Skip to main content

Advertisement

Log in

Particle Size Reduction during Harvesting of Crop Feedstock for Biogas Production I: Effects on Ensiling Process and Methane Yields

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Shortening chopping length at harvest of biogas crops is a basic method of mechanical pretreatment that potentially affects subsequent conservation and biogas production processes. The objective of this study was to assess the influence of a wider range of particle size distributions achieved by laboratory chopping and of practice-oriented short and very short chopping lengths induced by forage harvesters, respectively, on ensiling parameters and methane formation. Shortening the cutting length enhanced lactic acid fermentation during ensiling and increased methane yield, although the effects of ensilage products on methane production partly overlaid the direct positive influence due to reduced particle size. A maximum increase in methane yield of 11 % to 13 % was obtained in the range of median particle lengths of 33 to 6 mm when taking storage losses into account. Thus, very short chopping lengths are beneficial for conservation and methane formation, yet full assessment necessitates further consideration of additional expenditures at harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    Article  PubMed  CAS  Google Scholar 

  2. Braun R, Weiland P, Wellinger A (2008) Biogas from energy crop digestion. IEA Bioenergy. http://www.iea-biogas.net/. Accessed 14 January 2011

  3. Muck RE, Moser LE, Pitt RE (2003) Postharvest Factors Affecting Ensiling. In: Al-Amoodi L, Barbarick KA, Volenec JJ, Dick WA (eds) Silage Science and Technology, vol 42. Agronomy. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA, pp 251–303

  4. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  PubMed  CAS  Google Scholar 

  5. Shinners JK (2003) Engineering Principles of Silage Harvesting Equipment. In: Al-Amoodi L, Barbarick KA, Volenec JJ, Dick WA (eds) Silage Science and Technology, vol 42. Agronomy. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA, pp 361–403

  6. Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31(14):2385–2392

    Article  CAS  Google Scholar 

  7. Palmowski L (2000) Zerkleinerungs- und Abbauverhalten organischer Materialien (Comminution and degradation behaviour of organic materials). Dissertation, Technische Universität Braunschweig, Cuvillier Verlag Göttingen, Germany

  8. Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17(4):251–263

    Article  CAS  Google Scholar 

  9. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  PubMed  CAS  Google Scholar 

  10. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102(8):5153–5161

    Article  PubMed  CAS  Google Scholar 

  11. VDLUFA (2006) Die chemische Untersuchung von Futtermitteln (The chemical analyses of forage). Methodenbuch Band III., 3rd edn. 6th supplementary delivery, VDLUFA-Verlag, Darmstadt, Germany

  12. Weißbach F, Kuhla S (1995) Substance losses in determining the dry matter content of silage and green fodder: arising errors and possibilities of correction. Übersicht Tierernährung 23:189–214

    Google Scholar 

  13. Ankom (2006) Operator's Manual Ankom2000 Fibre Analyzer. Ankom Technology, Macedon, NY, USA. http://www.ankom.com. Accessed 13 April 2011

  14. VDI Verein Deutscher Ingenieure (2006) VDI 4630: Vergärung organischer Stoffe. Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche (VDI 4630: fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data, fermentation tests), Beuth Verlag, Berlin, Germany

  15. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5(1):95–111

    Article  CAS  Google Scholar 

  16. Edwards D, Berry JJ (1987) The efficiency of simulation-based multiple comparison. Biometrics 43:913–928

    Article  PubMed  CAS  Google Scholar 

  17. McDonald P, Henderson AR, Heron SJE (1991) The biochemistry of silage, 2nd edn. Chalcombe Publications, Marlow

    Google Scholar 

  18. Weißbach F, Schmidt L, Hein E (1974) Method of anticipation of the run of fermentation in silage making, based on the chemical composition of green fodder. In: XII International Grassland Congress, Moskau, 11.-20. June 1974, pp 663–672

  19. Black JR, Ely LO, McCullough ME, Sudweeks EM (1980) Effects of stage of maturity and silage additives upon the yield of gross and digestible energy in sorghum silage. J Anim Sci 50(4):617–624

    Google Scholar 

  20. De Boever JL, De Smet A, De Brabander DL, Boucque CV (1993) Evaluation of physical structure. 1. Grass silage. J Dairy Sci 76(1):140–153

    Article  Google Scholar 

  21. Bal MA, Shaver RD, Jirovec AG, Shinners KJ, Coors JG (2000) Crop processing and chop length of corn silage: effects on intake, digestion, and milk production by dairy cows. J Dairy Sci 83(6):1264–1273

    Article  PubMed  CAS  Google Scholar 

  22. Guth N (1995) Unterschiedliche Häckselgutstruktur von Halmfutter: Einfluß auf Futteraufnahme, Leistung und Kauverhalten von Rindern, Silagequalität und Häckselleistungsbedarf sowie bildanalytische Vermessung der Futterstruktur (Analyses of different structures of chopped forage: Influence on feed intake, performance and chewing behaviour of cattle, silage quality and chopping power requirement as well as the measurement of the forage structure by image analysis). Dissertation, Justus-Liebig-Universität, Gießen, Germany

  23. Steinhöfel O, Thaysen J (2006) Silagen aus Getreideganzpflanzen (Silages from whole crop cereals). In: Praxishandbuch Futterkonservierung. 7th edn. DLG-Verlag-GmbH, Frankfurt am Main, Germany, pp 109–113

  24. Wilson RK (1985) Laboratory studies on chemical, electrical-resistance and physical changes in grass silage over the first 14 days. Ir J Agr Res 24:39–47

    Google Scholar 

  25. Klimiuk E, Pokój T, Budzynski W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101(24):9527–9535

    Article  PubMed  CAS  Google Scholar 

  26. Kaparaju P, Luostarinen S, Kalmari E, Kalmari J, Rintala J (2002) Co-digestion of energy crops and industrial confectionery by products with cow manure: batch-scale and farm-scale evaluation. Water Sci Technol 45(10):275–280

    PubMed  CAS  Google Scholar 

  27. Bruni E, Jensen AP, Pedersen ES, Angelidaki I (2010) Anaerobic digestion of maize focusing on variety, harvest time and pretreatment. Appl Energy 87(7):2212–2217

    Article  CAS  Google Scholar 

  28. Andrade D, Marin-Perez C, Heuwinkel H, Lebuhn M, Gronauer A (2009) Biogasgewinnung aus Grassilage: Untersuchungen zur Prozessstabilität (Biogas production from grass silage: Investigations on process stability). Internationale Wissenschaftstagung Biogas Sience 2009, 02.-04. December 2009, Erding, Germany. http://www.lfl.bayern.de/biogas-science-2009/. Accessed 13 April 2011

  29. Moorhead KK, Nordstedt RA (1993) Batch anaerobic digestion of water hyacinth: effects of particle size, plant nitrogen content, and inoculum volume. Bioresour Technol 44(1):71–76

    Article  CAS  Google Scholar 

  30. Plöchl M, Zacharias H, Herrmann C, Heiermann M, Prochnow A (2009) Influence of silage additives on methane yield and economic performance of selected feedstock. Agric Eng Int: the CIGR ejournal Manuscript 1123. Vol. XI:1–16

Download references

Acknowledgements

The authors wish to express their gratitude to Giovanna Rehde and her team, as well as Lars Eulenburg for assistance with laboratory work, and to Jutta Venzke, Angelika Krüger, and Astrid Zimmermann for conducting particle size analyses. We are also grateful to Detlef May, Martin Schulze and Uwe Mertin for facilitation of field experiments and for supplying crop materials. This research was financially supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (FKZ 2200–2605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, C., Heiermann, M., Idler, C. et al. Particle Size Reduction during Harvesting of Crop Feedstock for Biogas Production I: Effects on Ensiling Process and Methane Yields. Bioenerg. Res. 5, 926–936 (2012). https://doi.org/10.1007/s12155-012-9206-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9206-2

Keywords

Navigation