Skip to main content
Log in

Fitness landscapes in natural rocks system evolution: A conceptual DFT treatment#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The chemical reactivity descriptors, such as electronegativity, hardness and electrophilicity of major oxides computed from density functional theory are reported in this paper. These parameters are plotted within a fitness landscape diagram, showing that the principles of minimum electrophilicity (MEP) and maximum hardness (MHP) act as guides towards the region of higher stability. The diagrams indicate the trends and the parameters that control the evolution of natural rocks. Application of the principle S-bearing copper compounds shows the possible and preferred combinations of elements, that give rise to compounds observed during ore formation.

Density functional theory provides the chemical reactivity descriptors, (electronegativity, hardness and electrophilicity) of major oxides as observed in natural igneous rocks. They are plotted within a fitness landscape diagram, with the principles of minimum electrophilicity (MEP) and maximum hardness (MHP) as guides towards the region of higher stability. Natural rocks evolve within the three poles of silica (SiO2), alkalis (K2O and Na2O) and redox agent (Fe2O2). An application to S-bearing copper compounds is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Parr R G and Yang W 1989 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press); (b) Geerlings P, De Proft F and Langenaeker W 2003 Chem. Rev. 103 1793; (c) Chattaraj P K and Giri S 2009 Annu. Rep. Prog. Chem. Sect. C 105 13; (d) Chattaraj P K 2009 Chemical reactivity theory: A density functional view Eds. Taylor & Francis, CRC Press, Florida

  2. (a) Chattaraj P K, Lee H and Parr R G 1991 J. Am. Chem. Soc. 113 1855; (b) Pearson R G 1990 Coord. Chem. Rev. 100 403; (c) Chattaraj P K and Schleyer P v R 1994 J. Am. Chem. Soc. 116 1067; (d) Pearson R G 1973 Hard and soft acids and bases Ed. Dowden, Hutchinson & Ross: Stroudsberg, PA; (e) Hancock R D and Martell A E 1996 J. Chem. Educ. 73 654; (f) Chattaraj P K and Maiti B 2003 J. Am. Chem. Soc. 125 2705; (g) Pearson R G and Chattaraj P K 2008 Chemtracts: Inorg. Chem. 21 1

  3. (a) Pauling L 1960 The nature of the chemical bond (3rd ed.; Ithaca, New York: Cornell University Press); (b) Parr R G, Donnelly R A, Levy M and Palke W E 1987 J. Chem. Phys. 68 3801; (c) Chattaraj P K 1992 J. Indian Chem. Soc. 69 173

  4. (a) Parr R G and Pearson R G 1983 J. Am. Chem. Soc. 105 7512; (b) Pearson R G 1997 Chemical hardness: applications from molecules to solids (Wiley–VCH: Weinheim)

  5. (a) Parr R G, Szentpaly L v and Liu S 1999 J. Am. Chem. Soc. 121 1922; (b) Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065; (c) Chattaraj P K and Roy D R 2007 Chem. Rev. 107 PR46; (d) Chattaraj P K, Giri S and Duley S 2011 Chem. Rev. 111 PR43

  6. (a) Pearson R G 1987 J. Chem. Edu. 64 561; (b) Pearson R G 1999 J. Chem. Edu. 76 267; (c) Parr R G and Chattaraj P K 1991 J. Am. Chem. Soc. 113 1854; (d) Chattaraj P K, Liu G H and Parr R G 1995 Chem. Phys. Lett. 237 171; (e) Chattaraj P K 1996 Proc. Indian Natl. Sci. Acad. Part A 62 513; (h) Ayers P W and Parr R G 2000 J. Am. Chem. Soc. 122 2010; (i) Pearson R G 1993 Acc. Chem. Res. 26 250

  7. (a) Chamorro E, Chattaraj P K and Fuentealba P 2003 J. Phys. Chem. A 107 7068; (b) Parthasarathi R, Elango M., Subramanian V and Chattaraj P K 2005 Theor. Chem. Acc. 113 257

    Google Scholar 

  8. Kauffman S A 1995 At home in the Universe: The search for laws of self-organization and complexity, Oxford University Press, New York, 321

    Google Scholar 

  9. McBirney A R 1993 Igneous petrology, Jones & Bartlett, Boston, 572

    Google Scholar 

  10. Gaussian 03 2003 Revision B.03; Gaussian, Inc.: Pittsburgh, PA

    Google Scholar 

  11. (a) Sanderson R T 1951 Science 114 670; (b) 1954 J. Chem. Educ. 31 238; (c) 1955 Science 121 207

  12. Pearson R G 1993 Acc. Chem. Res. 26 250

    Article  CAS  Google Scholar 

  13. Bowen N L 1922 J. Geol. 30 177

    Article  CAS  Google Scholar 

  14. Fenner C N 1937 J. Geol. 45 158

    Article  CAS  Google Scholar 

  15. Halter W E, Bain N, Becker K, Heinrich CA, Landtwing M, VonQuadt A, Clark A H, Sasso A M, Bissig T and Tosdal R M 2004 J. Volc. Geoth. Res. 136 1

    Article  CAS  Google Scholar 

  16. Richards J P 2003 Eco. Geol. 98 1515

    CAS  Google Scholar 

  17. Ishihara S 2004 Trans. R. Soc. Edinburgh: Earth Sci. 95 23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JEAN-LOUIS VIGNERESSE.

Additional information

Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

DULEY, S., VIGNERESSE, JL. & CHATTARAJ, P.K. Fitness landscapes in natural rocks system evolution: A conceptual DFT treatment# . J Chem Sci 124, 29–34 (2012). https://doi.org/10.1007/s12039-011-0187-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0187-z

Keywords

Navigation