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Abstract

In this paper, we introduce the topological state derivative for general topological
dilatations and explore its relation to standard optimal control theory. We show that
for a class of partial differential equations, the shape-dependent state variable can be
differentiated with respect to the topology, thus leading to a linearised system resem-
bling those occurring in standard optimal control problems. However, a lot of care has
to be taken when handling the regularity of the solutions of this linearised system. In
fact, we should expect different notions of (very) weak solutions, depending on whether
the main part of the operator or its lower order terms are being perturbed. We also
study the relationship with the topological state derivative, usually obtained through
classical topological expansions involving boundary layer correctors. A feature of the
topological state derivative is that it can either be derived via Stampacchia-type regu-
larity estimates or alternately with classical asymptotic expansions. It should be noted
that our approach is flexible enough to cover more than the usual case of point per-
turbations of the domain. In particular, and in the line of (Delfour in SIAM J Control
Optim 60(1):22-47, 2022; J Convex Anal 25(3):957-982, 2018), we deal with more
general dilatations of shapes, thereby yielding topological derivatives with respect to
curves, surfaces or hypersurfaces. To draw the connection to usual topological deriva-
tives, which are typically expressed with an adjoint equation, we show how usual
first-order topological derivatives of shape functionals can be easily computed using
the topological state derivative.
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1 Introduction
1.1 Scope of the Paper

The main goal in shape optimisation problems is to optimise a certain set, the “design
variable” €2, in order to maximise or minimise a certain functional. To achieve this
goal, it is necessary to understand how this functional varies under perturbations of
Q2. Of particular importance are perturbations obtained by drilling a small inclusion
w; of size ¢ into 2. The first order variation of the functional under this perturbation
is called the “topological derivative”. After its introduction in the pioneering works
[1-4] in the context of linear elasticity, the topological derivative framework was used
in several numerical algorithms; let us for instance mention level-set algorithms [3] or
Newton-type algorithm [5, Chapter 10]. We also refer to the monographs [6], where
several topological derivatives for various model problems are derived.

Recently [7] a Lagrangian technique, called the “averaged adjoint approach”, was
proposed as an efficient tool to compute topological derivatives. This technique allows
for a wide range of applications: topological derivatives for Dirichlet boundary con-
ditions [8], topological derivatives for nonlinear [9] and quasilinear problems [10] or
higher order topological derivatives [11] can be computed in a systematic way. We
also refer to [12] for another Lagrangian technique to compute topological derivatives.

In the even more recent paper [1], a way to compute the topological derivative
directly using the unperturbed adjoint equation was proposed. In this reference, more
general topological perturbations, called dilatations, are also considered; this leads to
a more general notion of topological derivative. In [1, Thm. 3.4], the difference of the
perturbed and unperturbed state variable are divided by the volume of the perturbation,
however, no analysis on the existence of this limit is provided. We will see that, for
the models we consider, that the limit of the quotient divided by the volume of the
perturbation for point perturbations and dilatations of hypersurfaces actually exists in
a suitable function space; this leads us to a new notion of topological derivative of
the state which we refer to as the fopological state derivative. A difference between
[1] and our model problems is that in this reference homogenous Neumann boundary
conditions on the inclusion boundary are imposed, while we deal with transmission
problems, which can be seen as inhomogenous Neumann boundary conditions on the
inclusion boundary.

Let us mention other applications of asymptotic expansions, for instance in [13],
where a necessary condition for the existence of a nonsmooth domain is derived. In thi
paper the boundary components touch at an tangential point and thus the domain has,
for instance in dimension two, a cusp at this point. Then the interesting question is also
how does the asymptotic expansion of the solution look like when the two touching
components are moved by a small width ¢ > 0 and how does the solution behave.
This is examined in [14], where also the asymptotic of the solution with respect to the
distance ¢ > 01is provided. Asymptotic expansions for a variety of shape functions can
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be found in [15] which includes the asymptotics of eigenvalues and energy functionals.
In [16, 17] an interesting self-adjoint extensions on the union of domain and ligament
of width 7 > 0 is studied. The asymptotics of the solution to a Poisson problem is
derived with respect to the ligament thickness /. The ligament problem with the strip
can then be approximated with the limit problem, where the ligament collapses to a
curve.

Our goal, in this paper, is to present a unique view on the topological derivative,
by framing it as a usual derivative, thereby leading to a direct approach to computing
topological derivatives. This is done by first perturbing the partial differential equation
and then deriving a linearised equation as is usually done in optimal control theory
[18-20]. This shows that the design-to-state operator is actually differentiable for cer-
tain PDE constraints, and that its derivative is described by a linearised system similar
to optimal control problems. These linearised systems are usually very singular in
the sense that their solutions admit low regularity. Typically, for problems where the
operator is perturbed, the linear system only admits very weak solutions. Interestingly
these linearised systems may involve terms which are usually obtained from the clas-
sical asymptotic analysis performed on the problem under consideration. Solutions of
the linearised system for the semilinear problem will be analysed in our paper through
the notions introduced by Stampacchia, while the operator perturbation of the trans-
mission problem requires the notion of very weak solutions. We remark that in state
constrained optimal control problems low regularity of the adjoint equations is also
an issue and thus the technical difficulties we encounter are related to the discussion
of [21], where the uniqueness of solutions to adjoint equations with mixed bound-
ary conditions is discussed. Our approach also allows us to derive at least first order
topological derivatives.

Structure of the Paper
Our paper is structured as follows:

1. InSect. 1.2 we gather all the basic notions and definitions of generalised topological
derivatives and the topological state derivative.

2. Sect. 1.3 contains a discussion of one of our main points, that is, the link between
control derivatives, topological derivatives and the asymptotic analysis of PDEs.
All the rigorous computations in this section are carried out for linear operators,
and serve to illustrate our idea.

3. Sect.2 contains our rigorous results for the analysis of semilinear elliptic equa-
tions, when perturbing lower-order terms. In Subsect. 4, we study several concrete
examples using adjoint states.

4. Sect.3 is devoted to the study of point perturbations of the operator. The analysis
is distinctly different from the semilinear case discussed in Sect. 2, both from the
point of view of the notion of (very) weak solutions, and from that of first order
asymptotics.

5. The rest of the paper contains the proofs of our results.
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1.2 Generalised Topological Derivatives and the Topological State Derivative

Generalised Topological Derivatives

Throughout the paper, we let D € R¢ be a design region that is, a smooth, open,
bounded domain. Henceforth we denote by A(D) the set of admissible designs; in
other words,

A(D) = {Q measurable, Q C D}.

A function J : A(D) — R is called a shape functional.

Definition 1.1 Let 2 € A(D). Consider a compact set E C D such that QN E = J
and denote by E; := {x € R? : dp(x) < €} the tubular neighborhood of E of width
¢ > 0. We define the perturbed set Q2(E;) C D by

QUE, EcD\Q,

Q\E. EcCQ. )

Q(E,) := {

The topological derivative of the functional J at E is defined by the following limit,

provided it exists:
DJ(Q)(E) := lim J(S2(Ee)) = T () 2)
e\ |Eg|

Remark 1.2 Here, we note that our definition of topological derivative already assumes
that the first order term in the asymptotic expansion of J is of order | E, |, the Lebesgue
measure of E. This obviously depends on the shape functional under consideration.
In several cases, for instance when considering a PDE dependent shape functional, and
when enforcing Dirichlet boundary conditions on the boundary of E,, terms of lower
order appear [8]. However, as will be clear throughout, in all cases under consideration
here, the leading order in the topological expansion is | E|.

Working with tubular neighborhoods allows for a great variety of perturbations; let
us list a few examples corresponding to particular choices of E.

Examples 1.3 Assume again that D ¢ R? and Q c D.

e E = {xo},x0 € D. Then E, = B, (xo) and |E;| = £?|B1(0)|, where B, (x) denotes
the open ball of radius r > 0 located at x in R,

e Let E =T C D be asmooth closed orientable hypersurface with normal v : I' —
R?, |v| = 1 onT. Then, for ¢ > 0 small enough, 'y = {x +rv(x): xeTl: re
[0, &)} and |T'¢| = ePer(I") + 0. 0(¢), where Per(I") the perimeter of I', which in
view of the smoothness of I is equal to the (d — 1)-dimensional Lebesgue measure
of I.

The Topological State Derivative as Derivative of the Shape-to-State Operator

Throughout this paper, we only consider PDE-dependent shape functionals. Let X (D)
be a space of functions defined on D with values in R. We consider an equation of the
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type: find uq € X (D), such that
(EQ(uq), ¢)xoy,xm =0 forallp € X(D), (3)

where Eq : X(D) — X (D)’ is a potentially nonlinear operator. Typically, X (D)
is a Sobolev space (X(D) = wLlP (D)), and (3) merely corresponds to the weak
formulation of an elliptic equation of the type

Lou= fg inD,
u satisfies boundary conditions on 9D,

“

where the expression “weak formulation” needs to be specified. The operator Lg
depends on 2. In this paper, several dependences on 2 are considered: Lg can take
the form — div((e + Bxq)V), or —A — xq, and can be nonlinear in u. Similarly, the
function fgq is a priori assumed to depend on the set 2.

Definition 1.4 We define the shape-to-state operator S : A(D) — X (D) by S(RQ) :=
ugq, where ug solves (3) for the set Q € A(D).

Of course, under proper assumptions on the nonlinear operator Eq, S is a uniquely
defined operator so that Definition 1.4 makes sense.

In the following definition, we introduce the shape-to-state operator and its deriva-
tive, which we refer to as the topological state derivative. In contrast to the usual
asymptotic expansion [6, Chapter 5] of the state, our definition does not involve a
rescaling and is simply the usual differential quotient of the state; in this regard, it is
akin to an optimal control approach.

Definition 1.5 (Topological state derivative: derivative of the shape-to-state operator)
LetQ € A(D) and consider acompactset E C D\Qor E C Q.Fore > 0we introduce

UQ(E,) — UQ

Ue :=Uqk,) = , (5)
TR |Eel
and define the ropological state derivative of S at Q2 in direction E by
S'(Q(E) := Uy := Ug g := lim Uq, 6)
e\0

where the limit has to be understood in an appropriate function space specified later
on.

In the following sections we will examine three different PDE constraints and study

the differentiability of the corresponding shape-to-state operator. This will form the
groundwork for the optimisation of several PDE constrained functionals.
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1.3 Control Derivatives, Topological Derivatives and Asymptotic Analysis

From Control Derivatives to Topological Derivatives

When using the wording “control derivative”, what we mean is that the shape Q2 €
A(D) is identified with its characteristic function xg, and that we actually consider
variations of €2 as variations of xgq. To give this concept a more precise meaning, let
us take a basic example: for every Q € A, let ug € H' (D) be the unique solution of

—Aug = xq inD,
: @)

ug =0 on aD.

Let E C D be either a point or a smooth oriented hypersurface, and assume for the
sake of simplicity that E C D\. Then, for ¢ > 0 small enough, we have, with
Qe :=Q(E;) = QU E,,

XQ. = XQ + XE.»

— XEe

so that, setting 11, = {5, the function U, := U9 U2 oolves

[E¢|

®)

—AU, = ug inD,
U,=0 onaD.

For each ¢ > 0 the function u, is a probability measure on D.

In the case where E = {x¢}, itis clear that us— 8y, as ¢ \ 0 weakly in the sense of
measures and it is then expected that {U, }.~o converges in some sense to the solution
U{x),0 € X (D) of the elliptic equation (with measure datum)

©)

—AU{x),0 =08y, inD,
Uirgr0 =0 on dD.

To make the function space X (D) precise, we will require some background infor-
mation on the weak formulation of (9), but what matters is that the topological state
derivative appears, in this case, as the Green kernel of —A. This simple remark allows
to go back from topological derivatives to control derivatives.

Expressing Control Derivatives Via the Topological State Derivative

Indeed, assume we wish to compute the control derivative of (8); this means that we
see xq as a function in L%(D) and that we consider the control derivative of the state,
defined, for a given perturbation 4, as

. . Uth —uUQ
uy = lim ————
N0 t
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where v;; € L*(D) satisfies (8) with xq replaced with xq + th. Then it is clear, by
linearity of the equation, that i, satisfies
—Aup =h inD,
. (10)
up =0 onaD.

As we already explained briefly that the topological state derivative coincides with
the Green kernel of the operator —A, it is reasonable to expect, for instance if 4 is
supported in D\ €2, that it;, writes as

i (x) = f 1) Uy).000dy.
D\

Consequently, we see on this simple example that the knowledge of the topological
derivative implies that we are able to compute any control-type derivative. One of our
objectives in this paper is to prove the validity of this intuitive paradigm in several
cases.

Of course, several points need to be underlined here. First and foremost, as should
be clear, we need to work with elliptic equations with measure data in order to obtain
optimal estimates. Most of this will be done using and adapting the techniques of
[22], which itself relies on the seminal [23]. Second, a lot of care needs to be taken
when differentiating nonlinear problems, and giving proper regularity estimates on the
fundamental solutions of the linearised operator; here, we rely on the aforementioned
[23]. Finally, as we shall see, the weak formulation of the equation on Ujy),0 will be
strongly dependent on the type of perturbation we consider. While, for perturbation
of lower-order terms, the setting correspond to the standard one, we need to introduce
a notion of very weak solution when considering transmission-type problems.

Asymptotics of the Shape-to-State Operator of Point Perturbations
Our goal is now to link the control derivatives and the usual asymptotic analysis of
the shape-to-state operator.

“Singular” perturbations (i.e. removing a ball in the domain) and the asymptotics
of PDEs where the singular perturbation appears are usually treated by introducing
so-called “boundary layer correctors”. This approach typically involves working in
unbounded domains. Although working with an optimal control approach allows to
only work in bounded domains, this limit layer approach is of great importance in
topology optimisation and we thus present it in this paragraph. We refer to [24, 25] for
the asymptotic analysis of such singular perturbations and to [5, 6] for computations
of topological derivatives of shape functionals. In contrast to these more classical
approaches, we recall in this section the point of view of [9, 11, 26], which, while
also using boundary-layer correctors, rescales the domain to keep a fixed size of the
inclusion. As shown in [9, 10], this approach can be advantageous when dealing with
semilinear and quasilinear PDEs. For this reason we give the following definition:

Definition 1.6 (Derivative of shape-to-state operator, the rescaled domain approach)
Let xo € D. Define E := {x(} and consider a connected and bounded domain w C R¢
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with 0 € w. For any ¢ > 0, we define the diffeomorphism 7, : D 5 x + xo + ex and
the rescaled domain

D, :=T.” (D).
Introduce w, (xg) := xg + ew and define

QU wg(xg) forxge D\ﬁ,

= (11)
Q\ we(xp) forxg e Q.

Qe (xp, w) = :

Note that according to Definition 1.1, we have Q(xg, w) = Q(ws(x9)). However,
we introduce the notation 2. (xp, ) to emphasise the dependence on both xo and w.
Furthermore, we set iy 1= ugQ, (xy,w), %0 := ug and finally define

- T,
ngzw’ e >0.
&

The derivative of the shape-to-state operator is

K := lim K, (12)
e\0

where the limit has to be understood in an appropriate setting. We note that the limit
K typically depends on xg, @ and as well as 2. As the domain of definition D, of K,
varies with g, (12) needs to be understood as || Ky — K || x(p,) — O for the norm of a
suitable function space X (D;).

The function K typically satisfies an equation in an unbounded domain. We refer
to the later sections for examples and also to [9, 11, 26, 27] for concrete topological
derivative examples using the rescaling approach outlined above.

Remark 1.7 Let us underline that this definition covers the case of ball perturbations
which corresponds to @ = Bj(0) in the previous definition, and is more general
in the sense that shapes other than a ball are allowed. However, it does not include
lower-dimensional objects. This is in contrast with Definition 1.5.

Connection Between Asymptotics of State and Topological State Derivative
We consider again the problem of the previous section, namely,

—Aug = in D,
i wo=xa i ")

ug =0 on aD.

We now sketch the connection between the asymptotic expansion of uq, (x,,») for
xo € D\ and the topological state derivative. So we restrict ourselves to point
perturbations and note that 2, (xg, @) = QU{xp+ecw}. We only discuss the case d = 3
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and provide the results for d = 2 in later sections. In the fixed three dimensional domain
D, with fi =1, f> =0, we have [26] the following expansion of ugq, (xy,w) =: Us:

ug(x) = ug(x) + ez(l((Tg_1 (x)) + ev(x)) 4+ higher order terms, for a.e. x € D,
(14)
where up := ugq and v is a regular boundary corrector function defined on the fixed
domain D. Then in fact we will show that almost everywhere one can indeed recover
the topological state derivative via the limit

Ug — Up
e |

— lim — e2(K(T7'(x) +ev(x)), xeD.  (15)
eNO0 ||

Up(x) = lim

e\0

The function K admits the asymptotic behaviour K (x) = R(x) + O(|x|~2) with
R(x) := |w|E(x) and E(-) being the fundamental solution of —A on R>:

1

where here and henceforth we denote by |x| the Euclidean norm of a vector x € RY.
From the first asymptotic term of K, which is R, we can also determine the corrector
v € HY(D) as the solution of

7)

—Av=0 inD,
v(x) = —R(x —xg) onaD.

Therefore, one can compute the first limit on the right hand side of (15) explicitly
using R(Ts_l(x)) =¢eR(x — x9¢):

1 1
lim e2(K(T! = lim 2R(T!
81\0 o (K(T; " (x)) 81\0 |w€|8 (T, (x))
1 1
= |0l 'R(x —x0) =
47 |x — X9

We note that x — R(x — xo) € W"4(D) for ¢ € [I, ddTl) =[1, %). Summarising,
we derived the following form of Uj:

Up(x) = |o| " (R(x — x0) + v(x)) forae.x €D, (18)
and thus conclude that Uy is indeed a solution of

—AUy =6y, inD,

(19)
Uyp=0 on dD.

The solution |w|~! (R(x — x0) + v(x)) is a well-known splitting for (19) and is often
used in numerical analysis [28, 29]. The function |w| ™! R(x — xo) solves the Poisson
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equation in R3 with Dirac measure at xg as a right hand side, and lw|~ v (x) corrects the
boundary error introduced by |w| ™' R(x — x0), so that Uy has homogeneous Dirichlet
boundary conditions on aD.

In conclusion, the topological state derivative can be obtained from the asymptotic
analysis of the state equation. If the asymptotic analysis of the state equation is per-
formed using compound asymptotics [6, 24, 25], then one naturally obtains a splitting
for the limit solution into a regular part, which comes from the corrector v and an
irregular part, which originates from the corrector K. We will see later that the topo-
logical expansion can be effectively used to compute the topological state derivative
and even establish strong convergence in suitable function spaces.

2 Main Results for General Topological Perturbations of Semilinear
Equations

We first give some basic results about the convergence in measure of the functions
XE, (see Definition 1.1 for the definition of E;). In the following sections, we proceed
with steps of increasing complexity, first considering topological state derivatives for
lower order terms, then considering transmission problems.

2.1 Convergence in Measure of yr, and Notation

Our goal is to make sense of topological derivatives for any type of d-dimensional
inclusions as proposed in [2]. For this reason, we need to specify the behaviour of xg, ,
as ¢ — 0. This is the object of the following proposition; it is stated without a proof
as it is fairly standard.

Proposition 2.1 For every nonempty compact E C D and for every e > 0 we let E; be
its tubular neighborhood (see Definition 1.1) and we consider the probability measure
onD
i
E, ‘= T
|Ee]
1. Assume E = {x¢}, so that E; = B:(xo). Then, for the weak convergence of
measures,

= EX
H“Eég\OME X0

2. Assume E = T is a (d — 1)-dimensional Lipschitz hypersurface with finite
perimeter Per(I"). Then, in the sense of measures,

1 d—1
— = r,
R, T PE Per(D) (HE L)

where He VT stands for the restriction of the (d — 1)-dimensional Hausdorff
measure to I
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3. Assume that E = M isal < k < d — 1 dimensional compact and smooth
submanifold (without boundary). Then, in the sense of measures:

1 k
— UWE = H M
MESS\ E }'l("r)( L )9

We refer to [1, Theorem 2.15] for a proof.

Remark2.2 e For E = {x¢} and Ee = B:(x0) ¢ > 0 the weak convergence of
measures (a) means for all ¢ € CcY(D):

1
/ KE @ dXx = ———— @ dx — @(xo) ase (0. (20)
D | Be (x0)| J B, (x0)

e For E =T isa (d — 1)-dimensional Lipschitz hypersurface with finite perimeter
Per(I"), the weak convergence of measures (b) means for all ¢ € C%(D):

1 1
WE, @ dx = ¢ dx — / @ dHY™Y ase N\, 0. 2D
/D ' |Eel JE, Per(T') Jr

Remark 2.3 When E is a hypersurface, we can actually prove that the convergence
holds for the duality on W1.P(D). This means that (21) holds for every function ¢ €
WP (D), for p € [1, 00), when we replace the last integral with fr Trr (@) dH4T,
where Trr is the trace operator on I'.

Throughout the paper, we retain the notation pg for the limit measures given in
Proposition 2.1.

Remark 2.4 (Lower dimensional inclusion) Of course, what we considered here was
the removal of a d-dimensional object: E. has nonempty interior. It is natural to
wonder what might happen if we were to remove lower dimensional objects, for
instance removing a centered disk in a three-dimensional object. We believe that our
analysis would still be valid but, for the sake of readability, we stick with the removal
of tubular neighborhoods.

Notation

In Definition 1.1 we have considered two types of perturbations, one consisting in
adding some material outside of €2, the other in removing some material from €.
Naturally, this means that, depending on the case considered, either wg, or —pg, is
involved in the linearised system. In order to alleviate notations and to not carry out
moot distinctions, for every compact subset E such that E C Q or E C D\Q we
define

+1 if EcCD\Q,

walB =0 e cg 22
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2.2 Topology Optimisation Problems for Semilinear Equations with Monotone
Semilinearity

Analytic Setting
The first problem we tackle is that of a semilinear elliptic equation, where Q2 € A(D)
appears in the nonlinearity.

To be precise, we consider two coefficients f; € R (i = 1, 2), as well as two
nonlinearities g; = g; (1) (i = 1, 2) that satisfy

giisC ! increasing in u, and is globally bounded in Ry (i =1, 2). (23)
We then define, for every Q € A(D), a nonlinearity po = pq(x, u) as

pa(x,u) = xo(x)g1(u) + xp\e(x)g2(u).

From [19, Theorem 4.4], if (23) is satisfied, then, for every Q € A(D), the equation

—Aug + palx,ug) = fixa+ faxpg inD, 24)
ug = 0 on 3D,

has a unique solution ug € HO1 (£2). By standard elliptic regularity, for every p €
[1,00), ug € W2P(D) so that ug € CI(B). We now study the topological state
derivative of Q — ugq. To give meaning to our afferent results, we need to lay down
some basic definitions on the linearised system.

Basic Computations

Our subsequent analysis strongly hinges on the property of the linearised operator

associated with (24). To justify the use of this linearisation, we simply observe that

U. = ") —He
e = E

|E:|

equation in D:

satisfies U, = 0 on 0D and in a weak Wol’q (D)-sense, the following

(g1(ue) — g1(uo) — g2(ue) + g2(mo))  g2(ue) — g2(uo)
? |E| Ee|
= sgng (E) [(g2(ue) — g1(ue)) + (f1 — f2)l 1E,,

—AU; + x

where we used the simplified notation u, := uqg,) and up := ug, and we should
thus obtain, as ¢ N\ 0, the following limit equation:

)
— AU + %(x, 1) = sgng(E) [(g2(u0) — g1(u0)) + (fi — f2)] g inD,

Uy=0 on oD,
(25)
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which has to be understood in a weak W4 (D) sense for g > d and will be explained in
the next paragraph. In the following paragraph we give some background information
about the linear operator used to define the linear equation on Uj.

Notion of Weak Solution for the Linearised System
The linearised operator associated with (24) is defined as

a
Lo:ur —Au+ %(x, uQ)u. (26)
u

As we explained in Sect. 1.2, topological state derivatives “should”, in a sense made
precise below, solve an equation of the form —Lqu = pu for some probability measure
W, with homogeneous Dirichlet boundary conditions. Even in the case of the Laplacian
there are natural Sobolev bounds on the regularity to be expected from solutions of
such equations. This motivates the following definition.

Definition 2.5 Let M (D) be the set of Borel measures in D with finite total variation.
Let u € M(D).Foreveryq € [1, ddTl)’ we say that a function u € Wol’q (D) is a weak

W(} "4 _solution of

Lou = in D,
Q n @7
u=0 onaD,
if, for every function ¢ € WO1 ’q/(D) with qi + % = 1, there holds
9pe
Vu-Vo dx + —(x,uQ)up dx = (@, ), (28)
Q Q 81/[

where the last duality bracket is to be understood in the sense of the duality between
continuous functions and measures.

It should be noted that since 1 < g < %, the conjugate Lebesgue exponent ¢’

of g, 37 + % = 1, satisfies ¢’ > d. From Sobolev embeddings this implies that the

duality bracket (¢, 1) in (28) is well-defined. Definition 2.5 is a standard notion of
weak solution for elliptic equations with measure data [22, 30].
As a first consequence of (23) we prove that (27) is well-posed.

Proposition 2.6 If g1, g2 satisfy (23) then, for every finite Borel measure  in D, the
equation (27) is well-posed: for every q € [1, ddTl) there exists a unique solution

ue WO1 (D) of (27). Furthermore, there exists a constant Cy independent of ju such
that

lullwiapy < Cqlltll mD)-
It is obvious by the inclusion of the Lebesgue spaces L? that u does not depend

on the exponent g and we abbreviate the first point of this proposition as “there exists
a unique weak solution u to (27) that further satisfies that for every g € [1, ddTl),
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u € Wol’q (D).” Finally, observe that the Sobolev space in which (27) is well-posed
depends on the space g is in the dual of; in the case where E = {x¢}, g is only in
the dual space of W!4(D), ¢ > d.Inthe case E = I', i is in the dual of all Sobolev
spaces by the theory of Sobolev traces

Expression of the Topological State Derivative
Our main result here is the following theorem (recall that g is defined in Proposition
2.1)

Theorem 2.7 Let E C Q or E C D\ be either a point, d — 1-dimensional Lipschitz
surface or 1 < k < d — 1 dimensional compact and smooth submanifold (without

boundary). For every ¢ > 0 we define U, := % Then, forevery q € [1, %),

. lg
U, Uy st l W, (D),
ggio o strongly in W;,™" (D)

where Uy is the unique solution to

=AUy + Oy pa(x, u)Up = sgng (E) {(g2(ue) — g1(ue)) + (fi — f2)me inD,
Up=0 on dD.
(29)

Observe that, since ug € C 1(5) and since g1, g are continuous, the product
appearing on the right-hand side of (29) is indeed a Borel measure. In addition, Uy
depends on 2 and E

Expression of Control Derivatives Using the Topological State Derivative

We mentioned in the introduction of this paper that a control point of view allows to
obtain the topological state derivative. Conversely, in low dimensions, the knowledge
of the topological state derivatives enables the recovery of control derivatives. In
this context, and to make our statement more precise, let us recall that, seeing xq
as a function in L*(D), we may extend the definition of ug by defining, for every
f e L*D), u r as the unique solution of (24) with yq replaced with f, and X\
replaced with (1 — f). The L2-differentiability of the map f +— u 7 1s standard. For
every h € L?(D), let

. .. u th — U
liyg.n = lim Zxatth — *xa
N0 t

be the directional derivative of f > u s at xq in direction k. Recalling that Lg was
defined in (26), it 4 5 solves (in the weak HO1 (D) sense):

Loty n = h{(g2@ue) — g1(ug)) + (fi — f2)} inD,

. 30)
Uyg,h =0 on 0D.

Our second theorem is the following:
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Theorem 2.8 Assume d € {2,3}). Then, for every h € L*(D), Uyq.n admits the
following representation: for a.e. x € D,

i () = /D s (U0 (A (3)dy. 31)

where Uyyy o is the solution of (27) with 1 = §y.

Theorem 2.8 justifies the analogy between the topological state derivative and the
Green kernel of the linearised operator. Of course, there is an interplay between the
dimension assumption d € {2, 3} and the integrability of the perturbation 4. We also
note here that we stated the theorem in the L? setting, as it is the most currently used
for control derivatives.

2.3 Asymptotic Expansion of ug and Relation to the Topological State Derivative

Asymptotic Analysis in the Linear Case
In this section, we consider the model (24) with g; = g» = 0 for point perturbations.
To be precise we consider u, € HO1 (D), such that

/ Vu, - Vo dx = /(fl)(szs + faxe)p dx forallg € Hol (D). (32)
D D

where

QUaws(xg) forxoeD\S,

o (33)
Q\ we(xg) forxge Q,

Qg 1= Qo (xp, w) := {

and w; (xo) 1= xo + e with @ C R? being a simply connected domain with 0 € w.
Furthermore, we define u, 1= ugq, (x,w) for e > 0 and ugp := uq.

The full asymptotic expansion for this equation including full topological expan-
sions of several cost functionals has been studied in [26]. Recall the notation T (x) =
xo + ex for xg € D\d2. We now present a relation between the limit

. Ug —UQ
Up := lim £
eNO0 gl

(34)

and the asymptotic expansion derived in [26] for u, namely,
ue(x) = ug(x) + e2(K (T, (x)) + v(x) + In(e)b) + o(e?) ford =2, (35)
with b := —sgng ({xo}) (27) "' (fi — f2) and
ue(x) = ug(x) + &> (K (T, ' (x)) + e/ ?v(x)) + o(e?)  ford > 3. (36)
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Here K is a corrector function defined in R?, while v is a boundary layer corrector
defined in the bounded domain D. To be precise, K is given, in term of the fundamental
solution E(-) of the Laplace operator —A in R?, as

K () = seng(so(fi = £2) [ =) dy, G37)
w
with the fundamental solution being given by

crIn(x|) ford =2,

38
Cdljcl% ford > 3, ( )

E(x) = [

with ¢; 1= —% and, if d > 3, ¢g := ((d(d — 2)a(d))™", a(d) denoting the volume
of the unit ball in R¢. Thus, the function K satisfies

—AK = sgng({xo)(fi — f)xw inR%

and admits the following asymptotic expansion for d > 2:

e In(jx]) + O(lx|™H ford = 2,

39
calx|7¥97? + 0(|x|=9=D)  ford > 3, 59

K(x) = sgno({xo}) (f1 — f2) {

so that when we denote by R the first term of the asymptotics of K, that is, K (x) =
R(x) + O(]x|¢™1), we obtain

¢ In(|x]) ford =2,
R(x) = sgn - 40
(X) g Q({XO})(fl f2) {Cd|x|_(d_2) for d > 3. ( )
The corrector function v € H'(D) satisfies
—Av=0 in D,
(41)
v(x) = —R(x — x9) onaD.

To state the main result, let us briefly recall the setting of [26]. Since the result in
[26] was provided only for d € {2, 3}, we give a short proof in the appendix.

Lemma 2.9 Introduce the function

(g —up) o T

K, = . e>0. (42)

g2

Set D, := T;] (D) for € > 0. Then there is a constant C = Cp 4 > 0, which depends
on p and d, such that for d = 2:

||8(K8 —K—vo TS — ln(g)b)”LQ(Dg) + ||V(Kg —K—vo TS — 1n(8)b)||Lz(D£)d < CS,
(43)
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with b := —sgng({xo}) 2 (f1 — f2) and for d > 3:

d
le(Ke — K — e 200 T) | 20,y + IV(Ke =K — 97200 Tl 12(p, 0 < Ce?. (44)

Relation Between Asymptotic Expansion and Topological State Derivative To draw
a connection to the topological state derivative, let us note that we can write the
expansions (43) and (44) pointwise as (35) and (36). Our main result is that the
estimate (44) in fact implies the following estimate:

Theorem 2.10 For xo € D\ 8Q2 and w C R? be a simply connected and bounded
domain with 0 € w we use the definition of Q¢ (xg, ) of (11) and set u, =

UQ, (xo,w) U0 = Ug and
Uy =250 o 2o, (45)
|we |
Let K and v be defined by (37) and (41), respectively. Then we have the following
results.
(i) From the asymptotic expansion (43) and (44) we conclude that the limit (34)
exists. In fact we have

Uo(x) = sgng({xo})(f1 — D) E(x —x0) +v(x), forae xeD,  (46)

and for a.e. x € D, we have with b := —sgnQ({xo})(Zn)_l(ﬁ — )

e2(K(T, ' (x)) + v(x) +In(e)b) ford =2,  (47)

o1
Up(x) = ;{% o]
and

! 2(K(T7'(x) + e 2v(x)) ford > 3. (48)

e

Uo(x) = gI{r(l) |

(ii) Let the space dimension be d = 2. Then there exist constant C = Cp 4 > 0,
which depends on p and d, such that

o We have for all p € (2, 00):
2
IUs — UollLrpy < Cer. (49)

o We have for all p € (1, 2):

2_
1Ue = Uollwiry < Ce? ™" (50)

(iii) Let the space dimension be d > 3. Then there exists C = C, 4 > 0, which
also depends on p and d, such that:

o We have for all p € (%, fj)-’

d—pd-2)

U — UollLrpy < Ce 7 . (51)
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o We have for all p € (1, 747),

d—p(d-1)

IUe = Uollwropy < Ce 7. (52)

Notice that p~'(d — p(d — 1)) € (0, 1).

The following corollary shows that, if @ = Bj(0) is the unit ball centered at the
origin, then the convergence rate of U, to Uy in the L”(D) norm can be improved to
an order between (1, 2).

Corollary 2.1 Assume that = B1(0) is the unit ball in R¢ centered at the origin.
Then we have for all p € (1, ﬁ)ford >3o0rpe(l,o00)ford =2,

d—p(d=2)

IUe — UpllLrpy < Ce 7 . (53)

That means the convergence rates (50) for d = 2 and (52) for d > 3 are improved for
all p € (1, 745).

Let us finish this section with two remarks.

Remark 2.12 The function Up(x) := |w|~'(R(x — x0) + v(x)) € W, (D) with
pell, ddTl) solves in a weak sense:

—AUy = sgng({xo)) (f1 — f2)8x, inD,

(54)
Up=0 on dD.

The decomposition of the solution Ug of (54) in a regular part |w|~'v and a singular
part |w|"'R(x — xg) = sgng({xo)(f1 — f2)|w|E(x — xp) is well-known and often
used in the numerical investigation of this type of equation [28, 29].

Remark 2.13 The improved L? (D) convergence rate of Corollary 2.11 is a result of
the symmetry of the inclusion @ = Bj(0). We note that (53) implies for p > 1 close
to one that

(Ue — Uo)/ellLry = o(1) (55)

and thus US2 = (Us — Up)/e — 0 strongly in L? (D) for p close to one. This is
actually consistent with the limit equation of U 82 To see this we recall that

Us — U U, — Uy
U, = £ , Uf::s—, e > 0.
| | &

It is readily checked that U? satisfies for all ¢ € H} (D):

1

e | e

/DVUf Vo dx = sgng({xo}) (f1 — f2) e (@ —p(x0)) dx.  (56)
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Now changing variables on the right hand side and integrating by parts on the left hand
side, we obtain for ¢ € Cf,(D):

- / UZAg dx = sgng({xo}) (f1 — fz)/ e (g(xo + ex) — p(x0)) dx.  (57)
D w
Hence, if ng — UO2 in L ,(D), then passing to the limit yields for ¢ € CCZ(D):

- fD Ug Ag dx = sgng({xoD) (fi — fz)/ Vo(xo) - x dx. (58)

So we observe that for o = Bj(0) the integral on the right hand side vanishes due to
the symmetry of Bj(0). This is consistent with Ug = 0 so that also the left hand side
is zero.

Topological State Derivative Via the Formal Asymptotic Expansion of the Semilinear

Equation
We consider the semilinear equation (24) with right hand side f € L?*(D):

—Aug + po(x,ug) = f inD,

59
ug =0 onaD. (59)
From Theorem 2.7 we have that the limit
Uy := lim te 7 Mo, (60)
N0 ]
satisfies
=AUy + 3y pa(x, ug)Up = sgng ({x0})dx, {(g2(ue) — g1(ue))}  inD,
(61)
Up=0 on dD.

We now want to show that this limit can also be obtained using an asymptotic analysis
of ug. For this purpose, we can split the solution Uy into an irregular part ||~ R and
regular part |w|~!'v as follows (the factor |w|~! is chosen to make the link between
the asymptotic expansion and will become clear shortly). Set gy, := g2(uq(x0)) —
g1(uq(xp)) and let R be defined by

cyIn(jx|) ford =2,
R(x) = sgng((xoDgxolol 1 7, (62)
c3lx| ford = 3.

Then we have in a distributional sense:
— A(R(x — x0)) = |w|sgng({x0})gxedx, inR7. (63)
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Now we define v € H!(D) as follows

—Av + dypa(x, ug)v = —sgng({xo) R(x — x0)dupa(x, ug) inD, 64)

v=—R(x — x0) on dD.
Notice that in comparison to the linear setting studied in the previous section we now
have an additional term on the right hand side, namely, R(x — x¢)9, po(x, ug), which
accounts for the fact that the equation (63) does not have a lower order term. Then it
is readily checked that

Uop(x) := || " (R(x — x¢) + v(x)), ae.x €D, (65)

solves the equation (61).

We now show that Uy can be obtained from the asymptotics of ug. We let w, xg
and Q. = Q. (xg, w) be as in the previous section. Denote again the solution of (59)
ug, by us and ug := ug. Following the formal asymptotic expansion of [31] we have
the following expansion of ug, :

e (x) = ug(x) + e2(K (T, ' (x)) + v(x) + In(e)b) + o(e?) ford =2,  (66)

with b := —sgng ({x0})&x, lw|(27) ™! and for d = 3

ue(x) = up(x) + e2(K (T, (x)) + ev(x)) + o(e®) ford = 3. (67)
Here K, given by
K () = seng(rodgs [ 6= dy, (68)

solves for d € {2, 3} the equation
— AK = sgng({xoDgwxe inRY. (69)

Theorem 2.14 For xg € D\ Q and @ C R? with 0 € w we use the definition of
Q¢ (xo, w) of (11) and set ug 1= ugq, (xy,w) and uy := ug and

U= 27" 2o, (70)

|we |

Let K and v be defined by (68) and (64), respectively. Then we have the following
results. From the asymptotic expansion (66) and (67), we conclude that the limit (60)
exists. In fact we have

Up(x) = |a)|71(R(x —x0) + v(x)), forae x €D, 71)

and for a.e. x € D, we have with b := —sgnQ({xo})|a)|ng(2n)_1:

Up(x) = lim ! 82(K(Ts_l(x)) + v(x) +1In(e)b) ford =2, (72)
e\O |w

el
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and

Uo(x):li\r‘n 182(1((T;1(x))+gu(x)) ford = 3. (73)

0 |we|

The proof of this theorem follows the lines of the proof of item (i) of Theorem 2.10.

3 Main Results for Operator Point Perturbation in Linear
Transmission Problems

In this section we show how our type of analysis carries on to transmission problems,
which is also referred to as “perturbation of the operator”. The analysis of this type
of perturbation is more difficult than perturbations of lower order terms and typically
involves so-called “polarisation matrices”; [6, 12, 32]. We will see that the topological
state derivative for point perturbations of the operator exists, but exhibits a very low
regularity.

3.1 Topological State Derivative for the Transmission Problem

Analytic Set-Up
Throughout this section we fix a set 2 € A(D) and assume Q € D is smooth. For two
fixed parameters 81, > > 0 and every Q2 € A(D), we define

Ba = Pixa + /32XD\§~

Now for f € L?(D) with p > d, let ug be the unique weak solution in W7 (D) of
the equation
—div(BqVug) = f inD,

ug =0 onaD. 7
We note that the strong form of this equation reads: denoting by u™ := u|q and
U = Up\g» We have
—BiAut = f in Q,
—BAu" = f inD\ Q,
Bro,ut = Brd,u” on 9L, (75)
ut =u~ on 9%,
u =0 on dD.

Topological Perturbation Under Consideration
In this section, we consider only point perturbations 2. (xg, @) at points xo € D\9Q2
of the set 2 defined by

QU w.(xg) forxge D\ﬁ,

Qe 1= Qe (x0, w) 1= -
e 1= S (x0, @) Q\ . (xg) forxg € Q,

(76)
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and w (x0) 1= x0 + ew wWith w C R? being a simply connected domain with 0 € w.
We note that the special case w = B1(0) would correspond to the dilatation Q2 (E;) for
E = {xp} considered in the previous sections. Following [9, 12] we decided to treat
more general perturbations.

As we will see, the right hand side of the limit equation Uy for the transmission
problem will involve the divergence of a measure. As this is the only part which can
not be covered by the techniques thus far used in studying semilinear models, we
devote a paragraph to some basic definitions.

Very Weak Solutions for Elliptic Equations with Divergence-of-Measure Right Hand
Side

We consider, fora given ¢ € R?, the Dirac measure y := {8y € M (D)4 concentrated
at xo € D\ 0€2, the equation

—div(BaVe,) =div(n) inD, a7
0 =0 on dD.
The weak formulation would read
/ BaVe, - Vodx = - Ve(xg) forallg e HOl (D), (78)
D

which is obviously not well-defined. At this point, let us observe that by interior
regularity Vug is continuous in a neighborhood of the perturbation point xg € D\9<2.
Furthermore, we also need to ensure that Vg is continuous as well. We thus resort to
a notion of weak solution reminiscent of the one introduced in [23]: for every p > d,
for v e LP(D), let , € W>P(Q U (D\)) N H{ (D) be the unique solution of

[ —div(BaVey) = v inD, 79

¢y =0 onaD.

The well-posedness of this equation follows from arguments similar to the ones used
in the proof of Proposition 5.1. By elliptic regularity, for every p > d, we have, for
two constants C,, C ;

levllcr@uvay = Cpllevliwr@uore)) = C;”U”LP(D) (80)
for all v € L? (D). Now choosing ¢, in (78) and integrating by parts we obtain

/Dugv dx = f[;,BQVuQ -V, dx = /D(Vug, Vou)diu = ¢ - Vo, (xo) (81)

for all v € L? (D). We note that the interface terms vanish in view of the choice of the
test function ¢, . This leads to the following definition:
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Definition 3.1 Let g € [1, [f%]) and ¢’ be its conjugate Lebesgue exponent. We say
that ¢, is a very weak WOl "4(D)-solution of (78) if

/ $v = Vou(xo) - ¢ forall v e L9 (D), (82)
D
where ¢, € Wol’q,(D) solves

(83)

—div(BeVe,) =v inD,
¢y =0 onaD.

It is important to note that the 2 dependence is now transferred to the definition of ¢,.
The main proposition is the following:

Proposition 3.2 Let xog € D\0Q. For ¢ € R? let ju := £ 8xy. The equation
—div(BoVe,) =div(n) inD, 84)
¢p=0 on dD,

has a unique very weak solution in the sense of Definition 3.1. Furthermore, for every
q € [1, ddTl)’ there exists a constant Cy4 > 0 such that

loullLa < Cyllll moy-

Expression of the Topological State Derivative
Our main theorem is the following:

Theorem 3.3 Ler Q € A(D) with Q € D. Let xo, w and Q. (xg, w) be as in (76) and

denote by uq the unique weak solution to (74). We have that U, = W is

bounded in L1(D) for q € [1, ddj) and we have for a constant C = C4 4 > 0,
depending on q and d:

d—q(d—1)

q
[Ue = UollLapy = C(e ¢ + 1K = KliL1(w) (85)

and thus in particular Ug — Uy strongly in LY (D) as & \( 0. The limit Uy solves:

1
/DUov dx = sgng({xo}) (B2 — B1) (m/ VK + Vup(xo) dx) -V (xp) (86)
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forallv e LY (D), where @y is the solution to (719). Here, K belongs to the Beppo-Levi
space BL(RY)" and is the unique solution to:

/Rd BoVK - Vo dx = sgng({xo}) (B2 — ,31)/ Vuo(xo) - Vo dx,  (87)

for all ¢ € BL(R?).

Remark 3.4 (Polarisation matrix) We note that K = K[Vug(xg)] actually depends
linearly on the vector Vug(xo) through the equation (87). Consequently, the map

1
Vuo(xo) — ﬁf VK dx : R? > R?, (88)
w w

is also linear and thus there is a so-called polarisation matrix A, € RY; see [12, 32],
which depends on 81, 8> and w, such that

1
AwVito(xo) = o / VK dx. (89)
w

It follows that the equation (86) is equivalent to

/ Uov dx = sgng({xo}) (B2 — B1)(Aw + 1a) Vuo(xo) - Ve (xo)  forallv € LP(D),
D

(90)
where I; € R4 denotes the identity matrix.
Considering the special case @ = B1(0), one readily checks that the solution K of
equation (87) is given by

CgVup(xg) - x, forx € w,
CpVuo(xo) - iz, forx € R\ w,

x|’

K(x) = 1)

where Cg := sgng({x0})(B2—B1) (B1— P2 — dB>)~!. Thus, for the unit ball inclusion,
the polarisation matrix is given by A, = Cgly.

3.2 Asymptotic Expansion of ug and the Relation to the Topological State
Derivative

We start this section by giving some results regarding the asymptotic expansion of
UQ, (xo,w)- Note that these are derived using compound asymptotics; see [6, 11, 24].

Asymptotic Analysis of uq

L (RY) Vg e L2RY)4}/R, where
/R means we quotient out constants. This space is equipped with the norm ”‘/’”B'L(Rd) = Vel 2 (Rd)d>
see [9, 33].

I The Beppo-Space BL(RY) is defined as the quotient space {¢ € H, !
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Let xo € D\0Q, @ C R? a simply connected and bounded domain with 0 € R? and
set Ug 1= UQ, (xo,w), Where Q(xo, w) is as defined in (11). For & > 0 we introduce

(ug —ug) o T

K. = (92)

&

It is a classical result that the limit of K is in fact the unique solution to: find K €
BL(R?) such that

/Rd BoVK - Vo dx = sgng({x0})(B2 — ,31)/ Vuo(xo) - Vo dx,  (93)

for all ¢ € BL(R?). The function K admits the asymptotics

K() = R(x) + O (L) . (94)

x4

To state the final asymptotic expansion we need to introduce the regular boundary
corrector v compensating the error introduced by K on aD.

The corrector v € H'(D) is defined as the unique solution to v(x) = —R(x — xq)
on 0D and

/I;ﬂssz Vo dx = sgng({xo}) (B2 — B1) ./asz I R(x — x0)p(x) dx 95)

forall g € Hj (D).

The following lemma states the main result regarding the first order asymptotic
expansion. We closely follow the arguments of [11, Theorem 3.15], but since we
require estimates in LY, we provide the main steps of the proof in the appendix.

Lemma3.5 Forgq € (1, ddTl) there is a constant C = Cy 4 > 0, which depends on q
and d, such that for all ¢ > 0 small:

le(Ke — K — e o T)llLap,) + IV(Ke = K — ¥ 0o To) |l g e < Ce. (96)

which, by considering the scaling of the norms and D, = T;l (D), is equivalent to

d
q.

IKeo T, — K o T, — e )iy o) < Ce (97)
Relation Between Asymptotic Expansion and Topological State Derivative
We now want to make the connection between the topological expansion and the
topological state derivative. For this we note that the estimate (96) reads on the fixed
domain D:

e (x) = uo(x) + eK (T, (x)) + ev(x) + 0(e?: x), (98)
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where o(¢4; x) denotes o(¢9) almost everywhere in D. To see the relation between the
topological state derivative Uy of Theorem 3.3 and the asymptotic expansion (Lemma
(3.5)), we first note that the equation (93) can be written as follows

fRd VK - Vo dx = sgnQ({xo})%([u Vuo(xo) - Vo dox

~I—/VK~Vgodx>,
w

where B(-) is a piecewise constant function defined by

99)

By forxpeD\Q,

plxo) = {,31 for xp € Q.

Therefore, with E(-) denoting the fundamental solution of —A on RY, it is a classical
result that K can be expressed as follows

B2 — B1
B(x0)

+/ VK(y) - VE(x — y) dy)

K(x) = sgng ((xo)) ( / Viuo(xo) - VE(x — y) dy

Therefore, performing a Taylor expansion, we see that the first asymptotic term of
K (x) as |x| — oo can be written as

B2 — Bi
B(xo)

R(x) = sgng({xo}) (/ Viuo(xo) dy+/ VK (y) dy) ‘VE(x), (100)

Exo

where &, is a vector depending on Vu(xp). Notice that &, can also be expressed
through the polarisation matrix A,, of Remark 3.4 as follows

B2 — B1
B(x0)

€xg = sgng({xo}) lw|(Aw + 1) Vuo(xo) - VE(x) (101)

making the dependence on xy more explicit. Now we note that the function Up(x) :=
|a)|_1(§xo -VE(x — x0) + v(x)) solves in a very weak sense:

B2 — Bi
3]

/D,BQVUO - Vo dx =sgng({xo}) /(VK + Vuo(xo)) - Vo(xo) dx,

(102)

for all p € CS,(D). In fact, &, - VE(x — x¢) € LY9(D) for g € [1, ddj) and thus one
readily verifies that Up(x) is indeed a very weak solution as defined in Definition 84.
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With this we can state our next main result linking the asymptotic expansion and
the topological state derivative:

Theorem 3.6 For xo € D\ 3Q and  C R? with 0 € w we use the definition of
Q¢ (xp, w) of (11) and set u; := ugq, (xy,w) and uy := ug and

U, =250 2o, (103)
|we |

Let K and v be defined by (93) and (95), respectively. Then we have the following
results.

(i) The asymptotic expansion (96) yields that there is a constant C = Cy4 4 > 0, which
depends on q and d, such that for all g € (1, ddTl)

d—q(d—1)
1Us — lo| ™ (R(x — x0) + v)l|La(p) < Ce K foralle > 0.  (104)

(ii) Fora.e. x € D:

Uo(x) = lim - 1 |(eK<T;1<x>> +e%v(x)), (105)
and thus in particular
Uo(x) = |~ (&, - VE(x — x0) + v(x)), (106)

with

Exp == SgnQ({XO})ﬂz —h </ Vuo(xo) dy +/ VK(y) dy) . (107)
B(x0) 15} ®

Note that for g € (1, 7%7), the exponent .d—q(qd—l)

is indeed positive.

Remark 3.7 In (i) we only claim the convergence rate d=g@=-1) forqg > 1whileg =1,
which would correspond to the convergence rate ¢, is excluded. Obviously we also
obtain strong convergence in L' via Holder’s inequality, but the estimate (104) only
holds for g € (1, 747).

4 Topological Derivatives of Shape Functions Via Topological State
Derivative

4.1 Topological Differentiability of Shape Functionals

Semilinear Problem

We denote by S(2) = ug the solution operator of the semilinear equation (24). We
now discuss the differentiability of Q +— J(2) = G(S(€2)) for a cost functional G :
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wla D) - R, q €1, ddT]). In fact, under sufficient differentiability assumptions
on J and if G'(ug) : Wl’q/(D) — R is well-defined, we can show that

G(uqk,)) — Gug)
|E¢]|

DJ(Q)(E) = ;1{% = G'(S()(S'(Q)(E)),

where E C Q2 or E C D\ is either a point, d — 1-dimensional Lipschitz surface or
1 < k < d — 1 dimensional compact and smooth submanifold and Q2 (E,) is defined
in (1.1). Our goal is now to compute the limit ¢ N\ 0 of

Ug — UQ

U, .=
: |Ee|

, €>0,

where uq is the solution to the semilinear problem (24). To simplify notation, we define
again for every & > 0 the functions u, := uq(g,), 4o := uq. Recall by Theorem 2.7,
U — Uy = S'(Q)(E) in LI(D), q € [1, 7-1)- Moreover we have according to
[9, Lemma 4.4] that u;, — ug = ug in H&(D) and thus via the Sobolev inequality
us — ugin LP(D) for1 < p < dszzford23andl <p<ooford =2.

Example 4.1 (L? tracking-type) A classical example of a cost functional G(-) is of
tracking-type, that is:

Gu) = /D ( — uref)* dx,  trer € L*(D). (108)
Consequently, the topological derivative of J(2) := G(ug) is given by
DJ(Q)(E) = ii\%/o Ue(ue+uo—2urr) dx = ZfDS/(Q)(E)(uQ—uref) dx, (109)
Example 4.2 (L" tracking) More generally we can differentiate for r > 2
G@) = /D(u — Uref)” dx, s € L*°(D)k. (110)
Let again J (R2) := G(ug). Then we have
DJ(Q)E)=r /D S'(Q)(E)(ug — urer)" " dx. (111)

Another classical example is the gradient tracking type cost functional.

Example 4.3 (L2 gradient tracking) For urs € Wl'ql(D), consider the gradient-
tracking functional

Gu) := f Vi — Vg dx. (112)
D
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A similar computation to the previous one shows
DJ(Q)(E) = 2/ V (S'(Q(E)) - V(ug — uref) dx. (113)
D

Transmission Problem
Note that due to the weaker convergence result for the transmission problem, the com-
putation of the topological derivative can be more involved for certain cost functionals.
We give the following examples.

Let Q € A(D). For xo € D\d%2 and a simply connected @ C R¢ with 0 € o we
use the definition of 2 (xp, w) given in (11). We denote by ug the solution to (74).
We set ug := uq, (xy,0) and ugp := ug and

[ N} (114)
||

Recall that according to Theorem 3.3 we have U, — Up as ¢ N\ 0 in L9(D) for
q € [1, ddj). We also have according to [9, Lemma 4.4] that u, — ug in H(} (D),
which implies by the Sobolev inequality u, — ug in L?(D) for 1 < p < % for
d>3and 1 < p < oo for p = 2. With the definition of 2. (xg, w) given in (76), we
define the topological derivative for xo € D\9€2:

D)o, ) = lim 20 @) = JE) (115)
eN\o0 ||

Notice that in case w = Bj(0) we have with E = {xg} that DJ(Q)(E) =
D J(2)(xo, w), so the previous definition of the topological derivative given in (2)
coincides with (115). In contrast to the semilinear problem the topological derivative
for the transmission problem actually depends on the shape w of the inclusion.

Example 4.4 (L, tracking-type) For ures € L4 (D) consider the tracking type cost
functional

J(ug) = /(MQ — Uref)? dx. (116)
D
The topological derivative is given by

DJ(Q2)(x0, w) = lim/ Ug(ug + ug — 2uref) dx = 2/ Uo(ug — urer) dx. (117)
eN\O0 Jp D

In view of the regularity of Uy and ugq, ur the last integral is indeed well-defined.

As a second example we consider the energy minimisation, where the topological
derivative cannot be directly computed via the topological state derivative.

Example 4.5 (L, gradient tracking) Let
J(ug) :=/Dﬁ9|wg|2 dx. (118)
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As before, we compute

1

e | e

(B — B2)|Vuel? dx.

(119)
Since the convergence VU, — VUj as ¢ N\ 0 does not hold in L?(D)4 for p =2,
we cannot pass to the limit. However, it can be shown using a Lagrangian framework
as in [9, 11] that, in fact, the first derivative (119) exists. Thus, this example shows
a clear limitation of the topological state derivative. Even though the limit in (119)
exists, this method, which relies on the chain rule, is not able to compute the first order
topological derivative.

DJ(2)(x0, w) = ii\l‘%/DﬁszVUs - (Vug + Vug) dx +

4.2 Expression of Topological Derivative of Functionals with Adjoint Equation

Semilinear Problem
We now express the derivative of J(Q) = G(ug), where G : W4 (D) — R, with
q' > d (or equivalently 1 < g < ddTl)’ is given, for the semilinear problem in terms

of the adjoint equation. We introduce the adjoint state pg € WO1 "1 (D), that is, the
unique solution of

(120)

—Apg + dupa(x, ug)pg = —G'(ug) inD,
po =0 on dD.

Theorem 4.6 Assume that G(-) is differentiable, such that with J(2) := G(ug) it
holds
DJ(Q)(E) = G (S(2)(S"(Q(E)). (121)

Then we have with Wq = {(g2(u@) — g1(u@)) + (fi — f2)} pa-
DJ(Q)(E) = —sgng(E)up(Wa). (122)

e For E = {xo} and xy € D\ 02 we have ug(Wgq) = Wgq(xo).
e For E=T forT" C D\ 8%, where T is a smooth hypersurface of R¢, we have

_ 1 d—1
hEWa) = s /F We dH, (123)

e fFor E = M for M C D\ 02, where M is a smooth k-submanifold, 1 <k <d —1
of R? without boundary, we have

1

wegWq) = HEQD

/ Wq dH*. (124)
M

Proof Recalling that by definition S(2) = ug, we have

DJ(Q)(E) = G'(S() (S (2(E))
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2 _ fD Vpa - VS ((E) + dupalx. ug) paS (Q(E) dx
D seng(E)ug(Wa).

This concludes the proof. O

Example 4.7 Consider J(2) = G(ug) and again the tracking-type cost functional of
Example 4.1, namely,

Gu) = f (1 — tiref)* dx.
D

The adjoint state is the (unique) solution pq € Wé ’q/(SZ), q €1, ddTl)’ of

—Apo + dupa(x, ug)po = —2(uq — uref) inD,
(125)
pa=0 on aD,
and thus the topological derivative of the shape functional reads:
DJ(Q)(E) = sgng(E)ue({(g2(ue) — g1(ue)) + (f1 — f2)} pa)- (126)

We finish with the gradient-tracking example.

Example 4.8 Consider J(2) = G(ug) with the gradient-tracking function G(-) of
Example 4.3:

Gu) = / |Vu — Viger|? dx. (127)
D

The adjoint state is the (unique) solution pq € W(;’q/(SZ), e[l, ﬁ), of

—Apq + dupa(x, ug)po = —2A(ug — urer) inD,
(128)
po = O on 3D,
and thus the derivative is again given by
DJ(Q)(E) = sgng(E)ue({(g2(ue) — g1(ue)) + (f1 — f2)} pa)- (129)

Transmission Problem
We consider the transmission problem and cost function J(2) = G(ugq) with G
defined in Example 4.4:

Glug) = fD gy — trer)? dx. (130)
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We derived the following form of the topological derivative for xp € D \ 9€2:

DJ(2)(xp, w) = 2/ Uo(ug — urer) dx. (131)
D

Now introduce the adjoint associated with the cost functional (130), namely, po €
Hé (D) that solves in a weak sense — div(BqV po) = —2(uq — urer) in D. By (86) we
know that Uy solves

1
/DUov dx = sgng({xo}) (B2 — B1) (m/ VK + Vug(xo) dx) -V (xo) (132)

forallv € LY (D), where g, is the solution to (79). By definition of ¢, we readily verify
that po = ¢, for v := —2(ug — urer). Therefore testing (132) with v = —2(ugq — Urer)
yields together with (131):

1

DJ(£2)(x0, w) = —sgng({x0})(B2 — B1) (|w|

/ VK + Vug(xp) dx) - Vpa(xo).

(133)
In case w = Bj(0), using Remark 3.4, we can express the topological derivative of J

by

DJ(€2)(x0, ) = —sgng({xo}) (B2 — B1)(Cp + )Vua(xo) - Vpalxo).  (134)

5 Proofs for Semilinear Problems
5.1 Preliminary Results on Bilinear Elliptic Equations with Measure Data

In this first section we give the basic regularity estimates for bilinear elliptic equations
with measure data; the following proposition will be useful when considering the well-
posedness of linearised systems. It should be noted that this result is not an immediate
consequence of [22] or [34] but that the methods used to derive it is inspired by these
contributions.

Proposition 5.1 Let W € L°°(D) be such that the first eigenvalue 1.1 (V) of the operator
Ly := —A + W is positive:

Vul? dx + [ Vu? dx
M(W) = inf JolVu > Jo >
ueH} (D)\{0} Jou?dx

Then, for every u € M (D) there exists a unique u that satisfies

(135)

—Au+VYu=pn inD,
u=0 onaD,
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in the weak Wol’q(D)-sense for every q € [1, ddj). Furthermore, for every q €
[1, ddTl)’ there exists a constant Cy such that, for every i € M(D),

lullwrapy = Cqllell M-

Proof of Proposition 5.1 Approximation of (135) : We follow a standard [22, Lemma
3.4] approximation scheme: for every u € M (D) we consider a sequence {1t }xeN Of
C° functions that converges weakly (in the sense of measures) to x and such that

lim ||urllprpy = Il mo)- (136)
k—o00

We consider the system (27) with u replaced with p:

(137)

—Avp +Wu, =y inD,
v =0 on dD.

The existence of a solution v to (137) follows from the minimisation of the energy
functional

1 1
éak:H(}(D)auH—/|Vu|2dx+—/\lfu2dx—/ukudx.
2Jo 2Jo D

To check that & is indeed coercive, we use the fact that A1 (¥) > 0 to obtain: for
every u € Hé (D),

M
&(M)Z&/uzdx—/ukudx.
2 Jb D

Regarding the uniqueness, observe that if there are two different solutions (v, v;)
of (137) then the difference z; := vy — v,’C and satisfies

(138)

—Azx +WVzx =0 inD,
ztk =0 ondD.

Multiplying (138) by zx and integrating by parts we obtain

/‘|Vzk|2 dx—}-/\llz,% dx =0.
D D

Since A1 (V) > 0, this is implies zz = 0, which means vy = v,’( and hence shows
uniqueness.
Regularity estimates on the approximated problem: In order to derive W!7-

estimates on the sequence {vg }xeN, we begin with an a priori L L_estimate on {vr Jrens it
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will then suffice to apply the classical regularity result [22, Proposition 4.1]. Consider,
for every function & € L°°(D), the solution 6, of

— A6, + V6, =h inD,
: g g (139)

6, =0 onaD.

The existence and uniqueness of a solution to (139) follows from the same energy
argument already used to obtain existence and uniqueness for vi. We claim that for
every p € [2, 00), there exists a constant C), such that

10nllw2.r@) < CpllhllLr@)- (140)

(140) follows from a standard bootstrap argument which we just show the initialisation
of. Using 6, as a test function in the weak formulation of (139) we obtain

2 1 2
Qh d.x < h dxa
D A1(¥) Jp

whence elliptic regularity guarantees [|04[ly22py < Cllhll 2p). This implies (140)
for p = 2. Now using the Sobolev embedding W22(D) < LP(D) (p > 2) and
writing — A6, = h — V6, € LP(D), p > 2, we conclude again by elliptic regularity
that 6, € W27 (D) and

10 lw2.r @y = CUIBRNILr @) + IRllLr©) < CUIOLIw22D) + IlILr @) = CllAllLr D),

which is (140). Consequently, there exists a constant C, such that

16r1l o) < CllhllL>D)-

Now, use 6y, as a test function in (137). We obtain, integrating by parts twice,

/ vh dx f@huk dx
D D

By (136) we deduce that there exists a constant C such that supzen [lvkllL1p)y <
Cllull ./\/l(D) Observe now that we can rewrite the equation on v; as —Avg = [k
with fix = pur — WYur. As W € L°°(D) we have, for a certain constant C, that
ikl moy < Cllwll mpy- Consequently, from [22, Proposition 4.1] we know that, for
every g € [1, a’dTl)’ there exists a constant ¢, such that, for every k € N,

=< < Cllpkll Loy lAll LoDy -

lvkllwia o) < cqllllmo)-

We can thus extract a W14 (D)-weak, L4 (D)-strong, converging subsequence of
{vitken. Let U be the closure point under consideration. For every p > d, Sobolev
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embeddings imply that WLP(D) — C%D).Leto € W'-P(D). Passing to the limit in
the identity

/Vvk~V9dx+/\IJvk0dx=/0,ukdx
D D D

it appears that U solves (27) in the weak W !-¢-sense, and further satisfies the required
regularity estimate. The existence of a solution is thus established.

Uniqueness of a solution to (27): Assume that u, u; are two distinct solutions of
(27). Then z := u| — u, satisfies

141
z=0 onadD. (141)

{ Loz=0 1inD,
It is then clear that z solves (141) in the weak Hol—sense. However, we already proved
(see above the proof of z; = 0) that this implies z = 0 and thus the uniqueness. Thus
the solution u is necessarily unique. O

In this section we gather the proofs of Proposition 2.6, Theorems 2.7, 2.8, 2.10 and
Corollary 2.11.

5.2 Proof of Proposition 2.6
It suffices to prove that the potential

0
Wa = 22 (x, ug) (142)
ou
is such that the assumptions of Proposition 5.1 are satisfied. Given that Assumption
(23) is satisfied, we know that

Wq > 0. (143)

Furthermore, by standard elliptic regularity, ug € L°° (D), whence we conclude Wg, €
L°°(D). Consequently, the first eigenvalue A1 (Wg) (with the notations of Proposition
5.1) is bounded from below:

Vul? dx
A(We) = inf f'3|—2|
ueHl (D) Jou?dx

u#0

where the infimum on the right hand side is the first Dirichlet eigenvalue of the domain
D. It suffices to use Proposition 5.1 to obtain the conclusion.

5.3 Proof of Theorem 2.7

The computations are similar whether we take E C Q or E C D\Q. Thus, for
notational simplicity, we consider the case E C D\£2. The function U solves: U, = 0
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on 9D and in a weak Wol’q (D) sense:

—AUg+xa (g1(ue) = gl(”0)|E— |gz(ua) + 82(uo))

+ e (g1 (ue) — g2(ue)) + W = (f1 — f2)He.

Now observe that, as xq, () <‘>0 X in L2(D), elliptic regularity estimates entail
&€
in C°(D). 144
uggjouom (D) (144)

By the mean value theorem, for i = 1, 2 and x € D, there exists s, ; (x) € [0, 1] such
that ve,; (x) := s, (Ve (x) + (1 — 56, (x)) uo(x) satisfies

gi(ue) — gi(uo) = —g/ (ve,i) (e —ug) (i =1,2).

From (144) we have v, ; ;)0 uo in C%(D). This allows to rewrite the equation on U,
&

as

— AU, + Xan (ve,1)Ue + XD\Qg/z(Us,Z)Us = —ue(g1(ue) — g2(ue)) + (f1 — f2)ue

(145)
in D. From the same regularity estimates derived in the proof of Proposition 2.6 we
deduce that, for every g € [1, J%l) and § > 0 small,

sup ||Us||wl-q(D) < 0.
£€(0,6]

We may thus pass to the weak W14, strong L9 limit in the equation of U, to obtain
that every accumulation point of this sequence is a weak W !-9-solution to (29). Since
the uniqueness of a solution to this equation was established in Proposition 2.6 the
conclusion follows, if we can prove that the convergence is, in fact, strong in W14 (D).
Here, we use [30, Assertion (21)] (see also [22, Proposition 4.9]). Rewrite the equation
(145) on U, as

—AUs = (fi — f2 — 81(ue) + g2ue)) e — (X281 (ve,1) + x0\282 (e,2))Us = fle.
From the strong convergence of U, in L' (D), we deduce from [30, Assertion (21)] that
{Us}ee(0,5] 1s a sequentially compact family in WOl "1(D) and thus converges strongly.

The proof of the proposition is complete.
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5.4 Proof of Theorem 2.8

It will be convenient to observe that when E = {x¢} the function Uy solves the equation

(146)

—AUp + WaUp = (sgng({xo}) F (x0)) 8x, inD,
Up=0 on dD,

in a weak WO1 " (D)-sense. The function F in (146) is defined as
F =g(ug) — g1(ug) + fi — f € L>(D),

and the potential Wg, is defined in (142). Introduce the Green kernel G = G =
Gq(x, y) of the operator —A + Wgq, that is, the unique solution of

—A,G(y,x) + WoG =68,—, inD,

(147)
G(y,x) =0 on aD.

A detailed study of the Green kernel of operators L having the form
>80 jaij d;) can be found in the seminal work [23]. Here, the existence of
a Green kernel follows from Proposition 5.1, and the Green kernel is symmetric in
the sense that G(x,y) = G(y,x) for all for all x # y € D. Furthermore, from
Proposition 5.1 and Sobolev embeddings we know that,

Vy € D, G(y, ) € L*(D). (148)

Finally, it is clear that for all y € D,Upy0 = sgno{yhF(»)G(y,-) and
consequently, for every & € L?(D), the function

U=xr> /DSgng({y})U{y},o(x)h(y)dy = /DF(y)G(x,y)h(y)dy,

is well-defined. It suffices to differentiate it to obtain that u# solves (30), thereby
concluding the proof of Theorem 2.8.

5.5 Proof of Theorem 2.10

Proof To establish (i) for d = 2 we have K (x) = R(x) + 0(|x|’1) as |x| — oo and
thus for x # xo:

K(T,'(x)) = R(T; () + o1, (o)1 7h. (149)
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Since R(x) = blIn(|x]|), it follows R(Tg’l(x)) = bln(x — x9) — bIn(e) = R(x —
x0) — bIn(e) and thus we conclude for ¢ N\ 0:

! e (K (T, (x))+v(x)+1n(e)b) = ||~ (b In(jx—x0))+v(x)+O0 (T, (x)|7h,

|we |

(150)
in view of | Tg_1 ()|~! = g|lx—xp|~! the result follows. The proof of (48)is established
the same way and left to the reader.

For the sake of simplicity we only give a proof for item (iii), that is we restrict
ourselves to dimension d > 3. Note that the same arguments can be used to show the
according results of item (ii). We start by proving the last item of (iii). Therefore, first
note that we have

Ue — 0| (29K o T, +v) = ||~ 124 (Kg oT ' —KoT ! - s‘Hu) :
Thus, from (44) and changing variables, we obtain
—1,.2—d —1
[Ue — o™ (e “K o T, + ) g1 (py < Ce. (151)
Now we estimate for p € (1, ddTl) by the triangle inequality and Holder’s inequality:

IV (U — o] ™ (R(x — x0) + W)l Loyt <
CIVWU, — ol &K o T, + v) 2 (pye (152)
+ ClolMV(E K o T, — R(x — x0) Il oy

Using the estimate (151), we see that the first term on the right hand side is bounded
by Ce. For the second term we note VR (ex) = e!=4V R(x) and thus

f V(™K o T, ' — R(x — x0))|” dx = / le!=IVK (T, (x)) — VR(x — x0))” dx
D D

=/ e?1e' ™K (x) — VR(ex)|” dx

D¢

=/ gd=PU=D K (x) — VR(x)|? dx,

&

and

IV(K o T, = RGx = x|, o0 = € " VIVK = By 0 (153)

Now according to Lemma 6.1, we have
d
V(K = B)llLrp,)e < IV(K = R)llLpraye <00 forpe|l, 1) (154)
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Therefore we obtain for p € (1, %) noticing that 0 < p~'(d — p(d — 1)) < 1:

d—p(d—1) d—p(d—1)

||V(U5 — |(,()|71(R()C _XO) + U))”L”(D)d S CS + C8 p S CE p . (155)

Since by (41), v(x) = —R(x — x¢) and u.(x) = ug(x) = 0 for x € dD, we have
Us — o] " (R(x = x0) + v) = |o| " (R(x — x0) — R(x —x0)) =0 on aD.

Therefore the Poincaré inequality yields

CUs — ol " (R(x — x0) + V)l Lr0) < IV(WUe — || (R(x — x0) + V)|l Lo pyis

and hence the last item of (iii) follows.
We now prove the first item in (iii). We compute for d > 3 and p € (%, dde),

using the continuous embedding H 1(D) Ny 3 (D) for p € [1, dde):

1U: — o™ (R(x = x0) + V)l Lroy <CIIU: — o™ (> K o T, + v) | r ()
+ Clo| &> ™K o T, = R(x — x0)llr (D)
<CUs — o (K o T, + 0)l 1p)
+ Clo| "> K o T,' — R(x — x0) |l Lr(D)-
(156)

Moreover, we have by changing variables:

—p(d=2)

2-d ~1 N~
le ™K oT, " — R(x —xo)llerpy=¢ * |IK—Rlrrp,, (157)

and according to Lemma 6.1

QU
|
S}

d d
IK — RllLr,) < IK = Rllpprey <00 for pe (T —> (158)

Therefore from (156) and (151), we have for p € (747, 7%5)

-1 d—pd-2) d—pd=2)
[Ue — o™ (R(x —x0) + v)|Lrpy <Ce+Ce 7 <Ce » . (159

5.6 Proof of Corollary 2.11

Proof This is a direct consequence of Theorem 2.10 having a close inspection of the
proof of Theorem 2.10, item(ii). Indeed, since w = Bj(0), we have according to [26]
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a.e.in D:
Ue — o] (K o T, ' + v+ bln(e)) =0 ford =2, (160)

and
Ue — o] (9K o T, 4+ v) =0 ford > 3. (161)

Moreover, K = R on R¢ \ B1(0), that is, the asymptotics of K aborts after the first
term. Therefore for d > 3 it follows from (161):

1Us — ol (R(x — x0) + W) llLr @) <Clw| 16> K o T, — R(x — x0) | Lo (8. (0))-
(162)

Now changing variables Ty (x) = y and R(7¢(x) — xp) = ¢~ R(x) shows that

d—p(d—2)

e K o T, ' — R(x —x0)lLosoop =& 7 1K — R,y  (163)
the last term is finite for p € [1, 74;) since R(x) = E(x) = |wlcqlx|"@72 €
L, (B1(0)) for such p (recall E was defined in (38)). The case d = 2 is treated in the

same fashion noting that for d = 2 we have R(x) = —|w|m) " In(x]) € L,(B1(0))
forall p > 1. O

6 Proofs for the Transmission Problem
6.1 Proof of Proposition 3.2

Existence of a very weak solution To establish the existence of a solution, it suffices
to observe that the linear map

T:LP?(D)>vr+> ¢ - Veu(xg)

is continuous for every p > d, as ||y || Cl@UD\)) = Cllv|lLr D) by elliptic regularity.

By the Riesz representation theorem, there exists a unique ¢¢ x, € L' (D), such that
/ ¢e,xV = T(v) forevery v e LP(D). (164)
D

Therefore (84) admits a unique solution u € L/’/(D), which further satisfies the
required regularity estimates.

6.2 Proof of Theorem 3.3

Proof of Theorem 3.3 Let u; = uq, (xy,w), 4o := g and Uy = “==L. Then we obtain

loe]
/ BaV(us —uo) - Vo dx = (165)
D
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sgng ({xo}) (B2 — /31)(/ V(ue —up) - Vo dx +/

We

Vup(x) - Vo a’x),
(166)

for all ¢ € H] (D). Dividing by |w.| = |w|e? and using K, = “=40°T this can be
written as

1
/[;:BQVUS - Vo dx =sgng({xo}) (B2 — B1) e / VKeo T, - Vo(x) dx
1
+ sgng ({xo}) (B2 — B1) o] Vuo(x) - Vo(x) dx,

for all ¢ € Hol(D). Now choosing ¢ = ¢, (with ¢, defined in (79) for v € L?(D),
p >dandgq := p' = q/(g — 1)) as a test function and integrating by parts in the first
integral using — div(BqaVe,) = v yields the very weak formulation:

1

|we |

/D Uev dx =sgng({xo}) (B2 — B1) _/ VKeo T, - Vo, (x) dx

1

e | s

+ sgng({xo}) (B2 — B1) Viuo(x) - Voy(x) dx,

for all v € LP (D). Subtracting the limit equation for Uy yields

/(Us — Up)v dx
D
1

| | e

1
+ sgng({xo}H (B2 — B1)

= sgng({xo}) (B2 — A1) (VKs oI, = VK o T, ) - Vo, (x) dx

VK o T, '+ (Vou (x) — Vg, (x0)) dx

e | we
1
+ sgng({xo}) (B2 — B1) o] (Vuo(x) — Vuo(xo)) - Vo (x) dx
1 .

+ sgng({xo) (B2 — B1) Viuo(x) - (Vo (x) — Vo (xo)) dx

e | W

= 11(v) + L (V) + 3(v) + 14(v).
It is readily checked that using | ¢, ||C1(QUD\§) < lvlz,o:

11| = CIIVKe = VK1, ) IV@ullcogra = CIIVKe — VKl (wyalvliLr )
(167)
and
11,0)] < Clael ™ I Vitg — Vito (o)l 1 @,y 101120 D) - (168)

@ Springer



243 Page 42 of 49 P.Baumann et al.

Now we recall the following equation which follows from the proof of Morrey’s
inequality [35, p.280, Theorem 4]: for all g € W2P(QUD\ Q), p > d:

1

dx. (169)
| B (x0)| Be(x0)

V20 (x)|
[Vo(x) — Vo(xo)| dx < C —
Be(x0) 1X — X0l

Now there are constants ¢ > 1 and C > 0, such that | By (x0)| < Clwg(xo)| and
we (x0) C Bgp(xp) for &€ > 0. Therefore,

1

[Vo(x)—Vo(xo)| dx < C——F— [Vo(x) —Vo(xo)| dx.
lwe (x0) | J oo, (x0) | Beo (x0)| J B, (x0)
o
(170)
Therefore it follows from Holder’s inequality:
V20, (x)]
L) < CIIVK]| ofd/ Vel 171
<@ Beg(xo) 1 — Xo[¢~!
| 1/p'
< CIVK llcoglvllro / v n) L an
(@) D) Bey(ro) X — xo|P'@—1

Changing variables yields

/ ) . 1/p' )dip,(dfl) < 1 y )1/;7’
ST Py .
Beo(xo) X — xo[P'@=D By(0) |x|P'@=D

173)
and the last integral is finite if p’ = ¢ € (1, %), which is satisfied since p > d.
Similarly we can show that

d=p/(d-1)

[Ib(v)| <Ce 7 |vllLr ). (174)

Summarising we have shown that (recall p’ = q)

d—q(d—1)

|Ue=Uollamy < Cle 1 +IVKe=VK |1, ya+le ™ Vo= Vit (o) 1 1, 0)

(175)
and the in view of right differentiability of Vug near xq, |we|™'|Vuog —
Viug(xo) || Liwyd = Ce and the estimate (85). Moreover, the right hand side goes
to zero as € \( 0 in view of Lemma 3.5. O

6.3 Proof of Theorem 3.6

Proof of Theorem 3.6 We first note that multiplying (97) with ¢ gives
d
lue —uo —eK o T" —e%vllyiao) < Ce' "9, (176)
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and this yields by division by |, | with the definition u, := ugq, (x,») and U = %
the estimate

d
1Us — elws| 'K o T7! — || M0l gy < Ce'Ta ™, (177)

where we note that the exponent 1 + ‘é —d > 0forqg e (1, ddTl)' Now we estimate

1Us — ol " (R + v) ey <IIUs — elwel 'K o T, — || vll2a(p)

. L L (178)
+llelwgl " Ko T, — |o|™ Rl La(D)-

The first term on the right hand side is bounded in view of (177). To treat the second
term on the right hand side of (178), we change variables, recall D, = Tg_l(D), and
RoT, = ¢ @-DR (o obtain

lelwe| ' K o T,7" — ol 7' RIlTy o) = 61 Pl K = Rlfyp,) (179

Now we recall R(x) = I?_I{“ K € L1(w) forg € [1, ddTl)- In addition, since K (x) —

R(x) behaves as |x|~¢ for |x| — oo, we also have (similarly to Lemma 6.1) that
1K — RllpgRd\w) is bounded. It follows that

lelwos] ™' K o T, — o T RII T, ) < €71 V]l "UIK = R (180)

q
L1(RY)"

Finally noting that < 1 is equivalent to ¢ > 1 this finishes the proof. O

d—q(d—1)
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Appendix

Proof of Lemma 2.9 We start with d = 2 and aim to derive an equation for V, :=
K: — K —voT, —In(e)b. Subtracting the weak formulation from the perturbed state
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equation (32) for ¢ > 0 and ¢ = 0 yields

/ V(e —up) - Vodx = | (fi — fo)p dx, forallg € H} (D).
D

Wg

Now the change of variables 7T, (x) = y, D, = Tg’l (D), and dividing by &2 shows
/ VK, -Vodx = /(f1 — )¢ dx, forall g € Hy(Dy).
De w
Note that, by extending ¢ € HO1 (D) by 0 in the exterior, we get

/ VK -V dx = /(fl — f)g dx, forall g € HJ(Dy).
& w
Hence, we conclude

/ VV.-Vodx =0, forallg e Hj(D,),

€

where we used that v is harmonic. Furthermore, we see that for x € dD, we have
Ve(x) = —K((x)—voT(x) —In(e)b = —K(x)+ R(ex) —In(e)b = R(x) — K(x),

where we used (39) and b € R is chosen such that R(¢) = bIn(g). Thus we observe,
for ¢ > 0 sufficiently small, there holds

IV.(x)| < clx|™' + 0(x|™%), forallx € aD,.

Finally, we can apply [11, Lemma 3.4, Lemma 3.7] to conclude

1
IVelle <€ (82 IVell2ap + Vel s (8D2)> < Cce.

The proof for dimension d > 3 is similar. An identical computation shows that V, :=
K. — K — 972y o T, satisfies

f VV.-Vodx =0, forallg e Hj(D,),

D¢

and one readily checks that for a.e. x € 9D, there holds
Ve(x) = —K(x) — e 200 T,(x) = =K (x) + /7 *R(ex) = R(x) — K (x),

@ Springer



The Topological State Derivative: An Optimal... Page 450f49 243

where in the last equality we used that R is homogenous of degree —(d — 2); see (40).
Thus, an application of [11, Lemma 3.4, Lemma 3.7] yield

[N

1
Vel <C (82||V8||L2(3D£) + ”V&‘”H%(8D8)> < Ce2.

O

Proof of Lemma 3.5 First note that, testing with ¢ € H] (D;), we can rewrite (93) as
/ Bour— @ VK - Vo dx =sgng({xo}) (B2 — ﬂl)/ Vuo(xo) - Vo dx  (181)
D, 1)
+seg(ahGa =g [ aKpds. (82
T: (092)

Hence, combined with the rescaled equations (75) and (95), we see that V, := K, —
K — 971y o T, satisfies

/D Bour 1)V Ve Vo dx (183)
= sgng({xo}) (B2 — ,31)/ (Vug o Ty — Vug(xo)) - Vo dx (184)

+ sgng ({xo}) (B2 — ,31)/ L (K= R)pdS = Fe(o). (185)
T, (09)

and V. = K — R =: g, on dD;. From [11, Lemma 3.7] (in an L? setting) we deduce

-1
1VellLa)+1IVVellLap,ye < C (”Fe”L‘i(De) +¢& 9|gellLecop,) + |ge|W1,%,q(aD )) .

(186)
In view of |K (x) — R(x)| &~ |x|~¢ for |x| — oo and the scaling properties of Lemma
6.3 and Lemma 6.2, the result follows. O

Lemma 6.1 Let w C RY such that 0 € w. Given a function E : RY - Rlet K (x) :=
fw E(x — y) dy, for x € R%. Then we have the following properties: For dimension
d =2 and E(x) := In(|x|) there holds

(i) 1K —|@|EllLrRe) < 00 for p € (2,00).
(i) V(K — |w|E)llprR2y2 < 00 for p € (1,2).

For dimension d > 2 and E(x) := |x|7%, k € N there holds

(iii) | K — |o|E|| pgay < 00 for p € (75, 9.
(iv) V(K = |@|E)llLpgay < 00 for p € (75, 24).
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Proof We start with the two dimensional case. Hence, let E(x) = In(]x|). Note that a
Taylor expansion shows that there isa R > 0

Kx) —|w|E(x) = f E(x—y)—Ex)dx < C|x|_1, for |x| > R. (187)

@

Now splitting the integral with respect to this constant R we get for all p € [1, 00):
P p p
1K — |w|E||Lp(BR(0)) = ||K||L1’(BR(O)) + ”|w|E”L1’(BR(0)) <X (188)

since In(|x]) € Lg’C(RZ) and the same holds for K. For the second part we use (187)
to conclude for all p € (2, 00):

o0
1K = |0l EN b gay) < Cf |x|77 dx = c/ r'=Pdr <oco,  (189)
r(0) R

B

which shows (i). From (187) we further see that
V (K (x) — |w|E(x)) < Clx|™%, for|x| > R. (190)

Now, noting that |VE (x)| = |x|~!, we see that for all p € (1, 2):

R
IVE g0 = [ 7 dr <20 oy

Since the same holds true for K, we conclude ||V(K — |@|E) |1 (g, (02 < oo forall
p € (1, 2). For the exterior domain, we again use (187) to conclude for all p € (1, 00):

oo
IV (K = 10lE) 1], 5, 0y = c/ a7 dx = C/ P! dr < co.
Bgr(0)¢ R

(192)
Combining (191) and (191) yields (ii). Similar arguments, exploiting the Taylor
expansion of |x| % for k € N, shows item (iii) and (iv). m]

Lemma 6.2 Forxg € Dand e > 0 let T,(x) := xo + ex and D, := TE_I(D). Further
define for 1 < p < oo the scaled norm

lolle,p == ellollz, . + IVl @, forallp e WP (Dy). (193)

Then there holds:
d
- - d_y
() oo T, Mwivy =7 ll@lle.p-
d—1
(i) ¢ o T, L, 0y = ¢ 7 ll9llL,@D,)-
d-1_
(iii) g o T, Ywaropy = 7 “|@lwer@p,)-

. =5
<
(lv) ”gﬂng,p = C (8 4 ”gO”Lp(aDs) + |¢|W1*%,P(3DE) :
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Proof ad (i): This is a direct consequence of the scaling of L, norms.
ad (ii): The same argument as before, considering dim(dD) = d — 1.
ad (ii1): We have

lpo T, ‘<x) po T, ()P
|(p0 T |Wa P(3D) — /E;D /BD |C(p+d 1 dxdy

p
:82472/ / lp(x) — ()] —dxdy
aD, Joap, 1(xo + &x) — (xo + ey)|¥PTd=

d 1— ap/ / lp(x) — ¢(Y)|p dxdy
o0, Jap, Ix — ylerrd=1

gl

—ap
|‘P|Wa,p(a[))-

ad (iv): Using the previous scalings and the right-inverse extension operator on D, we
get

-4 1
l@lle.p =¢ Pllgo Ty llwirp)

1-4 -1 -
<Ce (Ilwo T lLyop) +leo Ty |W1‘”(0D)>

ce'™% (£ gl a0 +67 Pl
=Ce 7rler , e P
% L, (9Dg) % 1_, ”(aD )

=C P
< lellz, @) + 1ol s, . )> 0

Lemma 6.3 Let g(x) := |x|_d,f0rx € R?. Then there holds

. 1=d 4
(i) llgllz, @D, < Ce »

(ii) |glwer@p,) < Ce 7 T4+,

Proof ad (i): We have

—dp 1-d
Igll? o =/ lx|™ dx =¢ /
p(3De) 9D, aD

ad (ii): Similarly we conclude

1gl” // lg(x) —g()IP
Wer@De) = Jop, Joo, |x — y|patd=T

282_2d/ / 8o T (1) —go T (I
|x

— y|pa+d—18—(Pa+d—l)

_ —dp
LT gx < el (194)
&

_81—d+pa/ / |g o Ts_l(x) —&0° Ts_l(y)|p
aD

|x — y|pa+d7]
§C81_d+‘"a8_p+p(d+l)
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where we used |g o T, 7' (x) — g o T, /' (»)| & e '|V(g o T, /))(x) - (x — y)| and
Vg(x) =~ |x| —(@+D For a more detailed proof of this estimate we refer to [11, Lemma
4.4]. O

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

. Delfour, M.C.: Topological derivative of state-constrained objective functions: a direct method. SIAM

J. Control Optim. 60(1), 2247 (2022). https://doi.org/10.1137/20M 1368732

. Delfour, M.C.: Topological derivative: semidifferential via Minkowski content. J. Convex Anal. 25(3),

957-982 (2018)

. Sokotowski, J., Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control

Optim. 37(4), 1251-1272 (1999). https://doi.org/10.1137/s0363012997323230

. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity

case. SIAM J. Control Optim. 39(6), 17561778 (2001). https://doi.org/10.1137/s0363012900369538

. Novotny, A.A., Sokotowski, J., Zochowski, A.: Applications of the Topological Derivative Method.

Studies in Systems, Decision and Control, vol. 188, p. 212. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05432-8. With a foreword by Michel Delfour

. Novotny, A.A., Sokotowski, J.: Topological derivatives in shape optimization. Interaction of mechanics

and mathematics, p. 412. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35245-4

. Delfour, M.C., Sturm, K.: Minimax differentiability via the averaged adjoint for control/shape

sensitivity. IFAC-PapersOnLine 49(8), 142-149 (2016). https://doi.org/10.1016/j.ifacol.2016.07.436

. Amstutz, S.: An introduction to the topological derivative. Eng. Comput. (2021). https://doi.org/10.

1108/ec-07-2021-0433

. Sturm, K.: Topological sensitivities via a Lagrangian approach for semilinear problems. Nonlinearity

33(9), 43104337 (2020). https://doi.org/10.1088/1361-6544/ab86cb

Gangl, P, Sturm, K.: A simplified derivation technique of topological derivatives for quasi-linear
transmission problems. ESAIM Control Optim. Calc. Var. 26, 106-20 (2020). https://doi.org/10.1051/
cocv/2020035

Baumann, P., Sturm, K.: Adjoint based methods for the computation of higher order topological
derivatives with an application to linear elasticity. Eng. Comput. 39(1), 169 (2021). https://doi.org/10.
1553/etna_vol51s169

Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot.
Anal. 49(1-2), 87-108 (2006)

Nazarov, S.A., Sokolowski, J., Taskinen, J.: Neumann Laplacian on a domain with tangential
components in the boundary. Ann. Acad. Sci. Fenn. Math. 34(1), 131-143 (2009)

Cardone, G., Nazarov, S.A., Sokolowski, J.: Asymptotics of solutions of the Neumann problem in a
domain with closely posed components of the boundary. Asymptot. Anal. 62(1-2), 41-88 (2009)
Nazarov, S.A., Sokolowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. (9)
82(2), 125-196 (2003). https://doi.org/10.1016/S0021-7824(03)00004-7

Nazarov, S.A., Sokolowski, J.: Self-adjoint extensions of differential operators and exterior topological
derivatives in shape optimization. Control Cybernet. 34(3), 903-925 (2005)

Nazarov, S.A., Sokolowski, J.: Self-adjoint extensions for the Neumann Laplacian and applications.
Acta Math. Sin. (Engl. Ser.) 22(3), 879-906 (2006). https://doi.org/10.1007/s10114-005-0652-z

Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Society
for Industrial and Applied Mathematics, Philadelphia, PA (2008)

. Troltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications.

Graduate studies in mathematics. American Mathematical Society, Providence, RI (2010). https://
books.google.at/books?id=04yDAwAAQBAJ

Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New
York (2009)

@ Springer


https://doi.org/10.1137/20M1368732
https://doi.org/10.1137/s0363012997323230
https://doi.org/10.1137/s0363012900369538
https://doi.org/10.1007/978-3-030-05432-8
https://doi.org/10.1007/978-3-030-05432-8
https://doi.org/10.1007/978-3-642-35245-4
https://doi.org/10.1016/j.ifacol.2016.07.436
https://doi.org/10.1108/ec-07-2021-0433
https://doi.org/10.1108/ec-07-2021-0433
https://doi.org/10.1088/1361-6544/ab86cb
https://doi.org/10.1051/cocv/2020035
https://doi.org/10.1051/cocv/2020035
https://doi.org/10.1553/etna_vol51s169
https://doi.org/10.1553/etna_vol51s169
https://doi.org/10.1016/S0021-7824(03)00004-7
https://doi.org/10.1007/s10114-005-0652-z
https://books.google.at/books?id=04yDAwAAQBAJ
https://books.google.at/books?id=04yDAwAAQBAJ

The Topological State Derivative: An Optimal... Page 49 0f49 243

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Meyer, C., Panizzi, L., Schiela, A.: Uniqueness criteria for the adjoint equation in state-constrained
elliptic optimal control. Numer. Funct. Anal. Optim. 32(9), 983-1007 (2011). https://doi.org/10.1080/
01630563.2011.587074

Ponce, A.C.: Selected problems on elliptic equations involving measures. arXiv (2012). https://doi.
org/10.48550/ARXIV.1204.0668

Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontin-
uous coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17(1-2), 43-77
(1963)

Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in
Singularly Perturbed Domains: Volume I. Operator Theory: Advances and Applications. Birkhéuser,
Basel (2012). https://books.google.je/books?id=racFnwEACAAJ

Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems
in Singularly Perturbed Domains Volume II: Volume II. Operator Theory: Advances and Applications.
Birkhauser, Basel (2012). https://books.google.at/books?id=UM{zBwAAQBAJ

Baumann, P., Gangl, P., Sturm, K.: Complete topological asymptotic expansion for L, and H 1 tracking-
type cost functionals in dimension two and three. submitted (2021). https://doi.org/10.48550/ARXIV.
2111.08418

Gangl, P, Sturm, K.: Topological derivative for PDEs on surfaces. SIAM J. Control Optim. 60(1),
81-103 (2022). https://doi.org/10.1137/20M 1339040

Bertoluzza, S., Decoene, A., Lacouture, L., Martin, S.: Local error estimates of the finite element
method for an elliptic problem with a dirac source term. Numer. Methods Part. Differ. Equ. 34(1),
97-120 (2018). https://doi.org/10.1002/num.22186

Eriksson, K.: Finite element methods of optimal order for problems with singular data. Math. Comp.
44(170), 345-360 (1985). https://doi.org/10.2307/2007956

Boccardo, L., Gallouét, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct.
Anal. 87(1), 149-169 (1989). https://doi.org/10.1016/0022-1236(89)90005-0

Iguernane, M., Nazarov, S., Roche, J.-R., Sokotowski, J., Szulc, K.: Topological derivatives for semi-
linear elliptic equations. Int. J. Appl. Math. Comput. Sci. 19(2), 0016 (2009). https://doi.org/10.2478/
v10006-009-0016-4

Ammari, H., Kang, H.: Polarization and Moment Tensors. Applied Mathematical Sciences, vol. 162,
p- 312. Springer, New York (2007). With applications to inverse problems and effective medium theory
Deny, J., Lions, J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5, 305-3701955
(1953-54)

Stampacchia, G.: Le probléeme de Dirichlet pour les équations elliptiques du second ordre a coefficients
discontinus. Annales de I’Institut Fourier 15(1), 189-257 (1965). https://doi.org/10.5802/aif.204
Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19, p. 749.
American Mathematical Society, Providence, RI (2010). https://doi.org/10.1090/gsm/019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1080/01630563.2011.587074
https://doi.org/10.1080/01630563.2011.587074
https://doi.org/10.48550/ARXIV.1204.0668
https://doi.org/10.48550/ARXIV.1204.0668
https://books.google.je/books?id=racFnwEACAAJ
https://books.google.at/books?id=UMfzBwAAQBAJ
https://doi.org/10.48550/ARXIV.2111.08418
https://doi.org/10.48550/ARXIV.2111.08418
https://doi.org/10.1137/20M1339040
https://doi.org/10.1002/num.22186
https://doi.org/10.2307/2007956
https://doi.org/10.1016/0022-1236(89)90005-0
https://doi.org/10.2478/v10006-009-0016-4
https://doi.org/10.2478/v10006-009-0016-4
https://doi.org/10.5802/aif.204
https://doi.org/10.1090/gsm/019

	The Topological State Derivative: An Optimal Control Perspective on Topology Optimisation
	Abstract
	1 Introduction
	1.1 Scope of the Paper
	1.2 Generalised Topological Derivatives and the Topological State Derivative 
	1.3 Control Derivatives, Topological Derivatives and Asymptotic Analysis

	2 Main Results for General Topological Perturbations of Semilinear Equations
	2.1 Convergence in Measure of χEε and Notation
	2.2 Topology Optimisation Problems for Semilinear Equations with Monotone Semilinearity
	2.3 Asymptotic Expansion of uΩ and Relation to the Topological State Derivative

	3 Main Results for Operator Point Perturbation in Linear Transmission Problems
	3.1 Topological State Derivative for the Transmission Problem
	3.2 Asymptotic Expansion of uΩ and the Relation to the Topological State Derivative

	4 Topological Derivatives of Shape Functions Via Topological State Derivative
	4.1 Topological Differentiability of Shape Functionals
	4.2 Expression of Topological Derivative of Functionals with Adjoint Equation

	5 Proofs for Semilinear Problems
	5.1 Preliminary Results on Bilinear Elliptic Equations with Measure Data
	5.2 Proof of Proposition 2.6
	5.3 Proof of Theorem 2.7
	5.4 Proof of Theorem 2.8
	5.5 Proof of Theorem 2.10
	5.6 Proof of Corollary 2.11

	6 Proofs for the Transmission Problem
	6.1 Proof of Proposition 3.2
	6.2 Proof of Theorem 3.3
	6.3 Proof of Theorem 3.6

	Acknowledgements
	Appendix
	References




