 is studied. The asymptotics of the solution to a Poisson problem is
derived with respect to the ligament thickness h. The ligament problem with the strip
can then be approximated with the limit problem, where the ligament collapses to a
curve.

Our goal, in this paper, is to present a unique view on the topological derivative,
by framing it as a usual derivative, thereby leading to a direct approach to computing
topological derivatives. This is done by first perturbing the partial differential equation
and then deriving a linearised equation as is usually done in optimal control theory
[18–20]. This shows that the design-to-state operator is actually differentiable for cer-
tain PDE constraints, and that its derivative is described by a linearised system similar
to optimal control problems. These linearised systems are usually very singular in
the sense that their solutions admit low regularity. Typically, for problems where the
operator is perturbed, the linear system only admits very weak solutions. Interestingly
these linearised systems may involve terms which are usually obtained from the clas-
sical asymptotic analysis performed on the problem under consideration. Solutions of
the linearised system for the semilinear problem will be analysed in our paper through
the notions introduced by Stampacchia, while the operator perturbation of the trans-
mission problem requires the notion of very weak solutions. We remark that in state
constrained optimal control problems low regularity of the adjoint equations is also
an issue and thus the technical difficulties we encounter are related to the discussion
of [21], where the uniqueness of solutions to adjoint equations with mixed bound-
ary conditions is discussed. Our approach also allows us to derive at least first order
topological derivatives.

Structure of the Paper
Our paper is structured as follows:

1. InSect. 1.2wegather all the basic notions anddefinitions of generalised topological
derivatives and the topological state derivative.

2. Sect. 1.3 contains a discussion of one of our main points, that is, the link between
control derivatives, topological derivatives and the asymptotic analysis of PDEs.
All the rigorous computations in this section are carried out for linear operators,
and serve to illustrate our idea.

3. Sect. 2 contains our rigorous results for the analysis of semilinear elliptic equa-
tions, when perturbing lower-order terms. In Subsect. 4, we study several concrete
examples using adjoint states.

4. Sect. 3 is devoted to the study of point perturbations of the operator. The analysis
is distinctly different from the semilinear case discussed in Sect. 2, both from the
point of view of the notion of (very) weak solutions, and from that of first order
asymptotics.

5. The rest of the paper contains the proofs of our results.
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1.2 Generalised Topological Derivatives and the Topological State Derivative

Generalised Topological Derivatives
Throughout the paper, we let D ⊂ Rd be a design region that is, a smooth, open,
bounded domain. Henceforth we denote by A(D) the set of admissible designs; in
other words,

A(D) = {� measurable, � ⊂ D} .

A function J : A(D) → R is called a shape functional.

Definition 1.1 Let � ∈ A(D). Consider a compact set E ⊂ D such that ∂� ∩ E = ∅
and denote by Eε := {x ∈ Rd : dE (x) < ε} the tubular neighborhood of E of width
ε > 0. We define the perturbed set �(Eε) ⊂ D by

�(Eε) :=
{

� ∪ Eε E ⊂ D \ �,

� \ Eε E ⊂ �.
(1)

The topological derivative of the functional J at E is defined by the following limit,
provided it exists:

DJ (�)(E) := lim
ε↘0

J (�(Eε)) − J (�)

|Eε| . (2)

Remark 1.2 Here, we note that our definition of topological derivative already assumes
that the first order term in the asymptotic expansion of J is of order |Eε|, the Lebesgue
measure of Eε. This obviously depends on the shape functional under consideration.
In several cases, for instance when considering a PDE dependent shape functional, and
when enforcing Dirichlet boundary conditions on the boundary of Eε, terms of lower
order appear [8]. However, as will be clear throughout, in all cases under consideration
here, the leading order in the topological expansion is |Eε|.

Working with tubular neighborhoods allows for a great variety of perturbations; let
us list a few examples corresponding to particular choices of E .

Examples 1.3 Assume again that D ⊂ Rd and � ⊂ D.

• E = {x0}, x0 ∈ D. Then Eε = Bε(x0) and |Eε| = εd |B1(0)|, where Br (x) denotes
the open ball of radius r > 0 located at x in Rd .

• Let E = � ⊂ D be a smooth closed orientable hypersurface with normal ν : � →
Rd , |ν| = 1 on �. Then, for ε > 0 small enough, �ε = {x + tν(x) : x ∈ � : t ∈
[0, ε)} and |�ε| = εPer(�)+oε→0(ε), where Per(�) the perimeter of �, which in
view of the smoothness of� is equal to the (d−1)-dimensional Lebesgue measure
of �.

The Topological State Derivative as Derivative of the Shape-to-State Operator
Throughout this paper, we only consider PDE-dependent shape functionals. Let X(D)

be a space of functions defined on D with values in R. We consider an equation of the
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type: find u� ∈ X(D), such that

〈E�(u�), ϕ〉X(D)′,X(D) = 0 for all ϕ ∈ X(D), (3)

where E� : X(D) → X(D)′ is a potentially nonlinear operator. Typically, X(D)

is a Sobolev space (X(D) = W 1,p(D)), and (3) merely corresponds to the weak
formulation of an elliptic equation of the type

{
L�u = f� in D ,

u satisfies boundary conditions on ∂D,
(4)

where the expression “weak formulation” needs to be specified. The operator L�

depends on �. In this paper, several dependences on � are considered: L� can take
the form − div((α + βχ�)∇), or −� − χ�, and can be nonlinear in u. Similarly, the
function f� is a priori assumed to depend on the set �.

Definition 1.4 We define the shape-to-state operator S : A(D) → X(D) by S(�) :=
u�, where u� solves (3) for the set � ∈ A(D).

Of course, under proper assumptions on the nonlinear operator E�, S is a uniquely
defined operator so that Definition 1.4 makes sense.

In the following definition, we introduce the shape-to-state operator and its deriva-
tive, which we refer to as the topological state derivative. In contrast to the usual
asymptotic expansion [6, Chapter 5] of the state, our definition does not involve a
rescaling and is simply the usual differential quotient of the state; in this regard, it is
akin to an optimal control approach.

Definition 1.5 (Topological state derivative: derivative of the shape-to-state operator)
Let� ∈ A(D) and consider a compact set E ⊂ D\�or E ⊂ �. For ε > 0we introduce

Uε := U�(Eε) := u�(Eε) − u�

|Eε| , (5)

and define the topological state derivative of S at � in direction E by

S′(�)(E) := U0 := UE,0 := lim
ε↘0

Uε, (6)

where the limit has to be understood in an appropriate function space specified later
on.

In the following sections we will examine three different PDE constraints and study
the differentiability of the corresponding shape-to-state operator. This will form the
groundwork for the optimisation of several PDE constrained functionals.
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1.3 Control Derivatives, Topological Derivatives and Asymptotic Analysis

From Control Derivatives to Topological Derivatives
When using the wording “control derivative”, what we mean is that the shape � ∈
A(D) is identified with its characteristic function χ�, and that we actually consider
variations of � as variations of χ�. To give this concept a more precise meaning, let
us take a basic example: for every � ∈ A, let u� ∈ H1(D) be the unique solution of

{
−�u� = χ� in D,

u� = 0 on ∂D.
(7)

Let E ⊂ D be either a point or a smooth oriented hypersurface, and assume for the
sake of simplicity that E ⊂ D\�. Then, for ε > 0 small enough, we have, with
�ε := �(Eε) = � ∪ Eε,

χ�ε = χ� + χEε ,

so that, setting με = χEε|Eε | , the function Uε := u�ε −u�

|Eε | solves

{
−�Uε = με in D,

Uε = 0 on ∂D.
(8)

For each ε > 0 the function με is a probability measure on D.
In the case where E = {x0}, it is clear thatμε⇀δx0 as ε ↘ 0 weakly in the sense of

measures and it is then expected that {Uε}ε>0 converges in some sense to the solution
U{x0},0 ∈ X(D) of the elliptic equation (with measure datum)

{
−�U{x0},0 = δx0 in D,

U{x0},0 = 0 on ∂D.
(9)

To make the function space X(D) precise, we will require some background infor-
mation on the weak formulation of (9), but what matters is that the topological state
derivative appears, in this case, as the Green kernel of −�. This simple remark allows
to go back from topological derivatives to control derivatives.

Expressing Control Derivatives Via the Topological State Derivative
Indeed, assume we wish to compute the control derivative of (8); this means that we
see χ� as a function in L2(D) and that we consider the control derivative of the state,
defined, for a given perturbation h, as

u̇h := lim
t↘0

vth − u�

t
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where vth ∈ L2(D) satisfies (8) with χ� replaced with χ� + th. Then it is clear, by
linearity of the equation, that u̇h satisfies

{
−�u̇h = h in D,

u̇h = 0 on ∂D.
(10)

As we already explained briefly that the topological state derivative coincides with
the Green kernel of the operator −�, it is reasonable to expect, for instance if h is
supported in D\�, that u̇h writes as

u̇h(x) =
∫
D\�

h(y)U{y},0(x)dy.

Consequently, we see on this simple example that the knowledge of the topological
derivative implies that we are able to compute any control-type derivative. One of our
objectives in this paper is to prove the validity of this intuitive paradigm in several
cases.

Of course, several points need to be underlined here. First and foremost, as should
be clear, we need to work with elliptic equations with measure data in order to obtain
optimal estimates. Most of this will be done using and adapting the techniques of
[22], which itself relies on the seminal [23]. Second, a lot of care needs to be taken
when differentiating nonlinear problems, and giving proper regularity estimates on the
fundamental solutions of the linearised operator; here, we rely on the aforementioned
[23]. Finally, as we shall see, the weak formulation of the equation on U{x0},0 will be
strongly dependent on the type of perturbation we consider. While, for perturbation
of lower-order terms, the setting correspond to the standard one, we need to introduce
a notion of very weak solution when considering transmission-type problems.

Asymptotics of the Shape-to-State Operator of Point Perturbations
Our goal is now to link the control derivatives and the usual asymptotic analysis of
the shape-to-state operator.

“Singular” perturbations (i.e. removing a ball in the domain) and the asymptotics
of PDEs where the singular perturbation appears are usually treated by introducing
so-called “boundary layer correctors”. This approach typically involves working in
unbounded domains. Although working with an optimal control approach allows to
only work in bounded domains, this limit layer approach is of great importance in
topology optimisation and we thus present it in this paragraph. We refer to [24, 25] for
the asymptotic analysis of such singular perturbations and to [5, 6] for computations
of topological derivatives of shape functionals. In contrast to these more classical
approaches, we recall in this section the point of view of [9, 11, 26], which, while
also using boundary-layer correctors, rescales the domain to keep a fixed size of the
inclusion. As shown in [9, 10], this approach can be advantageous when dealing with
semilinear and quasilinear PDEs. For this reason we give the following definition:

Definition 1.6 (Derivative of shape-to-state operator, the rescaled domain approach)
Let x0 ∈ D. Define E := {x0} and consider a connected and bounded domain ω ⊂ Rd
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with 0 ∈ ω. For any ε > 0, we define the diffeomorphism Tε : D  x �→ x0 + εx and
the rescaled domain

Dε := T−1
ε (D).

Introduce ωε(x0) := x0 + εω and define

�ε(x0, ω) :=
{

� ∪ ωε(x0) for x0 ∈ D \ �,

� \ ωε(x0) for x0 ∈ �.
(11)

Note that according to Definition 1.1, we have �ε(x0, ω) = �(ωε(x0)). However,
we introduce the notation �ε(x0, ω) to emphasise the dependence on both x0 and ω.
Furthermore, we set uε := u�ε(x0,ω), u0 := u� and finally define

Kε := (uε − u0) ◦ Tε

ε
, ε > 0.

The derivative of the shape-to-state operator is

K := lim
ε↘0

Kε, (12)

where the limit has to be understood in an appropriate setting. We note that the limit
K typically depends on x0, ω and as well as �. As the domain of definition Dε of Kε

varies with ε, (12) needs to be understood as ‖Kε − K‖X(Dε) → 0 for the norm of a
suitable function space X(Dε).

The function K typically satisfies an equation in an unbounded domain. We refer
to the later sections for examples and also to [9, 11, 26, 27] for concrete topological
derivative examples using the rescaling approach outlined above.

Remark 1.7 Let us underline that this definition covers the case of ball perturbations
which corresponds to ω = B1(0) in the previous definition, and is more general
in the sense that shapes other than a ball are allowed. However, it does not include
lower-dimensional objects. This is in contrast with Definition 1.5.

Connection Between Asymptotics of State and Topological State Derivative
We consider again the problem of the previous section, namely,

{
−�u� = χ� in D,

u� = 0 on ∂D.
(13)

We now sketch the connection between the asymptotic expansion of u�ε(x0,ω) for
x0 ∈ D\� and the topological state derivative. So we restrict ourselves to point
perturbations and note that�ε(x0, ω) = �∪{x0+εω}.We only discuss the case d = 3
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andprovide the results ford = 2 in later sections. In thefixed three dimensional domain
D, with f1 = 1, f2 = 0, we have [26] the following expansion of u�ε(x0,ω) =: uε:

uε(x) = u0(x) + ε2(K (T−1
ε (x)) + εv(x)) + higher order terms, for a.e. x ∈ D,

(14)
where u0 := u� and v is a regular boundary corrector function defined on the fixed
domain D. Then in fact we will show that almost everywhere one can indeed recover
the topological state derivative via the limit

U0(x) = lim
ε↘0

uε − u0
|ωε| = lim

ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) + εv(x)), x ∈ D. (15)

The function K admits the asymptotic behaviour K (x) = R(x) + O(|x |−2) with
R(x) := |ω|E(x) and E(·) being the fundamental solution of −� on R3:

E(x) = 1

4π |x | , (16)

where here and henceforth we denote by |x | the Euclidean norm of a vector x ∈ Rd .
From the first asymptotic term of K , which is R, we can also determine the corrector
v ∈ H1(D) as the solution of{

−�v = 0 in D ,

v(x) = −R(x − x0) on ∂D.
(17)

Therefore, one can compute the first limit on the right hand side of (15) explicitly
using R(T−1

ε (x)) = εR(x − x0):

lim
ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) = lim
ε↘0

1

|ωε|ε
2R(T−1

ε (x))

= |ω|−1R(x − x0) = 1

4π |x − x0| .

We note that x �→ R(x − x0) ∈ W 1,q(D) for q ∈ [1, d
d−1 ) = [1, 3

2 ). Summarising,
we derived the following form of U0:

U0(x) = |ω|−1(R(x − x0) + v(x)) for a.e. x ∈ D, (18)

and thus conclude that U0 is indeed a solution of{
−�U0 = δx0 in D,

U0 = 0 on ∂D.
(19)

The solution |ω|−1 (R(x − x0) + v(x)) is a well-known splitting for (19) and is often
used in numerical analysis [28, 29]. The function |ω|−1R(x − x0) solves the Poisson
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equation inR3 withDiracmeasure at x0 as a right hand side, and |ω|−1v(x) corrects the
boundary error introduced by |ω|−1R(x − x0), so thatU0 has homogeneous Dirichlet
boundary conditions on ∂D.

In conclusion, the topological state derivative can be obtained from the asymptotic
analysis of the state equation. If the asymptotic analysis of the state equation is per-
formed using compound asymptotics [6, 24, 25], then one naturally obtains a splitting
for the limit solution into a regular part, which comes from the corrector v and an
irregular part, which originates from the corrector K . We will see later that the topo-
logical expansion can be effectively used to compute the topological state derivative
and even establish strong convergence in suitable function spaces.

2 Main Results for General Topological Perturbations of Semilinear
Equations

We first give some basic results about the convergence in measure of the functions
χEε (see Definition 1.1 for the definition of Eε). In the following sections, we proceed
with steps of increasing complexity, first considering topological state derivatives for
lower order terms, then considering transmission problems.

2.1 Convergence in Measure of �E" and Notation

Our goal is to make sense of topological derivatives for any type of d-dimensional
inclusions as proposed in [2]. For this reason, we need to specify the behaviour of χEε ,
as ε → 0. This is the object of the following proposition; it is stated without a proof
as it is fairly standard.

Proposition 2.1 For every nonempty compact E ⊂ D and for every ε > 0 we let Eε be
its tubular neighborhood (see Definition 1.1) and we consider the probability measure
on D

μEε := χEε

|Eε| .

1. Assume E = {x0}, so that Eε = Bε(x0). Then, for the weak convergence of
measures,

μEε ⇀
ε↘0

μE := δx0 .

2. Assume E = � is a (d − 1)-dimensional Lipschitz hypersurface with finite
perimeter Per(�). Then, in the sense of measures,

μEε ⇀
ε↘0

μE := 1

Per(�)
(Hd−1��),

where Hd−1�� stands for the restriction of the (d − 1)-dimensional Hausdorff
measure to �.
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3. Assume that E = M is a 1 < k < d − 1 dimensional compact and smooth
submanifold (without boundary). Then, in the sense of measures:

μEε ⇀
ε↘0

μE := 1

Hk(M)
(Hk�M),

We refer to [1, Theorem 2.15] for a proof.

Remark 2.2 • For E = {x0} and Eε = Bε(x0) ε > 0 the weak convergence of
measures (a) means for all ϕ ∈ C0(D):

∫
D

μEεϕ dx = 1

|Bε(x0)|
∫
Bε(x0)

ϕ dx → ϕ(x0) as ε ↘ 0. (20)

• For E = � is a (d − 1)-dimensional Lipschitz hypersurface with finite perimeter
Per(�), the weak convergence of measures (b) means for all ϕ ∈ C0(D):

∫
D

μEεϕ dx = 1

|Eε|
∫
Eε

ϕ dx → 1

Per(�)

∫
�

ϕ dHd−1 as ε ↘ 0. (21)

Remark 2.3 When E is a hypersurface, we can actually prove that the convergence
holds for the duality on W 1,p(D). This means that (21) holds for every function ϕ ∈
W 1,p(D), for p ∈ [1,∞), when we replace the last integral with

∫
�
Tr�(ϕ) dHd−1,

where Tr� is the trace operator on �.

Throughout the paper, we retain the notation μE for the limit measures given in
Proposition 2.1.

Remark 2.4 (Lower dimensional inclusion) Of course, what we considered here was
the removal of a d-dimensional object: Eε has nonempty interior. It is natural to
wonder what might happen if we were to remove lower dimensional objects, for
instance removing a centered disk in a three-dimensional object. We believe that our
analysis would still be valid but, for the sake of readability, we stick with the removal
of tubular neighborhoods.

Notation
In Definition 1.1 we have considered two types of perturbations, one consisting in
adding some material outside of �, the other in removing some material from �.
Naturally, this means that, depending on the case considered, either μEε or −μEε is
involved in the linearised system. In order to alleviate notations and to not carry out
moot distinctions, for every compact subset E such that E ⊂ � or E ⊂ D\� we
define

sgn�(E) :=
{

+1 if E ⊂ D\� ,

−1 if E ⊂ �.
(22)
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2.2 Topology Optimisation Problems for Semilinear Equations with Monotone
Semilinearity

Analytic Setting
The first problem we tackle is that of a semilinear elliptic equation, where � ∈ A(D)

appears in the nonlinearity.
To be precise, we consider two coefficients fi ∈ R (i = 1, 2), as well as two

nonlinearities gi = gi (u) (i = 1, 2) that satisfy

gi is C
1 increasing in u, and is globally bounded in R+ (i = 1, 2). (23)

We then define, for every � ∈ A(D), a nonlinearity ρ� = ρ�(x, u) as

ρ�(x, u) := χ�(x)g1(u) + χD\�(x)g2(u).

From [19, Theorem 4.4], if (23) is satisfied, then, for every � ∈ A(D), the equation

{ −�u� + ρ�(x, u�) = f1χ� + f2χD\� in D,

u� = 0 on ∂D,
(24)

has a unique solution u� ∈ H1
0 (�). By standard elliptic regularity, for every p ∈

[1,∞), u� ∈ W 2,p(D) so that u� ∈ C1(D). We now study the topological state
derivative of � �→ u�. To give meaning to our afferent results, we need to lay down
some basic definitions on the linearised system.

Basic Computations
Our subsequent analysis strongly hinges on the property of the linearised operator
associated with (24). To justify the use of this linearisation, we simply observe that
Uε := u�(Eε)−u�

|Eε | satisfies Uε = 0 on ∂D and in a weak W 1,q
0 (D)-sense, the following

equation in D:

−�Uε + χ�

(g1(uε) − g1(u0) − g2(uε) + g2(u0))

|Eε| + g2(uε) − g2(u0)

|Eε|
= sgn�(E) [(g2(uε) − g1(uε)) + ( f1 − f2)]μEε ,

where we used the simplified notation uε := u�(Eε) and u0 := u�, and we should
thus obtain, as ε ↘ 0, the following limit equation:

−�U0 + ∂ρ0

∂u
(x, u0) = sgn�(E) [(g2(u0) − g1(u0)) + ( f1 − f2)]μE in D,

U0 = 0 on ∂D,

(25)
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which has to be understood in aweakW 1,q (D) sense for q > d andwill be explained in
the next paragraph. In the following paragraph we give some background information
about the linear operator used to define the linear equation on U0.

Notion of Weak Solution for the Linearised System
The linearised operator associated with (24) is defined as

L� : u �→ −�u + ∂ρ�

∂u
(x, u�)u. (26)

As we explained in Sect. 1.2, topological state derivatives “should”, in a sense made
precise below, solve an equation of the form−L�u = μ for some probability measure
μ, with homogeneous Dirichlet boundary conditions. Even in the case of the Laplacian
there are natural Sobolev bounds on the regularity to be expected from solutions of
such equations. This motivates the following definition.

Definition 2.5 LetM(D) be the set of Borel measures in D with finite total variation.
Letμ ∈ M(D). For every q ∈ [1, d

d−1 ), we say that a function u ∈ W 1,q
0 (D) is a weak

W 1,q
0 -solution of {

L�u = μ in D,

u = 0 on ∂D,
(27)

if, for every function ϕ ∈ W 1,q ′
0 (D) with 1

q + 1
q ′ = 1, there holds

∫
�

∇u · ∇ϕ dx +
∫

�

∂ρ�

∂u
(x, u�)uϕ dx = 〈ϕ,μ〉, (28)

where the last duality bracket is to be understood in the sense of the duality between
continuous functions and measures.

It should be noted that since 1 ≤ q < d
d−1 , the conjugate Lebesgue exponent q

′

of q, 1
q + 1

q ′ = 1, satisfies q ′ > d. From Sobolev embeddings this implies that the
duality bracket 〈ϕ,μ〉 in (28) is well-defined. Definition 2.5 is a standard notion of
weak solution for elliptic equations with measure data [22, 30].

As a first consequence of (23) we prove that (27) is well-posed.

Proposition 2.6 If g1, g2 satisfy (23) then, for every finite Borel measure μ in D, the
equation (27) is well-posed: for every q ∈ [1, d

d−1 ) there exists a unique solution

u ∈ W 1,q
0 (D) of (27). Furthermore, there exists a constant Cq independent of μ such

that

‖u‖W 1,q (D) ≤ Cq‖μ‖M(D).

It is obvious by the inclusion of the Lebesgue spaces L p that u does not depend
on the exponent q and we abbreviate the first point of this proposition as “there exists
a unique weak solution u to (27) that further satisfies that for every q ∈ [1, d

d−1 ),
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u ∈ W 1,q
0 (D).” Finally, observe that the Sobolev space in which (27) is well-posed

depends on the space μE is in the dual of; in the case where E = {x0}, μE is only in
the dual space ofW 1,q(D), q > d. In the case E = �, μE is in the dual of all Sobolev
spaces by the theory of Sobolev traces

Expression of the Topological State Derivative
Our main result here is the following theorem (recall that μE is defined in Proposition
2.1)

Theorem 2.7 Let E ⊂ � or E ⊂ D\� be either a point, d − 1-dimensional Lipschitz
surface or 1 < k < d − 1 dimensional compact and smooth submanifold (without
boundary). For every ε > 0 we define Uε := u�(Eε)−u�

|Eε | . Then, for every q ∈ [1, d
d−1 ),

Uε →
ε↘0

U0 strongly in W 1,q
0 (D),

where U0 is the unique solution to

{
−�U0 + ∂uρ�(x, u�)U0 = sgn�(E) {(g2(u�) − g1(u�)) + ( f1 − f2)} μE in D,

U0 = 0 on ∂D.

(29)

Observe that, since u� ∈ C1(D) and since g1, g2 are continuous, the product
appearing on the right-hand side of (29) is indeed a Borel measure. In addition, U0
depends on � and E

Expression of Control Derivatives Using the Topological State Derivative
We mentioned in the introduction of this paper that a control point of view allows to
obtain the topological state derivative. Conversely, in low dimensions, the knowledge
of the topological state derivatives enables the recovery of control derivatives. In
this context, and to make our statement more precise, let us recall that, seeing χ�

as a function in L2(D), we may extend the definition of u� by defining, for every
f ∈ L2(D), u f as the unique solution of (24) with χ� replaced with f , and χD\�
replaced with (1 − f ). The L2-differentiability of the map f �→ u f is standard. For
every h ∈ L2(D), let

u̇χ�,h = lim
t↘0

uχ�+th − uχ�

t

be the directional derivative of f �→ u f at χ� in direction h. Recalling that L� was
defined in (26), u̇χ�,h solves (in the weak H1

0 (D) sense):

{
L�u̇χ�,h = h {(g2(u�) − g1(u�)) + ( f1 − f2)} in D,

u̇χ�,h = 0 on ∂D.
(30)

Our second theorem is the following:
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Theorem 2.8 Assume d ∈ {2, 3}. Then, for every h ∈ L2(D), u̇χ�,h admits the
following representation: for a.e. x ∈ D,

u̇χ�,h(x) =
∫
D
sgn�(y)U{y},0(x)h(y)dy. (31)

where U{y},0 is the solution of (27) with μ = δy .

Theorem 2.8 justifies the analogy between the topological state derivative and the
Green kernel of the linearised operator. Of course, there is an interplay between the
dimension assumption d ∈ {2, 3} and the integrability of the perturbation h. We also
note here that we stated the theorem in the L2 setting, as it is the most currently used
for control derivatives.

2.3 Asymptotic Expansion of uÄ and Relation to the Topological State Derivative

Asymptotic Analysis in the Linear Case
In this section, we consider the model (24) with g1 = g2 = 0 for point perturbations.
To be precise we consider uε ∈ H1

0 (D), such that

∫
D

∇uε · ∇ϕ dx =
∫
D
( f1χ�ε + f2χ�c

ε
)ϕ dx for all ϕ ∈ H1

0 (D). (32)

where

�ε := �ε(x0, ω) :=
{

� ∪ ωε(x0) for x0 ∈ D \ �,

� \ ωε(x0) for x0 ∈ �,
(33)

and ωε(x0) := x0 + εω with ω ⊂ Rd being a simply connected domain with 0 ∈ ω.
Furthermore, we define uε := u�ε(x0,ω) for ε > 0 and u0 := u�.

The full asymptotic expansion for this equation including full topological expan-
sions of several cost functionals has been studied in [26]. Recall the notation Tε(x) =
x0 + εx for x0 ∈ D\∂�. We now present a relation between the limit

U0 := lim
ε↘0

uε − u0
|ωε| , (34)

and the asymptotic expansion derived in [26] for uε, namely,

uε(x) = u0(x) + ε2(K (T−1
ε (x)) + v(x) + ln(ε)b) + o(ε2) for d = 2, (35)

with b := −sgn�({x0})(2π)−1( f1 − f2) and

uε(x) = u0(x) + ε2(K (T−1
ε (x)) + εd−2v(x)) + o(εd) for d ≥ 3. (36)
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Here K is a corrector function defined in Rd , while v is a boundary layer corrector
defined in the bounded domainD. To be precise, K is given, in term of the fundamental
solution E(·) of the Laplace operator −� in Rd , as

K (x) = sgn�({x0})( f1 − f2)
∫

ω

E(x − y) dy, (37)

with the fundamental solution being given by

E(x) =
{
c2 ln(|x |) for d = 2,

cd
1

|x |d−2 for d ≥ 3,
(38)

with c2 := − 1
2π and, if d ≥ 3, cd := ((d(d − 2)α(d))−1, α(d) denoting the volume

of the unit ball in Rd . Thus, the function K satisfies

−�K = sgn�({x0})( f1 − f2)χω in Rd .

and admits the following asymptotic expansion for d ≥ 2:

K (x) = sgn�({x0})( f1 − f2)

{
c2 ln(|x |) + O(|x |−1) for d = 2,

cd |x |−(d−2) + O(|x |−(d−1)) for d ≥ 3,
(39)

so that when we denote by R the first term of the asymptotics of K , that is, K (x) =
R(x) + O(|x |d−1), we obtain

R(x) = sgn�({x0})( f1 − f2)

{
c2 ln(|x |) for d = 2,

cd |x |−(d−2) for d ≥ 3.
(40)

The corrector function v ∈ H1(D) satisfies{
−�v = 0 in D,

v(x) = −R(x − x0) on ∂D.
(41)

To state the main result, let us briefly recall the setting of [26]. Since the result in
[26] was provided only for d ∈ {2, 3}, we give a short proof in the appendix.
Lemma 2.9 Introduce the function

Kε = (uε − u0) ◦ Tε

ε2
, ε > 0. (42)

Set Dε := T−1
ε (D) for ε > 0. Then there is a constant C = Cp,d > 0, which depends

on p and d, such that for d = 2:

‖ε(Kε − K −v ◦Tε − ln(ε)b)‖L2(Dε)
+‖∇(Kε − K −v ◦Tε − ln(ε)b)‖L2(Dε)d

≤ Cε,

(43)
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with b := −sgn�({x0}) 1
2π ( f1 − f2) and for d ≥ 3:

‖ε(Kε − K − εd−2v ◦ Tε)‖L2(Dε)
+‖∇(Kε − K − εd−2v ◦ Tε)‖L2(Dε)d

≤ Cε
d
2 . (44)

Relation Between Asymptotic Expansion and Topological State Derivative To draw
a connection to the topological state derivative, let us note that we can write the
expansions (43) and (44) pointwise as (35) and (36). Our main result is that the
estimate (44) in fact implies the following estimate:

Theorem 2.10 For x0 ∈ D \ ∂� and ω ⊂ Rd be a simply connected and bounded
domain with 0 ∈ ω we use the definition of �ε(x0, ω) of (11) and set uε :=
u�ε(x0,ω), u0 := u� and

Uε := uε − u0
|ωε| , ε > 0. (45)

Let K and v be defined by (37) and (41), respectively. Then we have the following
results.
(i) From the asymptotic expansion (43) and (44) we conclude that the limit (34)
exists. In fact we have

U0(x) = sgn�({x0})( f1 − f2)E(x − x0) + v(x), for a.e. x ∈ D, (46)

and for a.e. x ∈ D, we have with b := −sgn�({x0})(2π)−1( f1 − f2):

U0(x) = lim
ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) + v(x) + ln(ε)b) for d = 2, (47)

and

U0(x) = lim
ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) + εd−2v(x)) for d ≥ 3. (48)

(ii) Let the space dimension be d = 2. Then there exist constant C = Cp,d > 0,
which depends on p and d, such that

• We have for all p ∈ (2,∞):

‖Uε −U0‖L p(D) ≤ Cε
2
p . (49)

• We have for all p ∈ (1, 2):

‖Uε −U0‖W 1,p(D) ≤ Cε
2
p −1

. (50)

(iii) Let the space dimension be d ≥ 3. Then there exists C = Cp,d > 0, which
also depends on p and d, such that:

• We have for all p ∈
(

d
d−1 ,

d
d−2

)
:

‖Uε −U0‖L p(D) ≤ Cε
d−p(d−2)

p . (51)
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• We have for all p ∈ (1, d
d−1 ),

‖Uε −U0‖W 1,p(D) ≤ Cε
d−p(d−1)

p . (52)

Notice that p−1(d − p(d − 1)) ∈ (0, 1).

The following corollary shows that, if ω = B1(0) is the unit ball centered at the
origin, then the convergence rate of Uε to U0 in the L p(D) norm can be improved to
an order between (1, 2).

Corollary 2.11 Assume that ω = B1(0) is the unit ball in Rd centered at the origin.
Then we have for all p ∈ (1, d

d−2 ) for d ≥ 3 or p ∈ (1,∞) for d = 2,

‖Uε −U0‖L p(D) ≤ Cε
d−p(d−2)

p . (53)

That means the convergence rates (50) for d = 2 and (52) for d ≥ 3 are improved for
all p ∈ (1, d

d−1 ).

Let us finish this section with two remarks.

Remark 2.12 The function U0(x) := |ω|−1(R(x − x0) + v(x)) ∈ W 1,p
0 (D) with

p ∈ [1, d
d−1 ) solves in a weak sense:

{
−�U0 = sgn�({x0})( f1 − f2)δx0 in D,

U0 = 0 on ∂D.
(54)

The decomposition of the solution U0 of (54) in a regular part |ω|−1v and a singular
part |ω|−1R(x − x0) = sgn�({x0})( f1 − f2)|ω|E(x − x0) is well-known and often
used in the numerical investigation of this type of equation [28, 29].

Remark 2.13 The improved L p(D) convergence rate of Corollary 2.11 is a result of
the symmetry of the inclusion ω = B1(0). We note that (53) implies for p > 1 close
to one that

‖(Uε −U0)/ε‖L p(D) = o(1) (55)

and thus U 2
ε := (Uε − U0)/ε → 0 strongly in L p(D) for p close to one. This is

actually consistent with the limit equation of U 2
ε . To see this we recall that

Uε = uε − u0
|ωε| , U 2

ε := Uε −U0

ε
, ε > 0.

It is readily checked that U 2
ε satisfies for all ϕ ∈ H1

0 (D):

∫
D

∇U 2
ε · ∇ϕ dx = sgn�({x0})( f1 − f2)

1

|ωε|
∫

ωε

ε−1(ϕ − ϕ(x0)) dx . (56)
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Now changing variables on the right hand side and integrating by parts on the left hand
side, we obtain for ϕ ∈ C2

c (D):

−
∫
D
U 2

ε �ϕ dx = sgn�({x0})( f1 − f2)
∫

ω

ε−1(ϕ(x0 + εx) − ϕ(x0)) dx . (57)

Hence, if U 2
ε → U 2

0 in L p(D), then passing to the limit yields for ϕ ∈ C2
c (D):

−
∫
D
U 2
0�ϕ dx = sgn�({x0})( f1 − f2)

∫
ω

∇ϕ(x0) · x dx . (58)

So we observe that for ω = B1(0) the integral on the right hand side vanishes due to
the symmetry of B1(0). This is consistent with U 2

0 = 0 so that also the left hand side
is zero.

Topological StateDerivativeVia theFormalAsymptoticExpansionof theSemilinear
Equation
We consider the semilinear equation (24) with right hand side f ∈ L2(D):

{
−�u� + ρ�(x, u�) = f in D,

u� = 0 on ∂D.
(59)

From Theorem 2.7 we have that the limit

U0 := lim
ε↘0

uε − u0
|ωε| , (60)

satisfies{
−�U0 + ∂uρ�(x, u�)U0 = sgn�({x0})δx0 {(g2(u�) − g1(u�))} in D,

U0 = 0 on ∂D.
(61)

We now want to show that this limit can also be obtained using an asymptotic analysis
of u�. For this purpose, we can split the solutionU0 into an irregular part |ω|−1R and
regular part |ω|−1v as follows (the factor |ω|−1 is chosen to make the link between
the asymptotic expansion and will become clear shortly). Set gx0 := g2(u�(x0)) −
g1(u�(x0)) and let R be defined by

R(x) = sgn�({x0})gx0 |ω|
{
c2 ln(|x |) for d = 2,

c3|x |−1 for d = 3.
(62)

Then we have in a distributional sense:

− �(R(x − x0)) = |ω|sgn�({x0})gx0δx0 in Rd . (63)
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Now we define v ∈ H1(D) as follows{
−�v + ∂uρ�(x, u�)v = −sgn�({x0})R(x − x0)∂uρ�(x, u�) in D,

v = −R(x − x0) on ∂D.
(64)

Notice that in comparison to the linear setting studied in the previous section we now
have an additional term on the right hand side, namely, R(x − x0)∂uρ�(x, u�), which
accounts for the fact that the equation (63) does not have a lower order term. Then it
is readily checked that

U0(x) := |ω|−1(R(x − x0) + v(x)), a.e. x ∈ D, (65)

solves the equation (61).
We now show that U0 can be obtained from the asymptotics of u�. We let ω, x0

and �ε = �ε(x0, ω) be as in the previous section. Denote again the solution of (59)
u�ε by uε and u0 := u�. Following the formal asymptotic expansion of [31] we have
the following expansion of u�ε :

uε(x) = u0(x) + ε2(K (T−1
ε (x)) + v(x) + ln(ε)b) + o(ε2) for d = 2, (66)

with b := −sgn�({x0})gx0 |ω|(2π)−1 and for d = 3

uε(x) = u0(x) + ε2(K (T−1
ε (x)) + εv(x)) + o(ε3) for d = 3. (67)

Here K , given by

K (x) = sgn�({x0})gx0
∫

ω

E(x − y) dy, (68)

solves for d ∈ {2, 3} the equation
− �K = sgn�({x0})gx0χω in Rd . (69)

Theorem 2.14 For x0 ∈ D \ ∂� and ω ⊂ Rd with 0 ∈ ω we use the definition of
�ε(x0, ω) of (11) and set uε := u�ε(x0,ω) and u0 := u� and

Uε := uε − u0
|ωε| , ε > 0. (70)

Let K and v be defined by (68) and (64), respectively. Then we have the following
results. From the asymptotic expansion (66) and (67), we conclude that the limit (60)
exists. In fact we have

U0(x) = |ω|−1(R(x − x0) + v(x)), for a.e. x ∈ D, (71)

and for a.e. x ∈ D, we have with b := −sgn�({x0})|ω|gx0(2π)−1:

U0(x) = lim
ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) + v(x) + ln(ε)b) for d = 2, (72)
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and

U0(x) = lim
ε↘0

1

|ωε|ε
2(K (T−1

ε (x)) + εv(x)) for d = 3. (73)

The proof of this theorem follows the lines of the proof of item (i) of Theorem 2.10.

3 Main Results for Operator Point Perturbation in Linear
Transmission Problems

In this section we show how our type of analysis carries on to transmission problems,
which is also referred to as “perturbation of the operator”. The analysis of this type
of perturbation is more difficult than perturbations of lower order terms and typically
involves so-called “polarisation matrices”; [6, 12, 32]. We will see that the topological
state derivative for point perturbations of the operator exists, but exhibits a very low
regularity.

3.1 Topological State Derivative for the Transmission Problem

Analytic Set-Up
Throughout this section we fix a set � ∈ A(D) and assume � � D is smooth. For two
fixed parameters β1, β2 > 0 and every � ∈ A(D), we define

β� := β1χ� + β2χD\�.

Now for f ∈ L p(D) with p > d, let u� be the unique weak solution in W 1,p(D) of
the equation {

− div(β�∇u�) = f in D,

u� = 0 on ∂D.
(74)

We note that the strong form of this equation reads: denoting by u+ := u|� and
u− := u|D\�, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−β1�u+ = f in �,

−β2�u− = f in D \ �,

β1∂νu
+ = β2∂νu

− on ∂�,

u+ = u− on ∂�,

u− = 0 on ∂D.

(75)

Topological Perturbation Under Consideration
In this section, we consider only point perturbations �ε(x0, ω) at points x0 ∈ D\∂�

of the set � defined by

�ε := �ε(x0, ω) :=
{

� ∪ ωε(x0) for x0 ∈ D \ �,

� \ ωε(x0) for x0 ∈ �,
(76)
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and ωε(x0) := x0 + εω with ω ⊂ Rd being a simply connected domain with 0 ∈ ω.
We note that the special case ω = B1(0)would correspond to the dilatation�(Eε) for
E = {x0} considered in the previous sections. Following [9, 12] we decided to treat
more general perturbations.

As we will see, the right hand side of the limit equation U0 for the transmission
problem will involve the divergence of a measure. As this is the only part which can
not be covered by the techniques thus far used in studying semilinear models, we
devote a paragraph to some basic definitions.

VeryWeakSolutions forEllipticEquationswithDivergence-of-MeasureRightHand
Side
We consider, for a given ζ ∈ R

d , the Diracmeasureμ := ζ δx0 ∈ M(D)d concentrated
at x0 ∈ D \ ∂�, the equation

{
− div(β�∇ϕμ) = div(μ) in D,

ϕμ = 0 on ∂D.
(77)

The weak formulation would read

∫
D

β�∇ϕμ · ∇ϕ dx = ζ · ∇ϕ(x0) for all ϕ ∈ H1
0 (D), (78)

which is obviously not well-defined. At this point, let us observe that by interior
regularity ∇u� is continuous in a neighborhood of the perturbation point x0 ∈ D\∂�.
Furthermore, we also need to ensure that ∇ϕ is continuous as well. We thus resort to
a notion of weak solution reminiscent of the one introduced in [23]: for every p > d,
for v ∈ L p(D), let ϕv ∈ W 2,p(� ∪ (D\�)) ∩ H1

0 (D) be the unique solution of

{
− div(β�∇ϕv) = v in D,

ϕv = 0 on ∂D.
(79)

The well-posedness of this equation follows from arguments similar to the ones used
in the proof of Proposition 5.1. By elliptic regularity, for every p > d, we have, for
two constants Cp,C ′

p

‖ϕv‖C1(�∪(D\�)) ≤ Cp‖ϕv‖W 2,p(�∪(D\�)) ≤ C ′
p‖v‖L p(D) (80)

for all v ∈ L p(D). Now choosing ϕv in (78) and integrating by parts we obtain

∫
D
u�v dx =

∫
D

β�∇u� · ∇ϕv dx =
∫
D
〈∇u�,∇ϕv〉dμ = ζ · ∇ϕv(x0) (81)

for all v ∈ L p(D). We note that the interface terms vanish in view of the choice of the
test function ϕv . This leads to the following definition:
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Definition 3.1 Let q ∈ [1, d
d−1 ) and q ′ be its conjugate Lebesgue exponent. We say

that φμ is a very weak W 1,q
0 (D)-solution of (78) if

∫
D

φμv = ∇ϕv(x0) · ζ for all v ∈ Lq ′
(D), (82)

where ϕv ∈ W 1,q ′
0 (D) solves

{
− div(β�∇ϕv) = v in D,

ϕv = 0 on ∂D.
(83)

It is important to note that the � dependence is now transferred to the definition of ϕv .

The main proposition is the following:

Proposition 3.2 Let x0 ∈ D\∂�. For ζ ∈ Rd let μ := ζ δx0 . The equation

{
− div(β�∇φμ) = div(μ) in D,

φμ = 0 on ∂D,
(84)

has a unique very weak solution in the sense of Definition 3.1. Furthermore, for every
q ∈ [1, d

d−1 ), there exists a constant Cq > 0 such that

‖φμ‖Lq (D) ≤ Cq‖μ‖M(D).

Expression of the Topological State Derivative
Our main theorem is the following:

Theorem 3.3 Let � ∈ A(D) with � � D. Let x0, ω and �ε(x0, ω) be as in (76) and
denote by u� the unique weak solution to (74). We have that Uε = u�ε(x0,ω)−u�

|ωε | is

bounded in Lq(D) for q ∈ [1, d
d−1 ) and we have for a constant C = Cq,d > 0,

depending on q and d:

‖Uε −U0‖Lq (D) ≤ C(ε
d−q(d−1)

q + ‖Kε − K‖L1(ω)) (85)

and thus in particular Uε → U0 strongly in Lq(D) as ε ↘ 0. The limit U0 solves:

∫
D
U0v dx = sgn�({x0})(β2 − β1)

(
1

|ω|
∫

ω

∇K + ∇u0(x0) dx

)
· ∇ϕv(x0) (86)
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for all v ∈ Lq ′
(D), where ϕv is the solution to (79). Here, K belongs to the Beppo-Levi

space ḂL(Rd)1 and is the unique solution to:

∫
Rd

βω∇K · ∇ϕ dx = sgn�({x0})(β2 − β1)

∫
ω

∇u0(x0) · ∇ϕ dx, (87)

for all ϕ ∈ ḂL(Rd).

Remark 3.4 (Polarisation matrix) We note that K = K [∇u0(x0)] actually depends
linearly on the vector ∇u0(x0) through the equation (87). Consequently, the map

∇u0(x0) �→ 1

|ω|
∫

ω

∇K dx : Rd → Rd , (88)

is also linear and thus there is a so-called polarisation matrix Aω ∈ Rd ; see [12, 32],
which depends on β1, β2 and ω, such that

Aω∇u0(x0) = 1

|ω|
∫

ω

∇K dx . (89)

It follows that the equation (86) is equivalent to

∫
D
U0v dx = sgn�({x0})(β2 −β1)(Aω + Id)∇u0(x0) ·∇ϕv(x0) for all v ∈ L p(D),

(90)
where Id ∈ Rd×d denotes the identity matrix.
Considering the special case ω = B1(0), one readily checks that the solution K of
equation (87) is given by

K (x) =
{
Cβ∇u0(x0) · x, for x ∈ ω,

Cβ∇u0(x0) · x
|x |d , for x ∈ Rd \ ω,

(91)

whereCβ := sgn�({x0})(β2−β1)(β1−β2−dβ2)
−1. Thus, for the unit ball inclusion,

the polarisation matrix is given by Aω = Cβ Id .

3.2 Asymptotic Expansion of uÄ and the Relation to the Topological State
Derivative

We start this section by giving some results regarding the asymptotic expansion of
u�ε(x0,ω). Note that these are derived using compound asymptotics; see [6, 11, 24].

Asymptotic Analysis of u�

1 The Beppo-Space ḂL(Rd ) is defined as the quotient space {ϕ ∈ H1
loc(R

d ) : ∇ϕ ∈ L2(Rd )d }/R, where
/R means we quotient out constants. This space is equipped with the norm ‖ϕ‖ḂL(Rd )

:= ‖∇ϕ‖L2(Rd )d ;
see [9, 33].
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Let x0 ∈ D\∂�, ω ⊂ Rd a simply connected and bounded domain with 0 ∈ Rd and
set uε := u�ε(x0,ω), where �ε(x0, ω) is as defined in (11). For ε > 0 we introduce

Kε := (uε − u0) ◦ Tε

ε
. (92)

It is a classical result that the limit of Kε is in fact the unique solution to: find K ∈
ḂL(Rd) such that

∫
Rd

βω∇K · ∇ϕ dx = sgn�({x0})(β2 − β1)

∫
ω

∇u0(x0) · ∇ϕ dx, (93)

for all ϕ ∈ ḂL(Rd). The function K admits the asymptotics

K (x) = R(x) + O

(
1

|x |d
)

. (94)

To state the final asymptotic expansion we need to introduce the regular boundary
corrector v compensating the error introduced by K on ∂D.

The corrector v ∈ H1(D) is defined as the unique solution to v(x) = −R(x − x0)
on ∂D and

∫
D

β�∇v · ∇ϕ dx = sgn�({x0})(β2 − β1)

∫
∂�

∂νR(x − x0)ϕ(x) dx (95)

for all ϕ ∈ H1
0 (D).

The following lemma states the main result regarding the first order asymptotic
expansion. We closely follow the arguments of [11, Theorem 3.15], but since we
require estimates in Lq , we provide the main steps of the proof in the appendix.

Lemma 3.5 For q ∈ (1, d
d−1 ) there is a constant C = Cq,d > 0, which depends on q

and d, such that for all ε > 0 small:

‖ε(Kε − K − εd−1v ◦ Tε)‖Lq (Dε) + ‖∇(Kε − K − εd−1v ◦ Tε)‖Lq (Dε)d
≤ Cε, (96)

which, by considering the scaling of the norms and Dε = T−1
ε (D), is equivalent to

‖Kε ◦ T−1
ε − K ◦ T−1

ε − εd−1v‖W 1,q (D) ≤ Cε
d
q . (97)

Relation Between Asymptotic Expansion and Topological State Derivative
We now want to make the connection between the topological expansion and the
topological state derivative. For this we note that the estimate (96) reads on the fixed
domain D:

uε(x) = u0(x) + εK (T−1
ε (x)) + εdv(x) + o(εd ; x), (98)
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where o(εd ; x) denotes o(εd) almost everywhere in D. To see the relation between the
topological state derivativeU0 of Theorem 3.3 and the asymptotic expansion (Lemma
(3.5)), we first note that the equation (93) can be written as follows

∫
Rd

∇K · ∇ϕ dx = sgn�({x0})β2 − β1

β(x0)

( ∫
ω

∇u0(x0) · ∇ϕ dx

+
∫

ω

∇K · ∇ϕ dx

)
,

(99)

where β(·) is a piecewise constant function defined by

β(x0) =
{

β2 for x0 ∈ D \ �,

β1 for x0 ∈ �.

Therefore, with E(·) denoting the fundamental solution of −� on Rd , it is a classical
result that K can be expressed as follows

K (x) = sgn�({x0})β2 − β1

β(x0)

( ∫
ω

∇u0(x0) · ∇E(x − y) dy

+
∫

ω

∇K (y) · ∇E(x − y) dy

)
.

Therefore, performing a Taylor expansion, we see that the first asymptotic term of
K (x) as |x | → ∞ can be written as

R(x) = sgn�({x0})β2 − β1

β(x0)

(∫
ω

∇u0(x0) dy +
∫

ω

∇K (y) dy

)
︸ ︷︷ ︸

ξx0

·∇E(x), (100)

where ξx0 is a vector depending on ∇u0(x0). Notice that ξx0 can also be expressed
through the polarisation matrix Aω of Remark 3.4 as follows

ξx0 = sgn�({x0})β2 − β1

β(x0)
|ω|(Aω + Id)∇u0(x0) · ∇E(x) (101)

making the dependence on x0 more explicit. Now we note that the function U0(x) :=
|ω|−1(ξx0 · ∇E(x − x0) + v(x)) solves in a very weak sense:

∫
D

β�∇U0 · ∇ϕ dx =sgn�({x0})β2 − β1

|ω|
∫

ω

(∇K + ∇u0(x0)) · ∇ϕ(x0) dx,

(102)

for all ϕ ∈ C1
c (D). In fact, ξx0 · ∇E(x − x0) ∈ Lq(D) for q ∈ [1, d

d−1 ) and thus one
readily verifies that U0(x) is indeed a very weak solution as defined in Definition 84.
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With this we can state our next main result linking the asymptotic expansion and
the topological state derivative:

Theorem 3.6 For x0 ∈ D \ ∂� and ω ⊂ Rd with 0 ∈ ω we use the definition of
�ε(x0, ω) of (11) and set uε := u�ε(x0,ω) and u0 := u� and

Uε := uε − u0
|ωε| , ε > 0. (103)

Let K and v be defined by (93) and (95), respectively. Then we have the following
results.

(i) The asymptotic expansion (96) yields that there is a constant C = Cq,d > 0, which
depends on q and d, such that for all q ∈ (1, d

d−1 )

‖Uε − |ω|−1(R(x − x0) + v)‖Lq (D) ≤ Cε
d−q(d−1)

q for all ε > 0. (104)

(ii) For a.e. x ∈ D:

U0(x) = lim
ε↘0

1

|ωε| (εK (T−1
ε (x)) + εdv(x)), (105)

and thus in particular

U0(x) = |ω|−1(ξx0 · ∇E(x − x0) + v(x)), (106)

with

ξx0 := sgn�({x0})β2 − β1

β(x0)

(∫
ω

∇u0(x0) dy +
∫

ω

∇K (y) dy

)
. (107)

Note that for q ∈ (1, d
d−1 ), the exponent

d−q(d−1)
q is indeed positive.

Remark 3.7 In (i) we only claim the convergence rate d−q(d−1)
q for q > 1 while q = 1,

which would correspond to the convergence rate ε, is excluded. Obviously we also
obtain strong convergence in L1 via Hölder’s inequality, but the estimate (104) only
holds for q ∈ (1, d

d−1 ).

4 Topological Derivatives of Shape Functions Via Topological State
Derivative

4.1 Topological Differentiability of Shape Functionals

Semilinear Problem
We denote by S(�) = u� the solution operator of the semilinear equation (24). We
now discuss the differentiability of � �→ J (�) = G(S(�)) for a cost functional G :
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W 1,q(D) → R, q ∈ [1, d
d−1 ). In fact, under sufficient differentiability assumptions

on J and if G ′(u�) : W 1,q ′
(D) → R is well-defined, we can show that

DJ (�)(E) = lim
ε↘0

G(u�(Eε)) − G(u�)

|Eε| = G ′(S(�))(S′(�)(E)),

where E ⊂ � or E ⊂ D\� is either a point, d − 1-dimensional Lipschitz surface or
1 < k < d − 1 dimensional compact and smooth submanifold and �(Eε) is defined
in (1.1). Our goal is now to compute the limit ε ↘ 0 of

Uε := uε − u0
|Eε| , ε > 0,

where u� is the solution to the semilinear problem (24). To simplify notation,we define
again for every ε > 0 the functions uε := u�(Eε), u0 := u�. Recall by Theorem 2.7,
Uε → U0 = S′(�)(E) in Lq(D), q ∈ [1, d

d−1 ). Moreover we have according to
[9, Lemma 4.4] that uε → u0 = u� in H1

0 (D) and thus via the Sobolev inequality
uε → u0 in L p(D) for 1 ≤ p < 2d

d−2 for d ≥ 3 and 1 ≤ p < ∞ for d = 2.

Example 4.1 (L2 tracking-type) A classical example of a cost functional G(·) is of
tracking-type, that is:

G(u) :=
∫
D
(u − uref)

2 dx, uref ∈ L2(D). (108)

Consequently, the topological derivative of J (�) := G(u�) is given by

DJ (�)(E) = lim
ε↘0

∫
D
Uε(uε+u0−2uref) dx = 2

∫
D
S′(�)(E)(u�−uref) dx, (109)

Example 4.2 (Lr tracking) More generally we can differentiate for r > 2

G(u) :=
∫
D
(u − uref)

r dx, uref ∈ L∞(D)k. (110)

Let again J (�) := G(u�). Then we have

DJ (�)(E) = r
∫
D
S′(�)(E)(u� − uref)

r−1 dx . (111)

Another classical example is the gradient tracking type cost functional.

Example 4.3 (L2 gradient tracking) For uref ∈ W 1,q ′
(D), consider the gradient-

tracking functional

G(u) :=
∫
D

|∇u − ∇uref|2 dx . (112)
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A similar computation to the previous one shows

DJ (�)(E) = 2
∫
D

∇ (
S′(�)(E)

) · ∇(u� − uref) dx . (113)

Transmission Problem
Note that due to the weaker convergence result for the transmission problem, the com-
putation of the topological derivative can bemore involved for certain cost functionals.
We give the following examples.

Let � ∈ A(D). For x0 ∈ D\∂� and a simply connected ω ⊂ Rd with 0 ∈ ω we
use the definition of �ε(x0, ω) given in (11). We denote by u� the solution to (74).
We set uε := u�ε(x0,ω) and u0 := u� and

Uε := uε − u0
|ωε| , ε > 0. (114)

Recall that according to Theorem 3.3 we have Uε → U0 as ε ↘ 0 in Lq(D) for
q ∈ [1, d

d−1 ). We also have according to [9, Lemma 4.4] that uε → u0 in H1
0 (D),

which implies by the Sobolev inequality uε → u0 in L p(D) for 1 ≤ p < 2d
d−2 for

d ≥ 3 and 1 ≤ p < ∞ for p = 2. With the definition of �ε(x0, ω) given in (76), we
define the topological derivative for x0 ∈ D\∂�:

DJ (�)(x0, ω) = lim
ε↘0

J (�ε(x0, ω)) − J (�)

|ωε| . (115)

Notice that in case ω = B1(0) we have with E = {x0} that DJ (�)(E) =
DJ (�)(x0, ω), so the previous definition of the topological derivative given in (2)
coincides with (115). In contrast to the semilinear problem the topological derivative
for the transmission problem actually depends on the shape ω of the inclusion.

Example 4.4 (L2 tracking-type) For uref ∈ Lq ′
(D) consider the tracking type cost

functional

J (u�) :=
∫
D
(u� − uref)

2 dx . (116)

The topological derivative is given by

DJ (�)(x0, ω) = lim
ε↘0

∫
D
Uε(uε + u0 − 2uref) dx = 2

∫
D
U0(u� − uref) dx . (117)

In view of the regularity of U0 and u�, uref the last integral is indeed well-defined.

As a second example we consider the energy minimisation, where the topological
derivative cannot be directly computed via the topological state derivative.

Example 4.5 (L2 gradient tracking) Let

J (u�) :=
∫
D

β�|∇u�|2 dx . (118)
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As before, we compute

DJ (�)(x0, ω) = lim
ε↘0

∫
D

β�∇Uε · (∇uε + ∇u0) dx + 1

|ωε|
∫

ωε

(β1 − β2)|∇uε|2 dx .
(119)

Since the convergence ∇Uε → ∇U0 as ε ↘ 0 does not hold in L p(D)d for p ≥ 2,
we cannot pass to the limit. However, it can be shown using a Lagrangian framework
as in [9, 11] that, in fact, the first derivative (119) exists. Thus, this example shows
a clear limitation of the topological state derivative. Even though the limit in (119)
exists, this method, which relies on the chain rule, is not able to compute the first order
topological derivative.

4.2 Expression of Topological Derivative of Functionals with Adjoint Equation

Semilinear Problem
We now express the derivative of J (�) = G(u�), where G : W 1,q ′

(D) → R, with
q ′ > d (or equivalently 1 ≤ q < d

d−1 ), is given, for the semilinear problem in terms

of the adjoint equation. We introduce the adjoint state p� ∈ W 1,q ′
0 (D), that is, the

unique solution of

{
−�p� + ∂uρ�(x, u�)p� = −G ′(u�) in D,

p� =0 on ∂D.
(120)

Theorem 4.6 Assume that G(·) is differentiable, such that with J (�) := G(u�) it
holds

DJ (�)(E) = G ′(S(�))(S′(�)(E)). (121)

Then we have with W� = {(g2(u�) − g1(u�)) + ( f1 − f2)} p�:

DJ (�)(E) = −sgn�(E)μE (W�). (122)

• For E = {x0} and x0 ∈ D \ ∂� we have μE (W�) = W�(x0).
• For E = � for � ⊂ D \ ∂�, where � is a smooth hypersurface of Rd , we have

μE (W�) = 1

Per(�)

∫
�

W� dHd−1. (123)

• For E = M for M ⊂ D\ ∂�, where M is a smooth k-submanifold, 1 < k < d −1
of Rd without boundary, we have

μE (W�) = 1

Hk(M)

∫
M
W� dHk . (124)

Proof Recalling that by definition S(�) = u�, we have

DJ (�)(E) = G ′(S(�))(S′(�)(E))
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(120)= −
∫
D

∇ p� · ∇S′(�)(E) + ∂uρ�(x, u�)p�S′(�)(E) dx

(29)= −sgn�(E)μE (W�).

This concludes the proof. ��
Example 4.7 Consider J (�) = G(u�) and again the tracking-type cost functional of
Example 4.1, namely,

G(u) =
∫
D
(u − uref)

2 dx .

The adjoint state is the (unique) solution p� ∈ W 1,q ′
0 (�), q ∈ [1, d

d−1 ), of

{
−�p� + ∂uρ�(x, u�)p� = −2(u� − uref) in D,

p� = 0 on ∂D,
(125)

and thus the topological derivative of the shape functional reads:

DJ (�)(E) = sgn�(E)μE ({(g2(u�) − g1(u�)) + ( f1 − f2)} p�). (126)

We finish with the gradient-tracking example.

Example 4.8 Consider J (�) = G(u�) with the gradient-tracking function G(·) of
Example 4.3:

G(u) =
∫
D

|∇u − ∇uref|2 dx . (127)

The adjoint state is the (unique) solution p� ∈ W 1,q ′
0 (�), ∈ [1, d

d−1 ), of

{
−�p� + ∂uρ�(x, u�)p� = −2�(u� − uref) in D,

p� = 0 on ∂D,
(128)

and thus the derivative is again given by

DJ (�)(E) = sgn�(E)μE ({(g2(u�) − g1(u�)) + ( f1 − f2)} p�). (129)

Transmission Problem
We consider the transmission problem and cost function J (�) = G(u�) with G
defined in Example 4.4:

G(u�) :=
∫
D
(u� − uref)

2 dx . (130)
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We derived the following form of the topological derivative for x0 ∈ D \ ∂�:

DJ (�)(x0, ω) = 2
∫
D
U0(u� − uref) dx . (131)

Now introduce the adjoint associated with the cost functional (130), namely, p� ∈
H1
0 (D) that solves in a weak sense − div(β�∇ p�) = −2(u� − uref) in D. By (86) we

know that U0 solves

∫
D
U0v dx = sgn�({x0})(β2 − β1)

(
1

|ω|
∫

ω

∇K + ∇u�(x0) dx

)
· ∇ϕv(x0) (132)

for all v ∈ Lq ′
(D), whereϕv is the solution to (79). By definition ofϕv we readily verify

that p� = ϕv for v := −2(u�−uref). Therefore testing (132) with v = −2(u�−uref)
yields together with (131):

DJ (�)(x0, ω) = −sgn�({x0})(β2 − β1)

(
1

|ω|
∫

ω

∇K + ∇u�(x0) dx

)
· ∇ p�(x0).

(133)
In case ω = B1(0), using Remark 3.4, we can express the topological derivative of J
by

DJ (�)(x0, ω) = −sgn�({x0})(β2 − β1)(Cβ + 1)∇u�(x0) · ∇ p�(x0). (134)

5 Proofs for Semilinear Problems

5.1 Preliminary Results on Bilinear Elliptic Equations with Measure Data

In this first section we give the basic regularity estimates for bilinear elliptic equations
withmeasure data; the following proposition will be useful when considering the well-
posedness of linearised systems. It should be noted that this result is not an immediate
consequence of [22] or [34] but that the methods used to derive it is inspired by these
contributions.

Proposition 5.1 Let� ∈ L∞(D)be such that the first eigenvalueλ1(�)of the operator
L� := −� + � is positive:

λ1(�) = inf
u∈H1

0 (D)\{0}

∫
D |∇u|2 dx + ∫

D �u2 dx∫
D u2 dx

> 0.

Then, for every μ ∈ M(D) there exists a unique u that satisfies

{
−�u + �u = μ in D,

u = 0 on ∂D,
(135)
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in the weak W 1,q
0 (D)-sense for every q ∈ [1, d

d−1 ). Furthermore, for every q ∈
[1, d

d−1 ), there exists a constant Cq such that, for every μ ∈ M(D),

‖u‖W 1,q (D) ≤ Cq‖μ‖M(D).

Proof of Proposition 5.1 Approximation of (135) : We follow a standard [22, Lemma
3.4] approximation scheme: for every μ ∈ M(D) we consider a sequence {μk}k∈N of
C∞ functions that converges weakly (in the sense of measures) to μ and such that

lim
k→∞ ‖μk‖L1(D) = ‖μ‖M(D). (136)

We consider the system (27) with μ replaced with μk :

{
−�vk + �vk = μk in D,

vk = 0 on ∂D.
(137)

The existence of a solution vk to (137) follows from the minimisation of the energy
functional

Ek : H1
0 (D)  u �→ 1

2

∫
D

|∇u|2 dx + 1

2

∫
D

�u2 dx −
∫
D

μku dx .

To check that Ek is indeed coercive, we use the fact that λ1(�) > 0 to obtain: for
every u ∈ H1

0 (D),

Ek(u) ≥ λ1(�)

2

∫
D
u2 dx −

∫
D

μku dx .

Regarding the uniqueness, observe that if there are two different solutions (vk, v
′
k)

of (137) then the difference zk := vk − v′
k and satisfies

{
−�zk + �zk = 0 in D,

zk = 0 on ∂D.
(138)

Multiplying (138) by zk and integrating by parts we obtain

∫
D

|∇zk |2 dx +
∫
D

�z2k dx = 0.

Since λ1(�) > 0, this is implies zk = 0, which means vk = v′
k and hence shows

uniqueness.
Regularity estimates on the approximated problem: In order to derive W 1,p-

estimates on the sequence {vk}k∈N, we beginwith an a priori L1-estimate on {vk}k∈N; it
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will then suffice to apply the classical regularity result [22, Proposition 4.1]. Consider,
for every function h ∈ L∞(D), the solution θh of

{
−�θh + �θh = h in D,

θh = 0 on ∂D.
(139)

The existence and uniqueness of a solution to (139) follows from the same energy
argument already used to obtain existence and uniqueness for vk . We claim that for
every p ∈ [2,∞), there exists a constant Cp such that

‖θh‖W 2,p(D) ≤ Cp‖h‖L p(D). (140)

(140) follows from a standard bootstrap argument whichwe just show the initialisation
of. Using θh as a test function in the weak formulation of (139) we obtain

∫
D

θ2h dx ≤ 1

λ1(�)

∫
D
h2 dx,

whence elliptic regularity guarantees ‖θh‖W 2,2(D) ≤ C‖h‖L2(D). This implies (140)
for p = 2. Now using the Sobolev embedding W 2,2(D) ↪→ L p(D) (p > 2) and
writing −�θh = h − �θh ∈ L p(D), p > 2, we conclude again by elliptic regularity
that θh ∈ W 2,p(D) and

‖θh‖W 2,p(D) ≤ C(‖θh‖L p(D) + ‖h‖L p(D)) ≤ C(‖θh‖W 2,2(D) + ‖h‖L p(D)) ≤ C‖h‖L p(D),

which is (140). Consequently, there exists a constant C , such that

‖θh‖L∞(D) ≤ C‖h‖L∞(D).

Now, use θh as a test function in (137). We obtain, integrating by parts twice,

∣∣∣∣
∫
D

vkh dx

∣∣∣∣ ≤
∣∣∣∣
∫
D

θhμk dx

∣∣∣∣ ≤ C‖μk‖L1(D)‖h‖L∞(D).

By (136) we deduce that there exists a constant C such that supk∈N ‖vk‖L1(D) ≤
C‖μ‖M(D). Observe now that we can rewrite the equation on vk as −�vk = μ̃k

with μ̃k = μk − �vk . As � ∈ L∞(D) we have, for a certain constant C , that
‖μ̃k‖M(D) ≤ C‖μ‖M(D). Consequently, from [22, Proposition 4.1] we know that, for
every q ∈ [1, d

d−1 ), there exists a constant cq such that, for every k ∈ N,

‖vk‖W 1,q (D) ≤ cq‖μ‖M(D).

We can thus extract a W 1,q(D)-weak, Lq(D)-strong, converging subsequence of
{vk}k∈N. Let U be the closure point under consideration. For every p > d, Sobolev
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embeddings imply that W 1,p(D) ↪→ C0(D). Let θ ∈ W 1,p(D). Passing to the limit in
the identity ∫

D
∇vk · ∇θ dx +

∫
D

�vkθ dx =
∫
D

θμk dx

it appears thatU solves (27) in the weakW 1,q -sense, and further satisfies the required
regularity estimate. The existence of a solution is thus established.

Uniqueness of a solution to (27): Assume that u1, u1 are two distinct solutions of
(27). Then z := u1 − u2 satisfies{

L�z = 0 in D,

z = 0 on ∂D.
(141)

It is then clear that z solves (141) in the weak H1
0 -sense. However, we already proved

(see above the proof of zk ≡ 0) that this implies z = 0 and thus the uniqueness. Thus
the solution u is necessarily unique. ��

In this section we gather the proofs of Proposition 2.6, Theorems 2.7, 2.8, 2.10 and
Corollary 2.11.

5.2 Proof of Proposition 2.6

It suffices to prove that the potential

W� := ∂ρ�

∂u
(x, u�) (142)

is such that the assumptions of Proposition 5.1 are satisfied. Given that Assumption
(23) is satisfied, we know that

W� ≥ 0. (143)

Furthermore, by standard elliptic regularity, u� ∈ L∞(D), whence we concludeW� ∈
L∞(D). Consequently, the first eigenvalue λ1(W�) (with the notations of Proposition
5.1) is bounded from below:

λ1(W�) ≥ inf
u∈H1

0 (D)

u �=0

∫
D |∇u|2 dx∫
D u2 dx

> 0,

where the infimum on the right hand side is the first Dirichlet eigenvalue of the domain
D. It suffices to use Proposition 5.1 to obtain the conclusion.

5.3 Proof of Theorem 2.7

The computations are similar whether we take E ⊂ � or E ⊂ D\�. Thus, for
notational simplicity, we consider the case E ⊂ D\�. The functionUε solves:Uε = 0
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on ∂D and in a weak W 1,q
0 (D) sense:

−�Uε+χ�

(g1(uε) − g1(u0) − g2(uε) + g2(u0))

|Eε|
+ με(g1(uε) − g2(uε)) + g2(uε) − g2(u0)

|Eε| = ( f1 − f2)με.

Now observe that, as χ�ε(E) →
ε↘0

χ� in L2(D), elliptic regularity estimates entail

uε →
ε↘0

u0 in C
0(D). (144)

By the mean value theorem, for i = 1, 2 and x ∈ D, there exists sε,i (x) ∈ [0, 1] such
that vε,i (x) := sε,i (x)uε(x) + (

1 − sε,i (x)
)
u0(x) satisfies

gi (uε) − gi (u0) = −g′
i (vε,i )(uε − u0) (i = 1, 2).

From (144) we have vε,i →
ε↘0

u0 in C0(D). This allows to rewrite the equation on Uε

as

− �Uε + χ�g
′
1(vε,1)Uε + χD\�g′

2(vε,2)Uε = −με(g1(uε) − g2(uε)) + ( f1 − f2)με

(145)
in D. From the same regularity estimates derived in the proof of Proposition 2.6 we
deduce that, for every q ∈ [1, d

d−1 ) and δ > 0 small,

sup
ε∈(0,δ]

‖Uε‖W 1,q (D) < ∞.

We may thus pass to the weak W 1,q , strong Lq limit in the equation of Uε to obtain
that every accumulation point of this sequence is a weak W 1,q -solution to (29). Since
the uniqueness of a solution to this equation was established in Proposition 2.6 the
conclusion follows, if we can prove that the convergence is, in fact, strong inW 1,q(D).
Here, we use [30, Assertion (21)] (see also [22, Proposition 4.9]). Rewrite the equation
(145) on Uε as

−�Uε = ( f1 − f2 − g1(uε) + g2(uε))με − (χ�g
′
1(vε,1) + χD\�g′

2(vε,2))Uε = μ̃ε.

From the strong convergence ofUε in L1(D), we deduce from [30, Assertion (21)] that
{Uε}ε∈(0,δ] is a sequentially compact family in W 1,q

0 (D) and thus converges strongly.
The proof of the proposition is complete.
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5.4 Proof of Theorem 2.8

It will be convenient to observe thatwhen E = {x0} the functionU0 solves the equation

{
−�U0 + W�U0 = (

sgn�({x0})F(x0)
)
δx0 in D,

U0 = 0 on ∂D,
(146)

in a weak W 1,q
0 (D)-sense. The function F in (146) is defined as

F = g2(u�) − g1(u�) + f1 − f2 ∈ L∞(D),

and the potential W� is defined in (142). Introduce the Green kernel G = G� =
G�(x, y) of the operator −� + W�, that is, the unique solution of

{
−�xG(y, x) + W�G = δx=y in D,

G(y, x) = 0 on ∂D.
(147)

A detailed study of the Green kernel of operators L having the form
−∑

i ∂i (
∑

j ai, j∂ j ) can be found in the seminal work [23]. Here, the existence of
a Green kernel follows from Proposition 5.1, and the Green kernel is symmetric in
the sense that G(x, y) = G(y, x) for all for all x �= y ∈ D. Furthermore, from
Proposition 5.1 and Sobolev embeddings we know that,

∀y ∈ D ,G(y, ·) ∈ L2(D). (148)

Finally, it is clear that for all y ∈ D ,U{y},0 = sgn�({y})F(y)G(y, ·) and
consequently, for every h ∈ L2(D), the function

ũ = x �→
∫
D
sgn�({y})U{y},0(x)h(y)dy =

∫
D
F(y)G(x, y)h(y)dy,

is well-defined. It suffices to differentiate it to obtain that ũ solves (30), thereby
concluding the proof of Theorem 2.8.

5.5 Proof of Theorem 2.10

Proof To establish (i) for d = 2 we have K (x) = R(x) + O(|x |−1) as |x | → ∞ and
thus for x �= x0:

K (T−1
ε (x)) = R(T−1

ε (x)) + O(|T−1
ε (x)|−1). (149)
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Since R(x) = b ln(|x |), it follows R(T−1
ε (x)) = b ln(x − x0) − b ln(ε) = R(x −

x0) − b ln(ε) and thus we conclude for ε ↘ 0:

1

|ωε|ε
2(K (T−1

ε (x))+v(x)+ln(ε)b) = |ω|−1(b ln(|x−x0|)+v(x))+O(|T−1
ε (x)|−1),

(150)
in viewof |T−1

ε (x)|−1 = ε|x−x0|−1 the result follows. The proof of (48) is established
the same way and left to the reader.

For the sake of simplicity we only give a proof for item (iii), that is we restrict
ourselves to dimension d ≥ 3. Note that the same arguments can be used to show the
according results of item (ii). We start by proving the last item of (iii). Therefore, first
note that we have

Uε − |ω|−1(ε2−d K ◦ T−1
ε + v) = |ω|−1ε2−d

(
Kε ◦ T−1

ε − K ◦ T−1
ε − εd−2v

)
.

Thus, from (44) and changing variables, we obtain

‖Uε − |ω|−1(ε2−d K ◦ T−1
ε + v)‖H1(D) ≤ Cε. (151)

Now we estimate for p ∈ (1, d
d−1 ) by the triangle inequality and Hölder’s inequality:

‖∇(Uε − |ω|−1(R(x − x0) + v))‖L p(D)d ≤
C‖∇(Uε − |ω|−1(ε2−d K ◦ T−1

ε + v))‖L2(D)d

+ C |ω|−1‖∇(ε2−d K ◦ T−1
ε − R(x − x0))‖L p(D)d .

(152)

Using the estimate (151), we see that the first term on the right hand side is bounded
by Cε. For the second term we note ∇R(εx) = ε1−d∇R(x) and thus

∫
D

|∇(ε2−d K ◦ T−1
ε − R(x − x0))|p dx =

∫
D

|ε1−d∇K (T−1
ε (x)) − ∇R(x − x0))

p dx

=
∫
Dε

εd |ε1−d K (x) − ∇R(εx)|p dx

=
∫
Dε

εd−p(d−1)|K (x) − ∇R(x)|p dx,

and

‖∇(K ◦ T−1
ε − R(x − x0))‖p

L p(D)d
= εd−p(d−1)‖∇(K − R)‖p

L p(Dε)d
. (153)

Now according to Lemma 6.1, we have

‖∇(K − R)‖L p(Dε)d
≤ ‖∇(K − R)‖L p(Rd )d < ∞ for p ∈

(
1,

d

d − 1

)
. (154)
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Therefore we obtain for p ∈ (1, d
d−1 ) noticing that 0 < p−1(d − p(d − 1)) < 1:

‖∇(Uε − |ω|−1(R(x − x0) + v))‖L p(D)d ≤ Cε + Cε
d−p(d−1)

p ≤ Cε
d−p(d−1)

p . (155)

Since by (41), v(x) = −R(x − x0) and uε(x) = u0(x) = 0 for x ∈ ∂D, we have

Uε − |ω|−1(R(x − x0) + v) = |ω|−1(R(x − x0) − R(x − x0)) = 0 on ∂D.

Therefore the Poincaré inequality yields

C‖Uε − |ω|−1(R(x − x0) + v)‖L p(D) ≤ ‖∇(Uε − |ω|−1(R(x − x0) + v))‖L p(D)d ,

and hence the last item of (iii) follows.
We now prove the first item in (iii). We compute for d ≥ 3 and p ∈ ( d

d−1 ,
d

d−2 ),

using the continuous embedding H1(D)
c

↪→ L p(D) for p ∈ [1, d
d−2 ):

‖Uε − |ω|−1(R(x − x0) + v)‖L p(D) ≤C‖Uε − |ω|−1(ε2−d K ◦ T−1
ε + v)‖L p(D)

+ C |ω|−1‖ε2−d K ◦ T−1
ε − R(x − x0)‖L p(D)

≤C‖Uε − |ω|−1(K ◦ T−1
ε + v)‖H1(D)

+ C |ω|−1‖ε2−d K ◦ T−1
ε − R(x − x0)‖L p(D).

(156)

Moreover, we have by changing variables:

‖ε2−d K ◦ T−1
ε − R(x − x0)‖L p(D) = ε

d−p(d−2)
p ‖K − R‖L p(Dε), (157)

and according to Lemma 6.1

‖K − R‖L p(Dε) ≤ ‖K − R‖L p(Rd ) < ∞ for p ∈
(

d

d − 1
,

d

d − 2

)
. (158)

Therefore from (156) and (151), we have for p ∈
(

d
d−1 ,

d
d−2

)

‖Uε − |ω|−1(R(x − x0) + v)‖L p(D) ≤ Cε + Cε
d−p(d−2)

p ≤ Cε
d−p(d−2)

p . (159)

��

5.6 Proof of Corollary 2.11

Proof This is a direct consequence of Theorem 2.10 having a close inspection of the
proof of Theorem 2.10, item(ii). Indeed, since ω = B1(0), we have according to [26]
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a.e. in D:
Uε − |ω|−1(K ◦ T−1

ε + v + b ln(ε)) = 0 for d = 2, (160)

and
Uε − |ω|−1(ε2−d K ◦ T−1

ε + v) = 0 for d ≥ 3. (161)

Moreover, K = R on Rd \ B1(0), that is, the asymptotics of K aborts after the first
term. Therefore for d ≥ 3 it follows from (161):

‖Uε − |ω|−1(R(x − x0) + v)‖L p(D) ≤C |ω|−1‖ε2−d K ◦ T−1
ε − R(x − x0)‖L p(Bε(0)).

(162)

Now changing variables Tε(x) = y and R(Tε(x) − x0) = ε−1R(x) shows that

‖ε2−d K ◦ T−1
ε − R(x − x0)‖L p(Bε(0)) = ε

d−p(d−2)
p ‖K − R‖L p(B1(0)) (163)

the last term is finite for p ∈ [1, d
d−1 ) since R(x) = E(x) = |ω|cd |x |−(d−2) ∈

L p(B1(0)) for such p (recall E was defined in (38)). The case d = 2 is treated in the
same fashion noting that for d = 2 we have R(x) = −|ω|(2π)−1 ln(|x |) ∈ L p(B1(0))
for all p ≥ 1. ��

6 Proofs for the Transmission Problem

6.1 Proof of Proposition 3.2

Existence of a very weak solution To establish the existence of a solution, it suffices
to observe that the linear map

T : L p(D)  v �→ ζ · ∇ϕv(x0)

is continuous for every p > d, as ‖ϕv‖C1(�∪(D\�)) ≤ C‖v‖L p(D) by elliptic regularity.

By the Riesz representation theorem, there exists a unique ϕζ,x0 ∈ L p′
(D), such that

∫
D

ϕζ,x0v = T (v) for every v ∈ L p(D). (164)

Therefore (84) admits a unique solution u ∈ L p′
(D), which further satisfies the

required regularity estimates.

6.2 Proof of Theorem 3.3

Proof of Theorem 3.3 Let uε := u�ε(x0,ω), u0 := u� andUε = uε−u0|ωε | . Then we obtain

∫
D

β�∇(uε − u0) · ∇ϕ dx = (165)
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sgn�({x0})(β2 − β1)

(∫
ωε

∇(uε − u0) · ∇ϕ dx +
∫

ωε

∇u0(x) · ∇ϕ dx

)
,

(166)

for all ϕ ∈ H1
0 (D). Dividing by |ωε| = |ω|εd and using Kε = (uε−u0)◦Tε

ε
, this can be

written as

∫
D

β�∇Uε · ∇ϕ dx = sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

∇Kε ◦ T−1
ε · ∇ϕ(x) dx

+ sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

∇u0(x) · ∇ϕ(x) dx,

for all ϕ ∈ H1
0 (D). Now choosing ϕ = ϕv (with ϕv defined in (79) for v ∈ L p(D),

p > d and q := p′ = q/(q − 1)) as a test function and integrating by parts in the first
integral using − div(β�∇ϕv) = v yields the very weak formulation:

∫
D
Uεv dx = sgn�({x0})(β2 − β1)

1

|ωε|
∫

ωε

∇Kε ◦ T−1
ε · ∇ϕv(x) dx

+ sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

∇u0(x) · ∇ϕv(x) dx,

for all v ∈ L p(D). Subtracting the limit equation for U0 yields

∫
D
(Uε −U0)v dx

= sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

(∇Kε ◦ T−1
ε − ∇K ◦ T−1

ε ) · ∇ϕv(x) dx

+ sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

∇K ◦ T−1
ε · (∇ϕv(x) − ∇ϕv(x0)) dx

+ sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

(∇u0(x) − ∇u0(x0)) · ∇ϕv(x) dx

+ sgn�({x0})(β2 − β1)
1

|ωε|
∫

ωε

∇u0(x) · (∇ϕv(x) − ∇ϕv(x0)) dx

=: I1(v) + I2(v) + I3(v) + I4(v).

It is readily checked that using ‖ϕv‖C1(�∪D\�) ≤ ‖v‖L p(D):

|I1(v)| ≤ C‖∇Kε − ∇K‖L1(ω)d‖∇ϕv‖C0(ωε)d
≤ C‖∇Kε − ∇K‖L1(ω)d‖v‖L p(D)

(167)
and

|I3(v)| ≤ C |ωε|−1‖∇u0 − ∇u0(x0)‖L1(ωε)d
‖v‖L p(D). (168)

123



243 Page 42 of 49 P. Baumann et al.

Now we recall the following equation which follows from the proof of Morrey’s
inequality [35, p.280, Theorem 4]: for all ϕ ∈ W 2,p(� ∪ D \ �), p > d:

1

|Bε(x0)|
∫
Bε(x0)

|∇ϕ(x) − ∇ϕ(x0)| dx ≤ C
∫
Bε(x0)

|∇2ϕ(x)|
|x − x0|d−1 dx . (169)

Now there are constants � > 1 and C > 0, such that |Bε�(x0)| ≤ C |ωε(x0)| and
ωε(x0) ⊂ Bε�(x0) for ε > 0. Therefore,

1

|ωε(x0)|
∫

ωε(x0)
|∇ϕ(x)−∇ϕ(x0)| dx ≤ C

1

|Bε�(x0)|
∫
Bε�(x0)

|∇ϕ(x)−∇ϕ(x0)| dx .
(170)

Therefore it follows from Hölder’s inequality:

|I2(v)| ≤ C‖∇K‖C0(ω)d

∫
Bε�(x0)

|∇2ϕv(x)|
|x − x0|d−1 dx (171)

≤ C‖∇K‖C0(ω)d‖v‖L p(D)

(∫
Bε�(x0)

1

|x − x0|p′(d−1)
dx

)1/p′

. (172)

Changing variables yields

(∫
Bε�(x0)

1

|x − x0|p′(d−1)
dx

)1/p′

= (�ε)
d−p′(d−1)

p′
(∫

B1(0)

1

|x |p′(d−1)
dx

)1/p′

(173)
and the last integral is finite if p′ = q ∈ (1, d

d−1 ), which is satisfied since p > d.
Similarly we can show that

|I4(v)| ≤ Cε
d−p′(d−1)

p′ ‖v‖L p(D). (174)

Summarising we have shown that (recall p′ = q)

‖Uε−U0‖Lq (D) ≤ C(ε
d−q(d−1)

q +‖∇Kε−∇K‖L1(ω)d+|ωε|−1‖∇u0−∇u0(x0)‖L1(ωε)d
)

(175)
and the in view of right differentiability of ∇u0 near x0, |ωε|−1‖∇u0 −
∇u0(x0)‖L1(ωε)d

≤ Cε and the estimate (85). Moreover, the right hand side goes
to zero as ε ↘ 0 in view of Lemma 3.5. ��

6.3 Proof of Theorem 3.6

Proof of Theorem 3.6 We first note that multiplying (97) with ε gives

‖uε − u0 − εK ◦ T−1
ε − εdv‖W 1,q (D) ≤ Cε

1+ d
q , (176)
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and this yields by division by |ωε|with the definition uε := u�ε(x0,ω) andUε = uε−u0|ωε |
the estimate

‖Uε − ε|ωε|−1K ◦ T−1
ε − |ω|−1v‖W 1,q (D) ≤ Cε

1+ d
q −d

, (177)

where we note that the exponent 1 + d
q − d > 0 for q ∈ (1, d

d−1 ). Now we estimate

‖Uε − |ω|−1(R + v)‖Lq (D) ≤‖Uε − ε|ωε|−1K ◦ T−1
ε − |ω|−1v‖Lq (D)

+ ‖ε|ωε|−1K ◦ T−1
ε − |ω|−1R‖Lq (D).

(178)

The first term on the right hand side is bounded in view of (177). To treat the second
term on the right hand side of (178), we change variables, recall Dε = T−1

ε (D), and
R ◦ Tε = ε−(d−1)R to obtain

‖ε|ωε|−1K ◦ T−1
ε − |ω|−1R‖qLq (D)

= εd−q(d−1)|ω|−q‖K − R‖qLq (Dε)
. (179)

Now we recall R(x) = Ax
|x |d , K ∈ Lq(ω) for q ∈ [1, d

d−1 ). In addition, since K (x) −
R(x) behaves as |x |−d for |x | → ∞, we also have (similarly to Lemma 6.1) that
‖K − R‖Lq (Rd\ω) is bounded. It follows that

‖ε|ωε|−1K ◦ T−1
ε − |ω|−1R‖qLq (D)

≤ εd−q(d−1)|ω|−q‖K − R‖q
Lq (Rd )

. (180)

Finally noting that d−q(d−1)
q < 1 is equivalent to q > 1 this finishes the proof. ��
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Appendix

Proof of Lemma 2.9 We start with d = 2 and aim to derive an equation for Vε :=
Kε − K − v ◦ Tε − ln(ε)b. Subtracting the weak formulation from the perturbed state
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equation (32) for ε > 0 and ε = 0 yields

∫
D

∇(uε − u0) · ∇ϕ dx =
∫

ωε

( f1 − f2)ϕ dx, for all ϕ ∈ H1
0 (D).

Now the change of variables Tε(x) = y, Dε = T−1
ε (D), and dividing by ε2 shows

∫
Dε

∇Kε · ∇ϕ dx =
∫

ω

( f1 − f2)ϕ dx, for all ϕ ∈ H1
0 (Dε).

Note that, by extending ϕ ∈ H1
0 (Dε) by 0 in the exterior, we get

∫
Dε

∇K · ∇ϕ dx =
∫

ω

( f1 − f2)ϕ dx, for all ϕ ∈ H1
0 (Dε).

Hence, we conclude

∫
Dε

∇Vε · ∇ϕ dx = 0, for all ϕ ∈ H1
0 (Dε),

where we used that v is harmonic. Furthermore, we see that for x ∈ ∂Dε we have

Vε(x) = −K (x) − v ◦ Tε(x) − ln(ε)b = −K (x) + R(εx) − ln(ε)b = R(x) − K (x),

where we used (39) and b ∈ R is chosen such that R(ε) = b ln(ε). Thus we observe,
for ε > 0 sufficiently small, there holds

|Vε(x)| ≤ c|x |−1 + O(|x |−2), for all x ∈ ∂Dε.

Finally, we can apply [11, Lemma 3.4, Lemma 3.7] to conclude

‖Vε‖ε ≤ C

(
ε

1
2 ‖Vε‖L2(∂Dε)

+ ‖Vε‖
H

1
2 (∂Dε)

)
≤ Cε.

The proof for dimension d ≥ 3 is similar. An identical computation shows that Vε :=
Kε − K − εd−2v ◦ Tε satisfies

∫
Dε

∇Vε · ∇ϕ dx = 0, for all ϕ ∈ H1
0 (Dε),

and one readily checks that for a.e. x ∈ ∂Dε there holds

Vε(x) = −K (x) − εd−2v ◦ Tε(x) = −K (x) + εd−2R(εx) = R(x) − K (x),
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where in the last equality we used that R is homogenous of degree −(d −2); see (40).
Thus, an application of [11, Lemma 3.4, Lemma 3.7] yield

‖Vε‖ε ≤ C

(
ε

1
2 ‖Vε‖L2(∂Dε)

+ ‖Vε‖
H

1
2 (∂Dε)

)
≤ Cε

d
2 .

��
Proof of Lemma 3.5 First note that, testing with ϕ ∈ H1

0 (Dε), we can rewrite (93) as

∫
Dε

β
ω∪T−1

ε (�)
∇K · ∇ϕ dx =sgn�({x0})(β2 − β1)

∫
ω

∇u0(x0) · ∇ϕ dx (181)

+ sgn�({x0})(β2 − β1)

∫
T−1
ε (∂�)

∂νKϕ dS. (182)

Hence, combined with the rescaled equations (75) and (95), we see that Vε := Kε −
K − εd−1v ◦ Tε satisfies

∫
Dε

β
ω∪T−1

ε (�)
∇Vε · ∇ϕ dx (183)

= sgn�({x0})(β2 − β1)

∫
ω

(∇u0 ◦ Tε − ∇u0(x0)) · ∇ϕ dx (184)

+ sgn�({x0})(β2 − β1)

∫
T−1
ε (∂�)

∂ν(K − R)ϕ dS =: Fε(ϕ). (185)

and Vε = K − R =: gε on ∂Dε. From [11, Lemma 3.7] (in an L p setting) we deduce

‖Vε‖Lq (Dε)+‖∇Vε‖Lq (Dε)d
≤ C

(
‖Fε‖Lq (Dε) + ε

1− 1
q ‖gε‖Lq (∂Dε) + |gε|

W
1− 1

q ,q
(∂Dε)

)
.

(186)
In view of |K (x) − R(x)| ≈ |x |−d for |x | → ∞ and the scaling properties of Lemma
6.3 and Lemma 6.2, the result follows. ��
Lemma 6.1 Let ω ⊂ Rd such that 0 ∈ ω. Given a function E : Rd → R let K (x) :=∫
ω
E(x − y) dy, for x ∈ Rd . Then we have the following properties: For dimension

d = 2 and E(x) := ln(|x |) there holds
(i) ‖K − |ω|E‖L p(R2) < ∞ for p ∈ (2,∞).
(ii) ‖∇(K − |ω|E)‖L p(R2)2 < ∞ for p ∈ (1, 2).

For dimension d > 2 and E(x) := |x |−k , k ∈ N there holds

(iii) ‖K − |ω|E‖L p(Rd ) < ∞ for p ∈ ( d
k+1 ,

d
k ).

(iv) ‖∇(K − |ω|E)‖L p(Rd )d < ∞ for p ∈ ( d
k+2 ,

d
k+1 ).
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Proof We start with the two dimensional case. Hence, let E(x) = ln(|x |). Note that a
Taylor expansion shows that there is a R > 0

K (x) − |ω|E(x) =
∫

ω

E(x − y) − E(x) dx ≤ C |x |−1, for |x | > R. (187)

Now splitting the integral with respect to this constant R we get for all p ∈ [1,∞):

‖K − |ω|E‖p
L p(BR(0)) ≤ ‖K‖p

L p(BR(0)) + ‖|ω|E‖p
L p(BR(0)) < ∞ (188)

since ln(|x |) ∈ L loc
p (R2) and the same holds for K . For the second part we use (187)

to conclude for all p ∈ (2,∞):

‖K − |ω|E‖p
L p(BR(0)c) ≤ C

∫
BR(0)c

|x |−p dx = C
∫ ∞

R
r1−p dr < ∞, (189)

which shows (i). From (187) we further see that

∇ (K (x) − |ω|E(x)) ≤ C |x |−2, for |x | > R. (190)

Now, noting that |∇E(x)| = |x |−1, we see that for all p ∈ (1, 2):

‖∇E‖p
L p(BR(0))2

=
∫ R

0
r1−p dr < ∞. (191)

Since the same holds true for K , we conclude ‖∇(K − |ω|E)‖L p(BR(0))2 < ∞ for all
p ∈ (1, 2). For the exterior domain, we again use (187) to conclude for all p ∈ (1,∞):

‖∇ (K − |ω|E) ‖p
L p(BR(0)c)2

≤ C
∫
BR(0)c

|x |−2p dx = C
∫ ∞

R
r1−2p dr < ∞.

(192)
Combining (191) and (191) yields (ii). Similar arguments, exploiting the Taylor
expansion of |x |−k for k ∈ N, shows item (iii) and (iv). ��
Lemma 6.2 For x0 ∈ D and ε > 0 let Tε(x) := x0 + εx and Dε := T−1

ε (D). Further
define for 1 < p < ∞ the scaled norm

‖ϕ‖ε,p := ε‖ϕ‖L p(Dε) + ‖∇ϕ‖L p(Dε)d
, for all ϕ ∈ W 1,p(Dε). (193)

Then there holds:

(i) ‖ϕ ◦ T−1
ε ‖W 1,p(D) = ε

d
p −1‖ϕ‖ε,p.

(ii) ‖ϕ ◦ T−1
ε ‖L p(∂D) = ε

d−1
p ‖ϕ‖L p(∂Dε).

(iii) |ϕ ◦ T−1
ε |Wα,p(∂D) = ε

d−1
p −α|ϕ|Wα,p(∂Dε).

(iv) ‖ϕ‖ε,p ≤ C

(
ε
1− 1

p ‖ϕ‖L p(∂Dε) + |ϕ|
W

1− 1
p ,p

(∂Dε)

)
.
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Proof ad (i): This is a direct consequence of the scaling of L p norms.
ad (ii): The same argument as before, considering dim(∂D) = d − 1.
ad (iii): We have

|ϕ ◦ T−1
ε |pWα,p(∂D)

=
∫

∂D

∫
∂D

|ϕ ◦ T−1
ε (x) − ϕ ◦ T−1

ε (y)|p
|x − y|α p+d−1 dxdy

=ε2d−2
∫

∂Dε

∫
∂Dε

|ϕ(x) − ϕ(y)|p
|(x0 + εx) − (x0 + εy)|α p+d−1 dxdy

=εd−1−α p
∫

∂Dε

∫
∂Dε

|ϕ(x) − ϕ(y)|p
|x − y|α p+d−1 dxdy

=εd−1−α p|ϕ|pWα,p(∂D)
.

ad (iv): Using the previous scalings and the right-inverse extension operator on D, we
get

‖ϕ‖ε,p =ε
1− d

p ‖ϕ ◦ T−1
ε ‖W 1,p(D)

≤Cε
1− d

p

(
‖ϕ ◦ T−1

ε ‖L p(∂D) + |ϕ ◦ T−1
ε |

W
1− 1

p ,p
(∂D)

)

=Cε
1− d

p

(
ε

d−1
p ‖ϕ‖L p(∂Dε) + ε

d−1
p −(1− 1

p )|ϕ|
W

1− 1
p ,p

(∂Dε)

)

=C

(
ε
1− 1

p ‖ϕ‖L p(∂Dε) + |ϕ|
W

1− 1
p ,p

(∂Dε)

)
. ��

Lemma 6.3 Let g(x) := |x |−d , for x ∈ Rd . Then there holds

(i) ‖g‖L p(∂Dε) ≤ Cε
1−d
p +d .

(ii) |g|Wα,p(∂Dε) ≤ Cε
1−d
p +d+α .

Proof ad (i): We have

‖g‖p
L p(∂Dε)

=
∫

∂Dε

|x |−dp dx = ε1−d
∫

∂D

∣∣∣∣ x − x0
ε

∣∣∣∣
−dp

dx ≤ Cε1−d+dp. (194)

ad (ii): Similarly we conclude

|g|pWα,p(∂Dε)
=

∫
∂Dε

∫
∂Dε

|g(x) − g(y)|p
|x − y|pα+d−1

=ε2−2d
∫

∂D

∫
∂D

|g ◦ T−1
ε (x) − g ◦ T−1

ε (y)|p
|x − y|pα+d−1ε−(pα+d−1)

=ε1−d+pα
∫

∂D

∫
∂D

|g ◦ T−1
ε (x) − g ◦ T−1

ε (y)|p
|x − y|pα+d−1

≤Cε1−d+pαε−p+p(d+1)
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=Cε1−d+p(d+α),

where we used |g ◦ T−1
ε (x) − g ◦ T−1

ε (y)| ≈ ε−1|∇(g ◦ T−1
ε )(x) · (x − y)| and

∇g(x) ≈ |x |−(d+1). For a more detailed proof of this estimate we refer to [11, Lemma
4.4]. ��
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