Skip to main content

Advertisement

Log in

Differentiation Induces Dramatic Changes in miRNA Profile, Where Loss of Dicer Diverts Differentiating SH-SY5Y Cells Toward Senescence

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BDNF:

brain-derived neurotrophic factor

CDKs:

cyclin-dependent kinases

DTT:

dithiothreitol

FBS:

fetal bovine serum

HPRT:

hypoxanthine-guanine phosphoribosyl transferase

IDV:

integrated density value

MAP1B:

microtubule-associated protein 1b

miRNA:

microRNA

mRNA:

messenger RNA

NFL:

neurofilament

NGF:

nerve growth factor

NTC:

non-targeted control

PCR:

polymerase chain reaction

PSD95:

postsynaptic density protein 95

RA:

retinoic acid

RQ:

relative quantification

RT:

reverse transcription

RTF:

reprogramming transcription factor

IR:

infrared

PBS:

phosphate-buffered saline

SNAP25:

synaptosomal-associated protein 25

SYP:

synaptophysin

SYN1:

synapsin 1

PVDF:

polyvinylidene fluoride

TLDA:

Taqman low-density array

TH:

tyrosine hydroxylase

References

  1. Coolen M, Bally-Cuif L (2009) MicroRNAs in brain development and physiology. Curr Opin Neurobiol 19(5):461–470

    Article  CAS  PubMed  Google Scholar 

  2. Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J (2014) miRNAs in brain development. Exp Cell Res 321(1):84–89

    Article  CAS  PubMed  Google Scholar 

  3. Singh T, Jauhari A, Pandey A, Singh P, B Pant A, Parmar D, Yadav S (2014) Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 13 (1):96–103

  4. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48(10):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Damon DH, D’Amore PA, Wagner JA (1990) Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C-and cAMP-independent mechanisms. J Cell Biol 110(4):1333–1339

    Article  CAS  PubMed  Google Scholar 

  6. Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24(8):479–486

    Article  CAS  PubMed  Google Scholar 

  7. Farmer J, Zhao X, Van Praag H, Wodtke K, Gage F, Christie B (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience 124(1):71–79

    Article  CAS  PubMed  Google Scholar 

  8. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003

    Article  CAS  PubMed  Google Scholar 

  9. Krishna A, Biryukov M, Trefois C, Antony PM, Hussong R, Lin J, Heinäniemi M, Glusman G, Köglsberger S, Boyd O (2014) Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics 15(1):1

    Article  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    Article  CAS  PubMed  Google Scholar 

  12. Hébert SS, Papadopoulou AS, Smith P, Galas M-C, Planel E, Silahtaroglu AN, Sergeant N, Buée L, De Strooper B (2010) Genetic ablation of dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19(20):3959–3969

    Article  PubMed  Google Scholar 

  13. Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133(5):640–652

    Article  CAS  PubMed  Google Scholar 

  14. Yadav S, Pandey A, Shukla A, Talwelkar SS, Kumar A, Pant AB, Parmar D (2011) miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem 286(43):37347–37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science 336(6087):1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 10(2):e1001268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rihani A, Van Goethem A, Ongenaert M, De Brouwer S, Volders P-J, Agarwal S, De Preter K, Mestdagh P, Shohet J, Speleman F (2015) Genome wide expression profiling of p53 regulated miRNAs in neuroblastoma. Scientific reports 5

  18. Wang C, Song J, Song D, Yong V, Shuaib A, Hao C (2006) Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death & Differentiation 13(7):1203–1212

    Article  CAS  Google Scholar 

  19. Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB, Parmar D, Yadav S (2015) Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research 4(6):1578–1586

    Article  CAS  Google Scholar 

  20. Nair VD, McNaught KSP, González-Maeso J, Sealfon SC, Olanow CW (2006) p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 281(51):39550–39560

    Article  CAS  PubMed  Google Scholar 

  21. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo Y-Y (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci 106(9):3207–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Georges SA, Biery MC, S-y K, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112

    Article  CAS  PubMed  Google Scholar 

  23. Cheung Y-T, Lau WK-W, Yu M-S, Lai CS-W, Yeung S-C, So K-F, Chang RC-C (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30(1):127–135

    Article  CAS  PubMed  Google Scholar 

  24. Goldie BJ, Barnett MM, Cairns MJ (2014) BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation. Front Cell Neurosci 8

  25. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  26. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez G, Behringer RR (2009) Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 76(7):678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  29. Huang T, Liu Y, Huang M, Zhao X, Cheng L (2010) Wnt1-cre-mediated conditional loss of dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2(3):152–163

    Article  CAS  PubMed  Google Scholar 

  30. Cheng S, Zhang C, Xu C, Wang L, Zou X, Chen G (2014) Age-dependent neuron loss is associated with impaired adult neurogenesis in forebrain neuron-specific dicer conditional knockout mice. Int J Biochem Cell Biol 57:186–196

    Article  CAS  PubMed  Google Scholar 

  31. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28(17):4322–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238(11):2800–2812

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen Y-L, Shen C-KJ (2013) Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci 33(21):9013–9020

    Article  CAS  PubMed  Google Scholar 

  34. Montalban E, Mattugini N, Ciarapica R, Provenzano C, Savino M, Scagnoli F, Prosperini G, Carissimi C, Fulci V, Matrone C (2014) MiR-21 is an Ngf-modulated microRNA that supports Ngf signaling and regulates neuronal degeneration in PC12 cells. Neruomol Med 16(2):415–430

    Article  CAS  Google Scholar 

  35. Wei C, Thatcher EJ, Olena AF, Cha DJ, Perdigoto AL, Marshall AF, Carter BD, Broadie K, Patton JG (2013) miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS One 8(2):e57080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farnebo M, Bykov VJ, Wiman KG (2010) The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 396(1):85–89

    Article  CAS  PubMed  Google Scholar 

  38. O’Neill LA, Kaltschmidt C (1997) NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258

    Article  PubMed  Google Scholar 

  39. Di Giovanni S, Rathore K (2012) p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res 349(1):87–95

    Article  PubMed  Google Scholar 

  40. Quadrato G, Di Giovanni S (2012) Gatekeeper between quiescence and differentiation: p53 in axonal outgrowth and neurogenesis. Int Rev Neurobiol 105:71–89

    Article  CAS  PubMed  Google Scholar 

  41. Gil-Perotin S, Haines JD, Kaur J, Marin-Husstege M, Spinetta MJ, Kim KH, Duran-Moreno M, Schallert T, Zindy F, Roussel MF (2011) Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone. Eur J Neurosci 34(7):1040–1052

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Perry SR, Tonon G, Chu GC, Ding Z (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216):1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meletis K, Wirta V, Hede S-M, Nistér M, Lundeberg J, Frisén J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369

    Article  CAS  PubMed  Google Scholar 

  44. Lookeren Campagne MV, Gill R (1998) Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene bax. J Comp Neurol 397(2):181–198

    Article  PubMed  Google Scholar 

  45. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  CAS  PubMed  Google Scholar 

  46. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113(3):301–314

    Article  CAS  PubMed  Google Scholar 

  47. Lee K-H, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci 107(1):69–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for the work carried out in the present study has been provided by CSIR network projects (InDepth and miND) and Department of Biotechnology project (GAP-254). Mr. Abhishek Jauhari and Ankur Kumar Srivastava are grateful to UGC, New Delhi, and Ms. Ankita Pandey is grateful to CSIR, New Delhi, for providing research fellowships. The technical assistance of Mr. B S Pandey and Mr. Puneet Khare is also gratefully acknowledged. The CSIR-IITR communication reference number is 3397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Yadav.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Abhishek Jauhari and Tanisha Singh contributed equally to this work.

Electronic Supplementary Material

ESM 1

(PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauhari, A., Singh, T., Pandey, A. et al. Differentiation Induces Dramatic Changes in miRNA Profile, Where Loss of Dicer Diverts Differentiating SH-SY5Y Cells Toward Senescence. Mol Neurobiol 54, 4986–4995 (2017). https://doi.org/10.1007/s12035-016-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0042-9

Keywords

Navigation