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Abstract—We developed a novel ordinary differential equa-
tion (ODE) model, which produced results that correlated
well with the Monte Carlo (MC) simulation when applied to
a spatially-detailed model of the cardiac sarcomere. Config-
uration of the novel ODE model was based on the Ising
model of myofilaments, with the ‘‘co-operative activation’’
effect introduced to incorporate nearest-neighbor interac-
tions. First, a set of parameters was estimated using arbitrary
Ca transient data to reproduce the combinational probability
for the states of three consecutive regulatory units, using
single unit probabilities for central and neighboring units in
the MC simulation. The parameter set thus obtained enabled
the calculation of the state transition of each unit using the
ODE model with reference to the neighboring states. The
present ODE model not only provided good agreement with
the MC simulation results but was also capable of repro-
ducing a wide range of experimental results under both
steady-state and dynamic conditions including shortening
twitch. The simulation results suggested that the nearest-
neighbor interaction is a reasonable approximation of the
cooperativity based on end-to-end interactions. Utilizing the
modified ODE model resulted in a reduction in computa-
tional costs but maintained spatial integrity and co-operative
effects, making it a powerful tool in cardiac modeling.

Keywords—Cross-bridge, Monte Carlo simulation, Ordinary

differential equation (ODE) model, Contraction force,

Sarcomere kinetics.

INTRODUCTION

Mathematical modeling is an indispensable tool in
defining the mechanisms of activation and force gen-
eration of the cardiac sarcomere. Various mathemati-
cal models have been designed to replicate and
characterize the cellular processes and activities of

the sarcomere and, recently, detailed structure and
filament properties have also been taken into
account.2,4,10,16 However, current models have yet to
replicate the anomalously high sensitivity of developed
force to changes in the free cytosolic calcium (Ca)
concentration, observed under both steady-state and
dynamic conditions. This aberrant effect is suggested
to be brought about by the ‘‘co-operative’’ interactions
among intracellular molecules within the sarcomere.
One postulated mechanism of ‘‘cooperativity’’ suggests
that the strongly-bound cross-bridge releases the steric
hindrance of tropomyosin to facilitate the attachment
of nearby cross-bridges. A further potential mecha-
nism underlying the ‘‘co-operative’’ interactions is the
end-to-end interactions of regulatory troponin/tropo-
myosin (T/T) units along the thin filament. In either
case, the physical arrangement of each molecular
component is suggested to be a critical factor.

To reproduce the ‘‘co-operative’’ effects that occur
within the sarcomere, most current models utilize the
‘‘phenomenological parameter tuning strategy’’ to
normalize the behavior of cross-bridges and to avoid
the necessity of determining the state of each regula-
tory unit and the interactions among them (mean-field
approximation). Although this approach enables the
use of ordinary differential equations (ODE), has a
lower computational cost, and has been reported to
provide a fairly good representation of experimental
data,1,9,13,20,21 the models lack a representation of
spatial activity within the cell. This limits the predictive
ability of the models and hampers the potential for
direct comparisons with experimentally obtained
data.18

Spatially-distributed models have been proposed
that are capable of mimicking the physical arrange-
ment of each functional unit within a cell, including the
cross-bridges in the thick and thin filaments of the
sarcomere.8,10,19,22 In these models, the transition rates
of each unit are dependent on the states of neighboring
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units and/or the cross-bridge strain to reveal any
potential ‘‘co-operative’’ mechanisms that occur.
Moreover, the models have been found to have excel-
lent reproducibility. However, the inherent and inevi-
table problem with this type of model is the necessity
of using the computationally expensive Monte Carlo
(MC) simulation. Although Rice et al.19 reported an
analytical solution to their Ising model of myofila-
ments without MC simulation, its application is lim-
ited to the static state with a simple periodic boundary
condition. Very recently, Campbell et al.3 proposed a
Markov model approach to represent the states of
regulatory units, but the computational costs again
limited the number of units studied in the model.

Here we propose a novel method for describing the
behavior of a spatially detailed co-operative model
using ODE in which the regulatory units are distrib-
uted along the sarcomere filament. Through modifi-
cations to the Ising model produced by Rice et al.,19 we
produced an ODE model that is applicable to a wider
range of experimental conditions, including accounting
for changes in sarcomere length (SL). Our modified
ODE model was found to correlate well with the MC
simulation over a wide range of dynamically changing
Ca concentrations. Moreover, our ODE model is
capable of recording the information of neighboring

units and reproducing the co-operative phenomenon
arising from molecular interactions along the sarco-
mere filaments. Importantly, this novel ODE model is
associated with greatly reduced computational costs,
thereby enabling its application for large scale models
of cardiac physiology.

METHODS

Description of the Model

The sarcomere model used in the present study is
illustrated in Fig. 1. The model consists of a pair of
thin filaments (AF) and a single thick filament (MF).
Myosin heads (MHs) are arranged symmetrically on
the thick filament with regular intervals on both sides
of the bare-zone (B-zone). The geometry of the model
is summarized in Table 1. To introduce SL as a factor
in the model, we assigned a functional unit to each MH
coupled with the opposing segment of thin filament
and indexed as ‘‘i’’. This process conflicts somewhat
with the traditional practices used in sarcomere mod-
eling where the unit is commonly placed on the thin
filament. However, because the helical pitch of the
myosin filament is close to that of actin (composed of
seven monomeric actins) and regulated by a single
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FIGURE 1. Schematic of the sarcomere model (a). (a1) Relative position of filaments in the single overlapping state (SL >
2LA + LB). xRA: position of the end of the right thin filament, xAZ: position of Z-band of the right thin filament, xi: position of ith MH,
both measured from the right-hand edge of the bare zone. (a2) The double overlapping state (LM < SL < 2LA 2 LB). xLA: position of
the end of the left thin filament. (a3) State of no overlapping at the MF ends (SL < LM). MF: thick filament, MH: myosin head, B-zone:
bare zone, AF: thin filament, SL: sarcomere length LA: thin filament length, LM: thick filament length, LB: bare zone length.
Dependence of the lumped parameters vRA(SL, i) (b) and vLA(SL, i) (c) on SL at individual unit (MHi).
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troponin/tropomyosin (T/T) complex, we believe this
strategy is rational. The model was assumed to be
symmetrical, and simulation was performed on half of
one sarcomere.

The co-operative four-state Markov model pro-
posed by Rice et al.19 was adopted for the present
model whereby the state of each functional unit is
characterized by the combination of Ca binding
(1: bound, 0: not bound) and cross-bridge formation
(P: permitted, N: not permitted; Fig. 2). To introduce
the co-operative mechanisms occurring in force gen-
eration, the factors cn and c�n were multiplied by the
transition rates from N to P and from P to N,
respectively, where n (=0, 1 or 2) is the number of
nearest-neighboring MHs in the P-state.

In addition, we modified the following rate con-
stants by multiplying the geometrical factors vRA(SL,i)
and vLA(SL,i) (Figs. 1A1, A2, 1B and 1C) to introduce
a dependence on the filament overlap determined by
SL:

�Knp0 SL; ið Þ¼vLA SL; ið ÞvRA SL; ið ÞKnp0;

�Knp1 SL; ið Þ¼vLA SL; ið ÞvRA SL; ið ÞKnp1;

�Kon SL; ið Þ¼vRA SL; ið ÞKon;

�K0on SL; ið Þ¼vRA SL; ið ÞK0on:

ð1Þ

The factors vRA(SL,i) and vLA(SL,i) were defined
for each unit as the function of its position (xi) and the
degree of filament overlap, determined by the positions

of two thin filament ends (the free end (xRA) of the
right-hand side filament, the Z-band (xAZ) of the right-
hand side filament and the free end (xLA) of the left-
hand side filament) (Fig. 1).

xAZ ¼ SL� LBð Þ=2; xLA ¼ LA� xAZ � LB;

xRA ¼ xAZ � LA: ð2Þ

When there are non-overlapping regions of the
two filaments (SL> 2LA + LB, Fig. 1A1), only the
units where xi > xRA can form cross-bridges without
the modification to the rate constant. For those
cross-bridges located in non-overlapping regions
(xi £ xRA), the rate constant becomes attenuated as
the distance to the MH extends further from the thin
filament end:

vRA SL; ið Þ¼

exp � xRA�xið Þ2=a2R
� �

; xi�xRA

1; xRA<xi<xAZ

exp � xi�xAZð Þ2=a2R
� �

; xi�xAZ

8>>><
>>>:

;

ð3Þ

where a step function is smoothed at the ends so that
vRA changes continuously with respect to SL. The
third condition of Eq. (3) becomes effective for deter-
mining �Knp0 and �Knp1 in Eq. (1) when no overlapping
state appears at the right ends of MF (Fig. 1A3). The
genesis of the ascending limb in the force–length rela-
tion in regions of SL shorter than the optimal length is
a controversial issue. For this model, we assumed that
the formation of the cross-bridge was inhibited for

TABLE 1. Model parameters.

Parameter Value Units

Sarcomere geometry

LA (length of AF) 1.2 lm *

LM (length of MF) 1.65 lm *

LB (length of B-zone) 0.1 lm *

nu (number of MHs) 36 Unitless *

Transition rates Ca-bound

Kon 80 lM�1 s�1 **

Koff 80 s�1 **

K 0on 80 lM�1 s�1 **

K 0off 8 s�1 **

Transition rates N–P **

Q0 3 Unitless **

SLQ 2.2 lm **

aQ 1.4 lm�1 **

Kbasic 10 s�1 **

l 10 Unitless **

c 40 Unitless **

SL dependence

aR 0.1 lm

aL 0.1 lm

Time interval lengths

DT (for averaging in MC) 2.5 ms

Dt 2.5 ls

Parameter values were adopted * from Rice et al.,20 ** from Rice

et al.19 with modifications.

[Ca]onK

offK

np1Knγ pn1Kn−γnp0Knγ pn0Kn−γ
[Ca]onK ′

offK ′
FIGURE 2. The cooperative four-state Markov model. States
are coded with the combination of the Ca binding state (0: not
bound, 1: bound) and conformation for cross-bridge forma-
tion (P: permissive, N: non-permissive). Transitions among
the states are governed by the rate constant adjacent to each
arrow. To introduce the co-operative behavior for the transi-
tion between states P and N, the factors cn and c2n are mul-
tiplied by the transition rates from N to P and P to N,
respectively, where n is the number of neighboring MHs in the
P-state. The overlines for transition rates �Knp0; �Knp1; �Kon and
�K 0on indicate that these rates are modified according to the SL.

[Ca] denotes the free Ca concentration.
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MHs in the double overlap region of the thin filament
(Fig. 1A2, SL< 2LA � LB):

vLA SL; ið Þ ¼ exp � xLA � xið Þ2=a2L
� �

; xi � xLA

1; xi>xLA

(
:

ð4Þ

The parameters aR and aL determine how rapidly
the MHs at the borders of overlapping zone lose their
capability to form attached bridges as they become
distant from the filament ends. The values were
adjusted to agree with the experimental force–length
relation and are listed in Table 1. Finally, the MHs at
the edges of the filament (i = 1 and nu) were assumed
to always have N-state neighbors on their null side.

Monte Carlo Simulation

The MC simulation was performed according to the
following rules. For a given random number r 2 [0, 1]
generated for each unit (ith MH) at each time interval
([t, t + Dt]), the state tai (either 0N, 1N, 0P, or 1P) at
time t transitions to the new state tþDtai ¼ TDt

taið Þ dur-
ing the time interval [t, t + Dt] at all MHs as follows:

TDt 0Nð Þ¼
1N; 0�r<Dt �Kon Ca½ �
0P; Dt �Kon Ca½ �� r<Dt �Kon Ca½ �þcn �Knp0

� �

0N; Dt �Kon Ca½ �þcnKnp0

� �
�r�1

8><
>:

TDt 1Nð Þ¼
0N; 0�r<DtKoff

1P; DtKoff�r<Dt Koffþcn �Knp1

� �

1N; Dt Koffþcn �Knp1

� �
�r�1

8><
>:

TDt 1Pð Þ¼
1N; 0�r<Dtc�nKpn1

0P; Dtc�nKpn1� r<Dt c�nKpn1þK0off
� �

1P; Dt c�nKpn1þK0off
� �

�r�1

8><
>:

TDt 0Pð Þ¼
1P; 0�r<DtK0on Ca½ �
0N; Dt �K0on Ca½ �� r<Dt �K0on Ca½ �þc�nKpn0

� �

0P; Dt �K0on Ca½ �þc�nKpn0

� �
�r�1

8><
>:

The time interval Dt was chosen so that none of the
values with the coefficient Dt in the third condition of
each rule set exceeds 1. The parameter n is the number
of nearest-neighboring MHs (i � 1th and i + 1th
MHs) in the P-state at time t.

These transition rate constants were adopted from
Rice et al.19 and modified. Some transition rates
between the P-state and N-state were calculated with
the parameters Q, Kbasic, l and c (Table 1) as follows:

Knp0 ¼ QKbasic=l; Knp1 ¼ QKbasic; Kpn0 ¼ Kbasicc
2;

Kpn1 ¼ Kbasicc
2; K0on ¼ Kon; K

0
off ¼ Koff=l: ð5Þ

To reproduce the SL dependence of [Ca50] on force–
pCa relations,5,14 we introduced the SL dependence of
Q. We found that the best results were obtained with
the Q value decreasing from Q0 = 3 linearly with
inclination aQ = 1.4 lm�1 as the SL becomes shorter
from SLQ = 2.2 lm.

Q SLð Þ ¼ Q0; SL � SLQ

Q0 � aQ SLQ � SL
� �

; SL<SLQ

�
ð6Þ

The parameter values are summarized in Table 1.

Approximation by the ODE Model

There are 4nu combinatory states for the model
consisting of nu regulatory units. First, we introduced
a linear ODE that gives the transitions of probability
distribution of these combinatory states for a given Ca
transient. This ODE provides a probability distribu-
tion that correlated well with the previously described
MC simulation. However, the direct solution of this
ODE is impractical because of the large number of
degrees of freedom (4nu with nu = 36 in our case).
Therefore, we introduced a reduced ODE to obtain the
averaged probability of the four states at each regu-
latory unit for the solution of the original ODE.

Each of the four states is represented by four integers:

0N$ 1; 1N$ 2; 1P$ 3; 0P$ 4 ð7Þ

The probability distribution ‘‘P’’ can then be rep-
resented as a linear combination of the 4nu combina-
tory states:

P ¼
X

1�k1...knu�4
P k1; . . . ; knuð Þ e k1; . . . ; knuð Þ; ð8Þ

The following conditions are fulfilled for the
coefficients.

X
1�k1...knu�4

P k1; . . . ; knuð Þ ¼ 1; P k1; . . . ; knuð Þ � 0 ð9Þ

Here, the basis vector e(k1,…,knu) corresponds to
the combinatory states of nu units given in Eq. (7), and
P(k1,…,knu) is interpreted as the probability of the
total number of units to take this combinatory state.

The vector space representing probability distribu-
tions is composed of m = 4nu basis vectors. Because
we require nu = 36, the dimension m becomes so large
that a single vector cannot be stored in the memory of
a common computer. However, the transition kinetics
of the probability distribution can be expressed by a
simple linear ODE as follows.

For any given time t, we define a linear transfor-
mation t

A that represents the transition kinetics at
time t for the combinatory states by giving its action on
the basis vectors:
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tA � e k1; . . . ;knuð Þ ¼
X

1�i�nu

X
1�l�4

tAi w ki�1ð Þ;w kiþ1ð Þð Þl;ki

� e k1; . . . ;ki�1; l;kiþ1; . . . ;knuð Þ; ð10Þ

where w indicates the N- or P-state by

w 1ð Þ ¼ N;w 2ð Þ ¼ N;w 3ð Þ ¼ P;w 4ð Þ ¼ P: ð11Þ
tAi(n, g)l,k is the (l,k)-component of the 4 9 4 matrix

given by

Here, n is determined from n and g as the sum of the
P-state, the transition rates with the overlines are
determined from the position of the ith MH (as in
Eq. 1), and t[Ca] is the free Ca concentration at time t.
From the assumption on the boundary, we can assume
that k0 = knu+1 = 1 always holds true in Eq. (10).

It is assumed that the probability distribution tP at
time t transposes to the new distribution
t+DtP = TDt(

tP) at time t + Dt. Using the matrix tA

defined in Eq. (10), TDt e k1; . . . ; knuð Þð Þ (the transition
of the specific combinatory state e k1; . . . ; knuð Þ) is
represented as follows:

TDt e k1; . . . ; knuð Þð Þ ¼ e k1; . . . ; knuð Þ þ DttA�
e k1; . . . ; knuð Þ þO Dt2

� �
: ð13Þ

The third term from the right-hand side of Eq. (13)
is composed of components with coefficients greater
than or equal to the second order of Dt. These com-
ponents correspond to the states that are different
from e(k1,…,knu) for more than one unit. Thus, by
taking the limit Dt fi 0, the transition kinetics of the
probability distribution t

P is given by the following
linear ODE.

dtP

dt
¼ tA � tP ð14Þ

From Eqs. (10) and (12), it is apparent that the
matrix tA has 2nu non-zero off-diagonal entries in each
column and row when it is represented as the 4nu 9 4nu

matrix on the basis of e k1; . . . ; knuð Þf g: It is also clear
that all off-diagonal entries are non-negative and that
their sum in each column cancels out exactly with the
corresponding diagonal entry. Hence, it can be shown

that the properties in Eq. (9) are preserved if the initial
distribution satisfies them.

Let Di and D
n;g
i (1 £ i £ nu, n, g = P or N) be

projections from the combinatory probability distri-
bution vector space to the four-dimensional vector
space defined by

Di � e k1; . . . ; ki; . . . ; knuð Þ ¼ e kið Þ; ð15Þ

and

D
n;g
i � e k1; . . . ; ki; . . . ; knuð Þ

¼
e kið Þ if w ki�1ð Þ ¼ n and w kiþ1ð Þ ¼ g;

0 otherwise;

� ð16Þ

where e(k), (k = 1, 2, 3, 4) is the kth unit vector.
Let t[a]i denote the state probability that the i-th

MH is in state a(= 0N, 1N, 0P, or 1P) and t[n, a, g]i
denote the combinatorial probability that the ith MH
is in state a(= 0N, 1N, 0P, or 1P), and the right and
left neighbors are in state n and g(=N or P), respec-
tively, at time t. Thus, with four-dimensional column
vectors:

tpi ¼ ½t½0N�i; t½1N�i; t½1P�i; t½0P�i�
T ¼ Di � tP ð17Þ

and

tp
n;g
i ¼ ½t½n; 0N; g�i; t½n; 1N; g�i; t½n; 1P; g�i; t½n; 0P; g�i�

T

¼ D
n;g
i � tP; n; g ¼ N or P,ð18Þ

The transition kinetics of the ith MH can be
described as follows:

dtpi
dt
¼

X
n;g¼N;P

tAi n; gð Þ � tpn;g
i ; i ¼ 1; . . . ; nu: ð19Þ

Understandably, this equation cannot be solved as
an ODE because it requires the combinatory proba-
bility t[n, a, g]i at the right-hand side, whereas the
variables of the ODE are the state probabilities t[a]i.
Accordingly, the vector tp

n;g
i and its component (t[n, a,

g]i) require approximation using information available
from the MC simulation. For this purpose, we focus
on the correlation between the combinatory probabil-
ity t[n, a, g]i and the state probabilities s[b]j(b = 0N,

tAi n; gð Þ ¼
� �Kon

t Ca½ � � cn �Knp0 Koff 0 c�nKpn0
�Kon

t Ca½ � �Koff � cn �Knp1 c�nKpn1 0
0 cn �Knp1 �c�nKpn1 � K0off

�K0on
t Ca½ �

cn �Knp0 0 K0off �c�nKpn0 � �K0on
t Ca½ �

2
664

3
775: ð12Þ
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1N, 0P, 1P) on the central unit and its neighbors
(j = i � 1, i, i + 1) for time s £ t. Using the data
obtained from our MC simulations, it appears that the
ratio of the combinatory probability to the central
state probability can be accurately approximated as a
function of t l½ � b½ � m½ �h ii defined by the following equa-
tion with the parameter s representing the memory
time length.

t l½ � b½ � m½ �h ii ¼
1

s

Z t

�1

exp � t� s

s

� �
s l½ �i�1s b½ �is m½ �iþ1ds;

b; l; m ¼ 0N; 1N; 1P or 0P ð20Þ

The memory time length s has a significant influence
on the accuracy of the model, thus an optimal value of
s = 66.7 ms was used for the set of transition rate
parameters given in Table 1.

In our ODE model, the function to approximate the
combinatory probability is given by:

t ½n; a; g�i
t½a�i

� exp
X

l;b;m¼0N;1N;1P;0P
C ið Þl;b;mn;a;g

t l½ � b½ � m½ �h ii

 !
:

ð21Þ

C ið Þl;b;mn;a;g are parameters determined from the MC
simulation results to attain the best approximations
(Eq. (21)). C ið Þl;b;mn; a; g values were determined by the
least square fitting that minimizes the following

approximate error tR over the duration of the MC
simulation [T0:T1].

tR n; a; g; ið Þ ¼ log
t½n; a; g�i

t½a�i
�

X
l;b;m¼0N;1N;1P;0P

C ið Þl;b;mn;a;g
t l½ � b½ � m½ �h i

ð22Þ

To evaluate the probabilities (the argument of the
first term on the right hand side of Eq. (22)), the data
obtained from the MC simulations for the duration
[T0:T1] was divided into bins of equal time intervals
(DT = 2.5 ms) and, in each bin, the number of dis-
tinct combinatory states (ni�1, ai, gi+1) was counted at
each time step (Dt = 2.5 ls) for each individual MHi.

The MC simulations were performed with various
wave forms (Fig. 3) to cover the wide range of
conditions.

Once the parameters C ið Þl;b;mn; a; g

� �
are determined,

ODE simulations can be performed by approximating
the combinatory probabilities in Eq. (19) by

tp
n;g
i � tWi n; gð Þ � tpi ð23Þ

with

where the diagonal entries are computed from

tW n; a; g; ið Þ

¼ exp min 0;
X

l;b;m¼0N;1N;1P;0P
C ið Þl;b;mn;a;g

t l½ � b½ � m½ �h ii

 ! !
:

ð25Þ

Here, the minimum was applied so that t[n, a,
g]i £ t[a]i is fulfilled in any case. Finally, by substituting
tp

n;g
i in Eq. (19) with the approximations in Eq. (23),

we obtain an ODE:

dtpi
dt
¼

X
n;g¼N;P

tAi n; gð Þ � tWi n; gð Þ � tpi 	 tBi � tpi;

i ¼ 1; . . . ; nu; ð26Þ

tWi n; gð Þ ¼

tW n; 0N; g; ið Þ 0 0 0
0 tW n; 1N; g; ið Þ 0 0
0 0 tW n; 1P; g; ið Þ 0
0 0 0 tW n; 0P; g; ið Þ

2
664

3
775; ð24Þ

 0
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FIGURE 3. Ca-transients applied for the determination of
ODE parameters. The last four were generated using the
equation by Rice et al.20 with the parameter set listed in
Appendix.
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where the 4 9 4 matrix tBi is given by

tBi ¼
X

n;g¼N;P

tAi n; gð Þ � tWi n; gð Þ: ð27Þ

The validity of this conceptual framework was
supported by the excellent predictive power of the
ODE model. Although there is no theoretical reason
for adopting the exponential function in Eq. (21), we
empirically found this style of function enhanced the
approximation of temporal rate changes, especially for
values close to zero.

Details of the determination and estimation of the
ODE parameters are shown in the Appendix.

Interpolation of the ODE Parameters for the
Simulations of Shortening Contraction

As previously shown, the parameters C ið Þl;b;mn; a; g can
be estimated for individual MHs at a fixed SL. For the
ODE simulation of shortening contraction where the
SL is continuously changing, we adopted an interpo-
lation method that uses the parameter values obtained
at multiple SL’s {SL0, SL1,…,SLNSL} with a constant
interval DSL = SLk � SLk�1. Namely, for any SL
between SL0 and SLNSL:

C ið Þl;b;mn;a;g ¼ 1� gð ÞC SLk�1; ið Þl;b;mn;a;gþgC SLk; ið Þl;b;mn;a;g

for SLk�1 � SL� SLk; SL¼ 1� gð ÞSLk�1þ gSLk;

ð28Þ

In this study, DSL = 0.05 lm was adopted.

Computation

To reduce computational costs, the transition
matrices t

Ai(n, g) in Eq. (12) and t
Bi in Eq. (27) (only

for ODE) are updated only at 0.25 ms intervals,
whereas the MC states and ODE solutions are updated
at 2.5 ls intervals. Such a treatment significantly
reduces the computational time for MC and ODE
simulations without introducing recognizable error.

The MC and ODE simulation codes were written
and executed using Fortran90 on a single core of Intel
Xeon X7560 (2.27 GHz). The total number of MHs
was 36. Using this previously described protocol, the
computation of one sample of the MC simulation took
0.82 s per one second time length. To obtain reason-
able mean values, more than a thousand MC samples
were required. In contrast, an ODE that used the
approximation given in Eqs. (19), (23) and (24) took
0.64 s per one second time length. Thus, the ODE
model allowed a great reduction in computational
time.

RESULTS

Monte Carlo Simulation

In Fig. 4, the results from the MC simulations under
steady-state condition are shown for force (in the fol-
lowing text, we use the fraction of bound cross-bridges
[P](=[0P] + [1P]) as an index of developed force)–SL
relations (Fig. 4a) and [P]–pCa relations (Fig. 4b).
[P]–pCa relation clearly demonstrated a significant
increase in the maximum Ca2+-activated force and
increased Ca2+-sensitivity (a leftward shift of [Ca50]) at
longer SLs (see also Table 2), which is consistent with
previous reports.5,14 The Hill coefficient decreased a
little at short SLs, but its SL dependence was much

FIGURE 4. Results of MC simulation. Simulation was per-
formed under constant Ca concentration and SL for 800 s
(3.2 3 108 steps). Data from the equilibrium phase (400–800 s)
were averaged. The number of the P-state (0P + 1P) was
assumed as the index of force. (a) Force–length (SL) relations
shown for different Ca concentrations ranging from 0.56 to
3.55 lM. (b) [P]–pCa relations obtained for different SLs
ranging from 1.45 to 2.15 lm. (c) SL dependence of the Hill
coefficient. Simulation results (closed circle) were compared
with the experimental results by Kentish et al.14 (open square)
and Dobesh et al.5 (closed square).
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smaller than that reported by Kentish et al.14 and
closer to the recent results reported by Dobesh et al.5

(Fig. 4c). Data were not available for the shorter range
of SLs in either of these experimental studies.

Estimates of the ODE Parameters

The estimation of
P

C ið Þl;b;mn; a; g
t l½ � b½ � m½ �h ii in Eq. (22)

was performed using the least square results of
nu = 36 for each SL. MC simulation data were
obtained from 10,000 samples for the Ca-transient that
consists of the six peaks (Fig. 3). The results of this
estimation analysis are shown for the units in the
middle (MH18) and near the filament edge (MH5) at

SL = 2.2 lm, in Fig. 5. Comparing the esti-

mated values of
P

C ið Þl;b;mn; a; g
t l½ � b½ � m½ �h ii

� �
with the

log t½n; a; g�i=t½a�i
� �

(Eq. (22)) obtained from the MC

simulations, fairly good approximations are attained
overall, for all combinations of the indices and the
units. However, we found variations that were depen-
dent on the location of the units. For example,
observing the unit located in the middle of the filament
(MF18), the plots for n, g = P, N and n, g = N, P in
each of its states (0N, 1N, 1P, and 0P) (middle two
rows of Fig. 5a) show similar patterns because of the
unit’s symmetrical position along the filament, whereas
the corresponding plots for the unit near the edge
(MF5) (middle two rows of Fig. 5b) show considerable
differences. These findings indicate that the present
estimation model is capable of capturing heteroge-
neous trends, which the models with the ring
arrangement of the units3,19 cannot reproduce.

Furthermore, wide variation is found in the values of
log tW(n, a, g, i), supporting the use of a logarithmic scale
when the close examination of tW(n, a, g, i) is required.

Comparing the ODE Model and MC Simulation Results

The ODE (Eq. (19)) was simulated using the
approximations in Eqs. (23) and (24) to obtain the
temporal changes of the fraction of bound cross-bridges

TABLE 2. Fitted Hill equation parameters for the MC
simulation data.

SL (lm) [P]max [Ca50] (lM)

Hill

coefficient nH

1.55 0.567 1.40 3.96

1.65 0.645 1.12 4.29

1.75 0.716 0.94 4.40

1.85 0.787 0.81 4.58

1.95 0.856 0.70 4.70

2.05 0.920 0.61 4.82

2.15 0.957 0.53 5.23

2.25 0.967 0.50 5.62

FIGURE 5. The least square fitting of the parameters. The values of
P

C(i)
l;b;m
n; a; g

IT h[l][b][m]ii (red lines) estimated from the least
square problem of Eq. (6) are compared with log W(n, a, g, i, IT) (circles), calculated from the MC simulation results using 10,000
samples for various combinations of the MH state (a, column) and the neighboring states (n and g, row). All results are from the
MH18 (the central unit in the filament) in the left panel and from MH5 (near the left end of MF) in the right panel, respectively, for
SL = 2.2 lm.
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[P] in response to the last fourCa peaks inFig. 3, and the
results were compared with those from the MC simu-
lation at different SLs [1.9 and 2.2 lm (Fig. 6)]. In all
MHs at both SLs, the ODEmodel andMC simulations
correlated well. To clearly demonstrate the agreement,
the absolute values of their differences were also shown
(ERROR in Fig. 6).

Effects of SL on Twitch Duration

Using the same parameter set, we simulated a series
of isometric twitches using both the MC simulation
and the ODE model while varying the SL and com-
pared the time courses with the experimental results
reported by Janssen et al.12 (Fig. 7). Because the Ca
transient was not measured in Janssen’s study, we
applied the Ca transient shown in the bottom panel,
and the force and [P] values were normalized by their
peak values at SL = 2.2 lm. Both the MC simulation
(Fig. 7a) and the ODE model (Fig. 7b) reproduced the
experimental results reasonably well and clearly
showed the SL dependence of twitch duration.

Simulations of Isometric and Shortening Twitches

Next, we applied a Ca transient reported in Janssen
anddeTombe11 to simulate a twitchunder both isometric

and shortening contraction (Fig. 8). Again we used the
same parameter set, and the force and [P] values were
normalized by the respective isometric peak values. For
the simulation of a shortening twitch, we applied the
time course ofSL, and the interpolatedparameter values
were used for continuously changingSLs as described in
the methods. Both the MC and ODE simulations suc-
cessfully reproduced the experimental results (R2 =
0.987 for MC andR2 = 0.982 for ODE in the isometric
contraction, and R2 = 0.988 for MC and R2 = 0.977
for ODE in the shortening contraction), however, to
obtain the reasonable agreement, it was necessary to
apply the Ca transient recorded under isometric condi-
tion to shortening twitch. The reason is not clear, but the
use of [P] as the index of force and the absence of
mechanisms regulating the affinity of Ca2+ to troponin
C in themodelmay account for this contradictory result.

Effect of Cross-Bridge Kinetics on Force Relaxation

Finally, we examined the effect of cross-bridge
kinetics on force relaxation by the MC and ODE
simulations. For comparison, we adopted the results
reported by Fitzsimons et al.7 in which a stepwise
reduction in the Ca2+ concentration was applied to
skinned rat trabeculae composed of either 80%

FIGURE 6. Comparisons between the ODE model and MC simulation at individual MHs. The fraction of bound cross-bridges [P]
calculated using the ODE model (middle column) are compared with the MC simulation results (left column) while applying the Ca
transients in Fig. 3. SL was set at 1.9 lm (top rows) or 2.2 lm (bottom rows). MC data are displayed as averaged values of 10,000
samples. The absolute values of the differences between the ODE and MC solutions are shown as ERROR (right column). The
colors indicate the values (blue:0.0 red:0.3) of ratio (the fraction of bound cross-bridges [P]) (blue:0.0 red:0.3).
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a-myosin heavy chain (control) or 100% b-myosin
heavy chain (hypothyroid). We used the same param-
eter set for control and reduced the rate constant
(Kbasic 10 to 3 in Eq. (5)) for the hypothyroid case to
replicate the slow cycling rate of a b-myosin heavy
chain. To obtain agreement between the MC and ODE
simulations (R2 = 0.976), we used a memory length of
250 ms for the hypothyroid case. Both the MC and
ODE simulations reproduced the exponential decline
in [P] and the delay in force decline in the hypothyroid
preparations that were observed in the experiment
(Fig. 9). The half-times for relaxation (control vs.
hypothyroid (ms)) were 80 and 152 (MC), and 72 and
117 (ODE) thus comparable to the experimental results
(56 and 144) showing a 2-fold increase by hypothy-
roidism. Normalization of [P] by the initial value of the
MC simulation made the initial ODE value greater
than unity because of the differences in the numerical
results between the two methods.

DISCUSSION

In this study, we propose an ODE model of the
cardiac sarcomere dynamics with which we can
approximate the results of MC simulation performed
on the spatially detailed sarcomere model. By this
approach, we reduced the huge computational cost
usually required for MC simulations. Very recently,
Campbell et al.3 developed an ODE model similar to
this model that describes nearest neighbor interactions.
Their Markov model approach, without using
approximation, theoretically gives us the accurate
solution of the system, but the use of a ring configu-
ration for the small number of regulatory units cannot
reproduce the behavior of the units at the filament ends
thus introducing errors. Additionally, the computa-
tional costs can become significant as the number of
units approaches that of the actual thin filament.
Furthermore, the ring simplification does not allow the

FIGURE 7. SL dependence of twitch durations. Isometric twitches were compared while varying the SL. (a) Comparisons between
the experiment (symbols) and MC simulation (lines); (b) comparisons between the experiment (symbols) and ODE (lines);
(c) applied Ca transient.
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simulation of SL change during the physiological
contraction. Our ODE model with a realistic number
of units in linear arrangement demonstrated good
correlation with the MC simulation. Moreover, the
results from our ODE model indicated that it can
be applied to a wide range of cardiac physiology
simulations.

Spatially-Detailed Sarcomere Model

The framework of the sarcomere model was adopted
from the Ising model by Rice et al.19 with modifica-
tions. First, to fit the fraction of bound cross-bridges–
pCa curves (Fig. 4 upper panel), modulatory factors for
Ca binding (vRA) and cross-bridge formation
(vRA Æ vLA) were multiplied by the transition rates. This
modification also aided the reproducibility of the force–
length relations.6,17 Importantly, it was confirmed that
in different sets of data, the predictive power of the

ODE model is independent of the factors vRA and vLA
indicating that the ODE model could accommodate the
modifications made to it.

Mean Field ODE vs. Spatially-Detailed Models

To avoid the expensive MC simulations required for
spatially detailed models of the sarcomere, various
ODE models describing the average behavior of the
regulatory unit have been reported,13,15,20,21 but the
problems and difficulties in the construction of such a
mean field ODE model were pointed out in the liter-
ature.18 Because cooperativity involves the interactions
among the spatially arranged molecules, heteroge-
neous responses of the units are naturally expected
and, in fact, the MC simulation studies reported het-
erogeneous activities of the units during activation.10,22

Our MC simulation also revealed the heterogeneous
activities of the units especially near the edge because
these units lacking their neighbors on one side are
destined to have small probability for making cross-
bridges. The smaller probability of these edge units in
turn affects the kinetics of the adjacent units to reduce
their probabilities. In this manner, the edge effect is
transmitted to the center of the filament, although
progressively attenuated, to create the symmetrical

FIGURE 8. Model predictions of twitch contractions in
response to experimentally observed Ca transient. Simula-
tions were performed under isometric and shortening condi-
tions. Ca transient (bottom panel) and length change (top
panel) were digitized from the study by Janssen et al.11 Cal-
culated force ([P] values) was compared for isometric (case 1)
and shortening (case 2) among the MC simulation (solid
lines), ODE (dotted lines), and experimental results (symbols).
[P] and force were normalized relative to the peak isometric
values.

FIGURE 9. The effect of cross-bridge kinetics on the relax-
ation of force. We simulated experiments by Fitzsimons et al.,7

in which a step reduction in Ca2+ concentration (bottom panel)
was applied to the skinned muscle preparations in which
myosin isoform composition was either 80% a-myosin heavy
chain or 100% b-myosin heavy chain. Top panel shows the
comparison for 80% a(experiment: square, MC: thick solid
line, ODE: thick dotted line) and 100% b(experiment: circle,
MC: thin solid line, ODE: thin dotted line).
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probability distribution as shown in Fig. 6. On the
other hand, the probability distribution in this study
(Fig. 6) is continuous thus making clear contrast to
other spatial MC models, which show discrete ‘‘pock-
ets’’ in probability distributions.2,10 This difference was
originated by our assumption of homogeneous binding
probability along the thin filament which ignores the
discrete distribution of myosin binding site and dif-
ferences in their interval (pitch) from that of MHs.
With the inclusion of these structural properties, our
ODE model will be able to provide detailed informa-
tion on the activity of each unit and the overall sar-
comere without the added computational cost, which
an ordinary mean-field approach can never attain.

Memory Length

In the ODE simulations, we introduced the memory
length as the parameter for the estimation of the com-
binatory probability of the states. As expected from
Eq. (20), thememory length should be comparable to the
lifetime of each state, which in turn reflects the cycling
rate of cross-bridges. In fact, for the simulation of dif-
ferent myosins (Fig. 9), we needed to adjust the memory
length. Such an adjustment is needed for myosins with
different levels of light chain phosphorylation.

Application of the Model

We applied our model to the contraction simulation
under a wide range of conditions and compared the
results with experimental reports. Under steady-state
conditions, [P]–pCa relations showed a weak depen-
dence of the Hill coefficient on SL, which is close to
recent data obtained under precise SL control. In
response to the dynamic Ca transients, the model suc-
cessfully reproduced the SL dependence of twitch
duration under isometric conditions as well. However,
the salient feature of the present model is its applicability
to the shortening contraction. Although the present
application was limited to the case of prescribed length
change, the incorporation of a viscoelastic element to the
model will enable us to simulate the dynamic experiment
with a dynamically changing afterload.

Limitation

Our ODE approximation method is based on the
assumption that the combinatory state probabilities of
three consecutive MHs can be represented as functions
of the state probabilities of single units, but does not
have any firm theoretical basis. Yet, the good predic-
tive power in the simulation tests provides strong
support to the validity of the model. However, we
cannot be sure whether we can obtain similar results

under other conditions. Further studies are needed.
Finally, to evaluate accurately the generated force in
heart muscle contraction simulations, we must further
introduce viscoelastic effects to the units in P-states.

Future Directions

The development of an ODE model that approxi-
mates a spatially detailed model may open the possi-
bility of the application of such models to a large scale
model of circulation, such as the finite element model
of the heart. However, the theoretical basis of the
present ODE approximation remains to be elucidated.

APPENDIX

Determination of the Parameters from
MC Simulation Results

The data obtained from the MC simulations of
duration [T0:T1] was divided into bins of equal time
intervals (DT = 2.5 ms). Because updating in MC
simulation was made every Dt = 2.5 ls, each bin was
composed of 1000 data sets. In each updating step at
each MHi, the number of combinational states corre-
sponding to (ni�1, ai, gi+1) were counted, where ni�1,
gi+1=N or P and ai = 0N, 1N, 1P, or 0P. Results
were stored in a 2 9 4 9 2 9 nu 9 NT sized array
cnt16(ni�1, ai, gi+1, i, IT) for bin number
IT = 1,…,NT(NT = T/DT) by using the following
indexing: N = 1, P = 2 and 0N = 1, 1N = 2,
1P = 3, and 0P = 4. The above procedure was per-
formed for the MC simulations repeated over 10,000
times for a single Ca condition (Fig. 3) to fill the array
cnt16(ni�1, ai, gi+1, i, IT). The following arrays (cnt4
and cnt2) were generated from this data holding the
number of individual state of the MHi in bin IT.

cnt4 a;i;ITð Þ¼
X

n;g¼N;P
cnt16 n;a;g;i;ITð Þ

cnt2 l;i;ITð Þ¼
cnt4 0N;i;ITð Þþcnt4 1N;i;ITð Þ; ifl¼N

cnt4 0P;i;ITð Þþcnt4 1P;i;ITð Þ; ifl¼P

�

ðA1Þ

Dividing the elements of these two arrays by the
total number of data provides the estimate of proba-
bility. Therefore, we can obtain the following ratio that
approaches the left-hand side in Eq. (21) as the number
of samples increases.

W n; a; g; i; ITð Þ ¼ cnt16 n; a; g; i; ITð Þ
cnt4 a; i; ITð Þ �

t n; a; g½ �i
t a½ �i

; ðA2Þ

for (IT � 1) Æ DT £ t £ IT Æ DT.
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Approximations of t l½ � b½ � m½ �h ii can also be obtained
from cnt4 by applying the backward Euler time inte-
gration scheme to the ODE:

d

dt
t l½ � b½ � m½ �h iiþ

1

s
t l½ � b½ � m½ �h ii¼

1

s
t l½ �it b½ �it m½ �i;T0<t � T1

ðA3Þ

that is fulfilled by t l½ � b½ � m½ �h ii in Eq. (20) in the main
text. This results in the following:

ITþ1 l½ � b½ � m½ �h i ¼ 1

DTþ s

 
s � IT l½ � b½ � m½ �h i

þDT �mcntðl; b; m; i; ITÞ
DT=Dtð Þ3�MT3

!

with mcntðl; b; m; i; ITÞ ¼ cnt4 l; i; ITð Þcnt4
� b; i; ITð Þcnt4 m; i; ITð Þ:

ðA4Þ

Here, MT is the repeat number of MC simulations,
and the interval index IT is identified with time
t = IT Æ DT � T0.

The parameters C ið Þl;b;mn; a; g were determined by mini-
mizing the residual R in its logarithmic form as:

R n; a; g; i; ITð Þ ¼ log W n; a; g; i; ITð Þ
�

X
l;b;m¼0N;1N;1P;0P

C ið Þl;b;mn;a;g
IT l½ � b½ � m½ �h i:

ðA5Þ

In practice, we solved the following least-square
problem for errors with weights of bias (cnt16) on the
logW values derived from the larger number of sam-
ples assuming their reliability.

E n; a; g; ið Þ ¼
XNT

IT¼1

cnt16 n; a; g; i; ITð Þ
MT

R n; a; g; i; ITð Þ2

þ e
X
l;b;m

C ið Þl;b;mn; a; g�C
� �2

ðA6Þ

Through this procedure, W = 0 is naturally elimi-
nated in the error evaluation. The second term on the

right-hand side of Eq. (A6) was added to avoid
extraordinarily large values for the parameters
C ið Þl;b;mn;a;g: In our simulations, e = 10�5 and C ¼ �10
were adopted.

The least square problem for the error E in Eq. (A6)
results in the following system of linear equations with
64 unknowns C ið Þ�l;�b;�mn;a;g ð�l; �b;�m ¼ 0N; 1N; 1P; 0PÞ:

X
�l;�b;�m

a
�l;�b;�m
l;b;m þ e d�l;�b;�m

l;b;m

� �
C ið Þ�l;�b;�mn;a;g¼ bl;b;m;

l; b; m ¼ 0N; 1N; 1P or 0P ðA7Þ

Here, the coefficients in Eq. (A7) are given by

a
�l;�b;�m
l;b;m¼

XNT

IT¼1

cnt16 n;a;g;i;ITð Þ
MT

IT l½ � b½ � m½ �h i IT �l½ � �b
� �

�m½ �
	 


þe;

bl;b;m¼
XNT

IT¼1

cnt16 n;a;g;i;ITð Þ
MT

IT l½ � b½ � m½ �h i

� logW n;a;g;i;ITð Þ�e C ið Þl;b;mn;a;g�C
� �

;

d�l;�b;�m
l;b;m¼

1; if�l¼l;�b¼b;�m¼m;

0; otherwise:

(
ðA8Þ

Generation of test Ca transients

The last 4 Ca transients in Fig. 3 were generated by
the following equation proposed by Rice et al.,20 with
the parameter set listed below.

with

b ¼ s1
s2

� ��1= s1
s2
�1

� �

� s1
s2

� ��1= s2
s1
�1

� �

: ðA10Þ

1st: tstart ¼ 0:05 s; Cadiastolic ¼ 0:07 lM;

Caamplitude ¼ 1:4 lM; s1 ¼ 0:02 s; s2 ¼ 0:11 s

2nd: tstart ¼ 1:05 s; Cadiastolic ¼ 0:07 lM;

Caamplitude ¼ 2:8 lM; s1 ¼ 0:02 s; s2 ¼ 0:11 s

Ca½ �ðtÞ ¼
Cadiastolic
Caamplitude �Cadiastolic

b

� �
� exp � t�tstart

s1

� �
� exp t�tstart

s2

� �� �
þ Cadiastolic

(
ðA9Þ
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3rd: tstart ¼ 2:05 s; Cadiastolic ¼ 0:07 lM;

Caamplitude ¼ 1:4 lM; s1 ¼ 0:02 s; s2 ¼ 0:14 s

4th: tstart ¼ 3:05 s; Cadiastolic ¼ 0:07 lM;

Caamplitude ¼ 2:8 lM; s1 ¼ 0:02 s; s2 ¼ 0:14 s
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