Skip to main content
Log in

Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Rusts are the most important biotic constraints limiting wheat productivity worldwide. Deployment of cultivars with broad spectrum rust resistance is the only environmentally viable option to combat these diseases. Identification and introgression of novel sources of resistance is a continuous process to combat the ever evolving pathogens. The germplasm of nonprogenitor Aegilops species with substantial amount of variability has been exploited to a limited extent. In the present investigation introgression, inheritance and molecular mapping of a leaf rust resistance gene of Ae. caudata (CC) acc. pau3556 in cultivated wheat were undertaken. An F2 population derived from the cross of Triticum aestivum cv. WL711 – Ae. caudata introgression line T291-2 with wheat cultivar PBW343 segregated for a single dominant leaf rust resistance gene at the seedling and adult plant stages. Progeny testing in F3 confirmed the introgression of a single gene for leaf rust resistance. Bulked segregant analysis using polymorphic D-genome-specific SSR markers and the cosegregation of the 5DS anchored markers (Xcfd18, Xcfd78, Xfd81 and Xcfd189) with the rust resistance in the F2 population mapped the leaf rust resistance gene (LrAC) on the short arm of wheat chromosome 5D. Genetic complementation and the linked molecular markers revealed that LrAC is a novel homoeoallele of an orthologue Lr57 already introgressed from the 5M chromosome of Ae. geniculata on 5DS of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen P. D., Tsujimoto H. and Gill B. S. 1994 Transfer of Ph I genes promoting homeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88, 97–101.

    CAS  Google Scholar 

  • Chhuneja P., Kaur S., Goel R. K., Aghaee-Sarbarzeh M., Prashar M. and Dhaliwal H. S. 2008 Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet. Res. Crop Evol. 55, 849–859.

    Article  Google Scholar 

  • Dyck P. L., Kerber E. R. and Marters J. W. 1990 Transfer of a gene for stem rust resistance from Aegilops caudata to common wheat. Can. J. Plant Sci. 70, 931–934.

    Article  Google Scholar 

  • Endo T. R. 1990 Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 65, 135–152.

    Article  Google Scholar 

  • Friebe B., Schubert V., Bluthner W. D. and Hammer K. 1992 C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum–Ae. caudata and six derived chromosome additional lines. Theor. Appl. Genet. 83, 589–596.

    Google Scholar 

  • Friebe B., Qi L. L., Nasuda A., Zhang P., Tuleen N. A. and Gill B. S. 2000 Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101, 51–58.

    Article  Google Scholar 

  • German S., Barcellos A., Chaves M., Kohli M., Campos P. and Viedma L. 2007 The situation of common wheat rusts in the southern Cone of America and perspectives for control. Aust. J. Agric. Res. 58, 620–630.

    Article  Google Scholar 

  • Gill B. S., Browder L. E., Hatchett J. H., Harvey T. L., Martin T. J., Raupp W. J. et al. 1983 Disease and insect resistance in wild wheats. In Proceedings of the 6th International Wheat Genetics Symposium (ed. S. Sakamoto), pp. 785–792. Faculty of Agriculture, Kyoto University, Japan.

  • Gill B. S., Sharma H. C., Raupp W. J., Browder L. E., Hatchett J. H., Harvey T. L. et al. 1985 Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breeding 69, 314–316.

    Google Scholar 

  • Khush G. S. and Brar D. S. 1992 Overcoming the barriers in hybridization. In Distant hybridisation of crop plants (ed. G. Kallo and J. B. Chawdhury), pp. 47–61. Springer, Berlin, Germany.

    Chapter  Google Scholar 

  • Kolmer J. A., Jin Y. and Long D. L. 2007 Wheat leaf and stem rust in the United States. Aust. J. Agric. Res. 58, 631–638.

    Article  Google Scholar 

  • Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007a Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114, 1379–1389.

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V., Sood S., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007b A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 47, 1995–2003.

    Article  CAS  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. and Newburg L. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Liu W., Rouse M., Friebe B., Jin Y., Gill B. S. and Pumphrey M. O. 2011 Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 19, 669–682.

    Article  PubMed  CAS  Google Scholar 

  • Marais G. F., Pretorius Z. A., Wellings C. R., McCallum B. and Marais A. S. 2005 Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143, 115–123.

    Article  CAS  Google Scholar 

  • McIntosh R. A., Yamazaki Y., Dubcovsky J., Rogers W. J., Morris C. F., Somers D. J. et al. 2008 Catalogue of gene symbols for wheat. Proceedings of the 11th International Wheat Genetics Symposium. Brisbane, Australia.

  • McIntosh R. A., Yamazaki Y., Rogers W. J., Morris C. F. and Devos K. M. 2010 Catalogue of gene symbols for wheat (http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp).

  • Nayar S. K., Prashar M. and Bhardwaj S. C. 1997 Manual of current techniques in wheat rusts. Research Bulletin No.2, Regional Station, Flowerdale, Shimla India.

  • Park R. F., Bariana H. S. and Wellings C. R. 2007 Preface to ‘global landscapes in cereal rust control’. Aust. J. Agric. Res. 58, 469.

    Article  Google Scholar 

  • Peterson R. F., Campbell A. B. and Hannah A. E. 1948 A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can. J. Res. 26, 496–500.

    Article  Google Scholar 

  • Potz H., Schubert V., Houben A., Schubert I. and Weber W. E. 1996 Aneuploids as a key for new molecular cloning strategies: development of DNA markers by microdissection using Triticum aestivumAegilops markgraffi chromosome addition line B. Euphytica 89, 41–47.

    Article  CAS  Google Scholar 

  • Prins R. and Marais G. F. 1999 A genetic study of the gametocidal effect of the Lr19 translocation of common wheat. S. Afr. J. Plant Soil 16, 10–14.

    Google Scholar 

  • Saghai-maroof M. A., Biyashev R. M., Yang G. P., Zhang Q. and Allard R. W. 1994 Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91, 5466–5470.

    Article  PubMed  CAS  Google Scholar 

  • Schneider A., Molnar I. and Molnar Lang M. 2008 Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19.

    Article  CAS  Google Scholar 

  • Singh H., Tsujimoto H., Sakhuja P. K., Singh T. and Dhaliwal H. S. 2000 Transfer of resistance to wheat pathogens from Aegilops triuncialis into bread wheat. Wheat Info. Serv. 91, 5–10.

    Google Scholar 

  • Somers D. J., Isaac P. and Edwards K. 2004 A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Stakman E. C., Stewart D. and Loegering W. Q. 1962 Identification of physiologic races of Puccinia graminis var. tritici USDA Agri Res Serv Bull (Revised Washington D. C.).

  • Valkoun J., Hammer K., Kucerova D. and Bartos P. 1985 Disease resistance in the genus Aegilops L.—stem rust, leaf rust, stripe rust, and powdery mildew. Kulturpflanzen 33, 133–153.

    Article  Google Scholar 

  • Voorrips R. E. 2002 Map chart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PARVEEN CHHUNEJA.

Additional information

Riar A. K., Kaur S., Dhaliwal H. S., Singh K. and Chhuneja P. 2012 Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J. Genet. 91, xx–xx

Rights and permissions

Reprints and permissions

About this article

Cite this article

RIAR, A.K., KAUR, S., DHALIWAL, H.S. et al. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91, 155–161 (2012). https://doi.org/10.1007/s12041-012-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0161-7

Keywords

Navigation