Skip to main content
Log in

Real gauge singlet scalar extension of the Standard Model: A possible candidate for cold dark matter

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z 2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z 2 symmetry on S. Considering S as a possible candidate of CDM, Boltzmann’s equation is solved to find the freeze-out temperature and relic density of S for Higgs mass 120 GeV in the scalar mass range 5 GeV to 1 TeV. As HHSS coupling δ 2 appearing in Lagrangian depends upon the value of scalar mass m S and Higgs mass m h, the m S − δ 2 parameter space has been constrained by using the Wilkinson microwave anisotropy probe (WMAP) limit on the relic density of DM in the Universe and the results of recent ongoing DM direct search experiments, namely CDMS-II, CoGeNT, DAMA, EDELWEISS-II, XENON-10 and XENON-100. From such analyses, two distinct mass regions are found (a lower and higher mass domain) for such a DM candidate that satisfy both the WMAP limit and the experimental results considered here. The possible differential direct detection rates and annual variation of total detection rates have been estimated for this scalar DM candidate S for two detector materials, namely Ge and Xe. Finally, the γ-ray flux has been calculated from the galactic centre due to annihilation of two 130 GeV scalar DM into two monoenergetic γ-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. WMAP Collaboration: D N Spergel et al, Astrophys. J. Suppl. 170, 377 (2007) WMAP Collaboration: E Komatsu et al, Astrophys. J. Suppl. 180, 330 (2009)

    Google Scholar 

  2. D E McLaughlin, arXiv:astro-ph/9812242

  3. E L Lokas and G A Mamon, Mon. Not. R. Astron. Soc. 343, 401 (2003), arXiv:astro-ph/0302461

  4. M Bradac, Nucl. Phys. Proc. Suppl. 194, 17 (2009)

    Article  ADS  Google Scholar 

  5. V Silveira and A Zee, Phys. Lett. B161, 136 (1985)

    MathSciNet  ADS  Google Scholar 

  6. M C Bento, O Bertolami, R Rosenfeld and L Teodoro, Phys. Rev. D62, 041302 (2000), arXiv:astro-ph/0003350 J McDonald, Phys. Rev. Lett. 88, 091304 (2002), arXiv:hep-ph/0106249 H Davoudiasl, R Kitano, T Li and H Murayama, Phys. Lett. B609, 117 (2005), arXiv:hep-ph/0405097 D O’Connell, M J Ramsey-Musolf and M B Wise, Phys. Rev. D75, 037701 (2007), arXiv:hep-ph/0611014 V Barger, P Langacker, M McCaskey, M J Ramsey-Musolf and G Shaughnessy, Phys. Rev. D77, 035005 (2008), arXiv:0706.4311 [hep-ph] Carlos E Yaguna, J. Cosmol. Astropart. Phys. 0903, 003 (2009), arXiv:0810.4267 [hep-ph] X G He, T Li, X Q Li, J Tandean and H C Tsai, Phys. Rev. D79, 023521 (2009), arXiv:0811.0658 [hep-ph] X G He, T Li, X Q Li, J Tandean and H C Tsai, Phys. Lett. B688, 332 (2010), arXiv:0912.4722 [hep-ph] X G He, S Y Ho, J Tandean and H C Tsai, Phys. Rev. D82, 035016 (2010), arXiv:1004.3464 [hep-ph] A Bandyopadhyay, S Chakraborty, A Ghosal and D Majumdar, J. High Energy Phys. 1011, 065 (2010), arXiv:1003.0809 [hep-ph] M Asano and R Kitano, Phys. Rev. D81, 054506 (2010), arXiv:1001.0486 [hep-ph]

    Google Scholar 

  7. M H G Tytgat, arXiv:1012.0576 [hep-ph]

  8. S Andreas, T Hambye and M H G Tytgat, J. Cosmol. Astropart. Phys. 0810, 034 (2008), arXiv:0808.0255 [hep-ph]

    Article  ADS  Google Scholar 

  9. The DAMA Collaboration: R Bernabei et al, Eur. Phys. J. C56, 333 (2008); AIP Conf. Proc. 698, 328 (2004); Int. J. Mod. Phys. D13, 2127 (2004)

  10. The CoGeNT Collaboration: C E Aalseth et al, arXiv:1002.4703 [astro-ph.CO]

  11. The CDMS-II Collaboration: Z Ahmed et al, arXiv:0912.3592 [astro-ph.CO]

  12. S Andreas, C Arina, T Hambye, F S Ling and M H G Tytgat, Phys. Rev. D82, 043522 (2010), arXiv:1003.2595 [hep-ph]

    ADS  Google Scholar 

  13. XENON 100 Collaboration: E Aprile et al, arXiv:1104.2549v2 [astro-ph.CO]

  14. A Liam Fitzpatrick, D Hooper and K M Zurek, arXiv:1003.0014 [hep-ph]

  15. A A Abdo et al, Astrophys. J. 712, 147 (2010), arXiv:1001.4531 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. C Arina and M H G Tytgat, J. Cosmol. Astropart. Phys. 1101, 011 (2011), arXiv:1007.2765 [astro-ph.CO] C Balazs, N Sahu and A Mazumdar, J. Cosmol. Astropart. Phys. 0907, 039 (2009), arXiv:0905.4302 [hep-ph] K Kohri, J McDonald and N Sahu, Phys. Rev. D81, 023530 (2010), arXiv:0905.1312 [hep-ph] C Arina, F-X Josse-Michaux and N Sahu, Phys. Rev. D82, 015005 (2010), arXiv:1004.3953 [hep-ph]

  17. This is the only parameter in this model which appears in both the expressions of scattering and annihilation cross-section of S and which depends on the masses of scalar S and Higgs h.

  18. CDMS-II Collaboration: Z Ahmed et al, Phys. Rev. Lett. 106, 131302 (2011), arXiv:1011.2482 [astro-ph.CO]

    Article  ADS  Google Scholar 

  19. XENON 10 Collaboration: J Angle et al, Phys. Rev. Lett. 100, 021303 (2008), arXiv:astro-ph/0706.0039 E Aprile and T Doke, Rev. Mod. Phys. 82, 2053 (2010)

  20. CoGeNT Collaboration, C E Aalseth et al, Phys. Rev. Lett. 107, 141301 (2011), arXiv:1106.0650 [astro-ph.CO]

    Article  ADS  Google Scholar 

  21. EDELWEISS Collaboration: E Armengaud et al, arXiv:1103.4070v2 [astro-ph.CO]

  22. P Gondolo and G Gelmini, Nucl. Phys. B360, 145 (1991)

    Article  ADS  Google Scholar 

  23. J McDonald, Phys. Rev. D50, 3637 (1994), arXiv:hep-ph/0702143

    ADS  Google Scholar 

  24. W-L Guo and Y-L Wu, J. High Energy Phys. 1010, 083 (2010), arXiv:1006.2518 [hep-ph]

    Article  ADS  Google Scholar 

  25. Physically, we can say that \(\langle \sigma v \rangle\) is directly proportional to the probability of that process. So, for higher \(\langle \sigma v \rangle\), the probability of pair annihilation of S is high and hence density is low.

  26. M Srednicki, R Watkins and K A Olive, Nucl. Phys. B310, 693 (1988)

    Article  ADS  Google Scholar 

  27. SIMPLE Collaboration: M Felizardo et al, arXiv:1106.3014 [astro-ph.CO]

  28. C P Burgress, M Pospelov and T ter Veldhuis, Nucl. Phys. B619, 709 (2001), arXiv:hep-ph/0011335

    Article  ADS  Google Scholar 

  29. G Jungman, M Kamionkowski and K Griest, Phys. Rep. 267, 195 (1996), arXiv:hep-ph/9506380

    Article  ADS  Google Scholar 

  30. J Engel, Phys. Lett. B264, 114 (1991)

    MathSciNet  ADS  Google Scholar 

  31. A Bottino, V de Alfaro, N Fornengo, G Mignola and S Scolpel, Astropart. Phys. 2, 77 (1994)

    Article  ADS  Google Scholar 

  32. C Weniger, J. Cosmol. Astropart. Phys. 1208, 007 (2012), arXiv:1204.2797 [hep-ph]

    Article  ADS  Google Scholar 

  33. E Tempel, A Hektor and M Raidal, arXiv:1205.1045 [hep-ph]

  34. LAT Collaboration: W B Atwood et al, Astrophys. J. 697, 1071 (2009), arXiv:0902.1089 [astro-ph.IM]

    Article  ADS  Google Scholar 

  35. LAT Collaboration: M Ackermann et al, arXiv:1205.2739 [astro-ph.HE]

  36. S Profumo, L Ubaldi and C Wainwright, Phys. Rev. D82, 123514 (2010), arXiv:1009.5377 [hep-ph]

    ADS  Google Scholar 

  37. J Einasto, Trudy Inst. Astrofiz. Alma-Ata 5, 87 (1965) J F Navarro et al, Mon. Not. R. Astron. Soc. 349, 1039 (2004), astro-ph/0311231

  38. J F Navarro, C S Frenk and S D M White, Astrophys. J. 490, 493 (1997), astro-ph/9611107

    Article  ADS  Google Scholar 

  39. J N Bahcall and R M Soneira, Astrophys. J. Suppl. 44, 73 (1980)

    Article  ADS  Google Scholar 

  40. A Sommerfeld, Annalen der Physik 403, 257 (1931) N Arkani-Hamed, D P Finkbeiner, T R Slatyer and N Weiner, Phys. Rev. D79, 015014 (2009), arXiv:0810.0713 [hep-ph] Q-H Cao, I Low and G Shaughnessy, Phys. Lett. B691, 73 (2010), arXiv:0912.4510 [hep-ph]

Download references

Acknowledgements

The author AB thanks Debabrata Adak for some valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANIRBAN BISWAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BISWAS, A., MAJUMDAR, D. Real gauge singlet scalar extension of the Standard Model: A possible candidate for cold dark matter. Pramana - J Phys 80, 539–557 (2013). https://doi.org/10.1007/s12043-012-0478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0478-z

Keywords

PACS Nos

Navigation