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Abstract Mouse models of human diseases are created both
to understand the pathogenesis of the disorders and to find
successful therapies for them. This work is the second part in a
series of reviews of mouse models of polyglutamine (polyQ)
hereditary disorders and focuses on in vivo experimental
therapeutic approaches. Like part I of the polyQ mouse model
review, this work is supplemented with a table that contains
data from experimental studies of therapeutic approaches in
polyQ mouse models. The aim of this review was to charac-
terize the benefits and outcomes of various therapeutic strat-
egies in mouse models. We examine whether the therapeutic
strategies are specific to a single disease or are applicable to
more than one polyQ disorder in mouse models. In addition,
we discuss the suitability of mouse models in therapeutic
approaches. Although the majority of therapeutic studies were
performed in mouse models of Huntington disease, similar
strategies were also used in other disease models.
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Introduction

Polyglutamine (polyQ) diseases are dominantly inherited
disorders caused by mutations in single genes, called

expansions, that result in the excessive elongation of CAG
triplet tracts encoding glutamines. This type of mutation
usually produces many symptoms that are primarily, but
not exclusively, neurological. Currently, nine polyQ dis-
eases have been identified, including Huntington disease
(HD); spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7 and
17; dentatorubral–pallidoluysian atrophy (DRPLA); and
spinal and bulbar muscular atrophy (SBMA). Although the
genes where the mutation tracts are located do not belong to
common gene families, the pathogenic features caused by
the mutations are similar. The symptoms of these disorders
include motor impairments such as dystonia and chorea in
HD, ataxia in SCAs and general muscle weakness in
SBMA, which often confine the patients to a wheelchair.
In some cases, serious cognitive deficiencies appear at later
stages of the disease [1, 2]. The most powerful tools for
studying polyQ diseases are transgenic mouse models.
These models are created to explore two aspects: the disease
process and potential therapies. In part I, we proposed a
systematic list of phenotypes that will facilitate the charac-
terization of mouse models and the disease process. The
second aspect, finding new therapies, is discussed in the
present review (part II) and is very important because polyQ
diseases are currently incurable.

Many excellent and useful reviews have been published
on the topic of preclinical therapy for HD and other polyQ
diseases [3–6]. Here, we present an overview of the thera-
peutic strategies that have been tested in mouse models of
polyQ diseases; more importantly, we provide an Excel data
table (referred to as the data table and available in the
Supplementary Materials) that lists data from papers devot-
ed to the study of polyQ mouse models and therapies. In this
table, we provide data about behavioral and molecular pro-
tocols that are used for testing the therapeutic potential of
the substances and strategies that are employed in mouse
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models of polyQ diseases. The data table, which lists nearly
250 therapeutic approaches that were carefully selected,
may also serve as a basis for assessing the predictive validity
(that is, a model’s suitability for preclinical therapy) of
polyQ mouse models.

The present work is organized into several sections. The
sections “Target: ClearanceMachinery” to “Other Therapeutic
Strategies” contain a review of the therapeutic strategies and
active substances that have been used in preclinical therapeu-
tic trials. The following section “PolyQ Mouse Models in
Experimental Therapies” discusses the polyQ mouse models
that were used in therapeutic trials and the phenotypes that
were used to determine therapeutic outcomes. This structure is
also reflected in the data table, which contains 15 columns
(Fig. 1). The first two columns list the diseases and the mouse
models of the diseases that were used for the experimental
therapy. A second group of columns describes the phenotypes
tested, states the methods used to test the phenotypes, lists the
parameters that were quantified and presents the outcome of
the therapy (in the column called “Treatment vs. mock”). The
third set of columns contains data about the active substances
used to induce the therapeutic effect, the description of the
drug target and the general therapeutic strategy. Supplemental
Table 1 summarizes the content of the columns in the data
table.

Strategies and Targets of PolyQ Experimental Therapy
Approaches in Mouse Models

The pathologically elongated polyglutamine domain has a
tendency to misfold and aggregate into larger structures that
eventually precipitate from cytoplasmic and nucleoplasmic
solutions as insoluble inclusions; however, it is still unclear
whether monomers, soluble oligomers or insoluble inclusions

make the greatest contribution to the overall cytotoxicity of
polyglutamine repeats. Mutated polyglutamine domains inter-
act with other cellular components and, as a result, perturb
cellular homeostasis. This disruption leads to a variety of
cellular dysfunctions, including transcriptional deregulation,
mitochondrial dysfunction, clearance machinery impairment,
increased susceptibility to excitotoxicity, inflammation and
oxidative damage, and apoptosis induction [7, 8]. The poly-
glutamine domain alters several cellular processes, indicating
that there are many potential targets for both pharmacological
and non-pharmacological interventions. The validity and the
potency of targeting various cellular pathways to alleviate
disease phenotypes were assessed in mouse models of poly-
glutamine diseases using nearly 250 different therapeutic
approaches that can be grouped into several different thera-
peutic strategies (Fig. 2, the data table, Supplementary
Tables 1–8).

Target: Clearance Machinery

Ubiquitin–Proteasome System and Autophagy

Highly controlled and selective degradation of cellular com-
pounds, essential for cell physiology, is executed by the
ubiquitin–proteasome system (UPS) and by autophagy [9].
The UPS is a multistep pathway in which redundant or
damaged proteins are tagged with ubiquitin and subsequent-
ly destroyed in the proteasome complex. In contrast, the
autophagic system can eliminate both single molecules,
and larger structures, such as organelles, by a process of
controlled enzymatic hydrolysis of cellular compounds in
the lysosome [9]. Because both autophagy and the UPS
maintain protein quality by removing misfolded proteins,
the accumulation of large amounts of protein containing
elongated polyglutamine tracts can put stress on both

Fig. 1 The data table is an electronic resource that provides data
about the therapeutic strategies, the used behavioral and molecular
protocols for testing the therapy, therapeutic substances and ther-
apeutic outcome in mouse models. The figure demonstrates only a

small fragment of the data table, and the selection of records for
this figure is accidental. The full data table comprises approxi-
mately 2,000 records and 17 columns
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pathways and, consequently, alter their physiological func-
tions [10–13]. The explanations of the proposed mecha-
nisms (e.g., proteasome blockade or overload, sequestering
of important pathway components, and direct or indirect
inhibition of the various pathway steps) are discussed else-
where [14, 15]. The therapeutic approaches aimed at boosting
cellular clearance may act in a bidirectional manner by restor-
ing the clearance machinery function that is impaired by
polyQ proteins and by accelerating the degradation of polyQ
proteins. Several different strategies were used to achieve
these goals in mouse model studies (Fig. 3). The therapeutic
effects of autophagy upregulation were tested in the HD and
SCA3 models using pharmacological inhibition of the nega-
tive regulator of autophagosome formation (mammalian target
of rapamycin (mTOR)) using two derivatives of rapamycin,
temsirolimus, and everolimus. Interestingly, these studies
yielded contradictory results. Whereas temsirolimus acceler-
atedmutant protein removal and improvedmotor performance
in both 70.61 SCA3 mice and N171-82Q HD mice [16, 17],
everolimus did not reduce huntingtin levels in the R6/2 mouse
brain and, as a result, did not induce neuroprotection despite
significant brain penetration [18].

Because mTOR regulates many cellular processes in addi-
tion to autophagy, Rose and colleagues proposed an alterna-
tive approach of autophagy stimulation to avoid the side
effects caused by rapamycin and its analogs. Rilmenidine,
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Fig. 2 The diagram shows the most studied therapeutic strategies. The
therapeutic strategies are ranked by the number of therapeutic
approaches that were testing a given strategy. The data table collects
the total number of 250 different therapeutic approaches. The most
extensively tested strategies are related to the induction of

neuroprotection (with neurotrophic factors or by exposing animals to
environmental stimuli), mitochondrial dysfunction, or transcriptional
deregulation. Interestingly, therapeutic approaches aimed at the specif-
ic downregulation of polyQ protein expression are rarely tested in
mouse models
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Fig. 3 Impairment of clearance machinery in polyQ diseases. Expanded
polyglutamine proteins alter the physiological functions of both the UPS
and the autophagic clearance pathways, thereby perturbing cellular ho-
meostasis. Therapeutic approaches tested in polyglutamine mouse mod-
els include facilitating UPS-mediated polyQ clearance by interfering with
various steps in the UPS pathway (1), increasing the levels of chaperones
(2), or administrating anti-aggregation drugs (3). An increase in
autophagy-mediated degradation can be achieved with mTOR inhibitors
(4) and via mTOR-independent pathways (5). Ubiquitin–proteasome
system (UPS), mammalian target of rapamycin (mTOR)
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an mTOR-independent autophagy inducer, reduced the level
of the mutant huntingtin fragment and partially attenuated the
disease phenotype in N171-82Q mice [19].

Enhanced proteasome degradation can be induced by
perturbing various steps of the UPS pathway. Overexpres-
sion of the CRAG protein, which is an activator of promye-
locytic leukemia protein-associated ubiquitin ligase,
enhances the ubiquitination and proteasome clearance of
mutant ataxin-3 and ultimately leads to improvements in
both motor and neurological phenotypes in polyQ69 mice
[20]. A similar strategy was implemented by Sobue’s group,
who crossed SBMA mice with mice overexpressing CHIP, a
protein with E3 ubiquitin ligase activity. Marked ameliora-
tion of the disease phenotype was correlated with the reduc-
tion of monomeric and aggregated mutant androgen
receptor (AR) proteins in the spinal cords and muscles of
AR-97Q mice [21]. Finally, Wong and colleagues reported
that benzyl amiloride (Ben) could be used as a candidate
drug in HD treatment. Ben blocks acid-sensing ion channels
in R6/2 mice, which leads to an increase in UPS activity and
a decrease in huntingtin aggregation [22].

Aggregation Process

Another strategy that takes advantage of the cellular clearing
system is based on changing the polyQ protein properties
that are responsible for its slower degradation rate to facil-
itate its clearance via the UPS pathway. One question that
remains unresolved is whether nuclear inclusions play a role
in the pathogenesis or are actually the product of neuro-
protective mechanisms to attenuate the toxic protein frag-
ments in the cell. Notably, in some mouse models, nuclear
inclusions also appear in brain regions that are unaffected in
the disease process, and often the affected brain regions
contain fewer inclusions than the unaffected ones (see Part
I). In contrast, the brains of mice from severely affected
models, such as R6/2 and N171-82Q, often contain more
inclusions than those of animals with a mild pathogenesis,
such as YAC128 or HD knock-ins. Finally, the formation of
inclusions in conditional mouse models can be reversed
when expression of polyQ protein is switched off [23], but
no studies have examined whether these aggregates are
responsible for the pathology and therefore whether the
reversal of the formation of inclusions would be the cause
of disease amelioration.

The therapeutic approaches that target aggregation pro-
cesses are based on the assumption that polyglutamine tox-
icity can be attributed to soluble oligomers and monomers
with specific conformational structure of polyQ domains
rather than to insoluble inclusions [24]. Therefore, if poten-
tial therapeutic agents could prevent mutant proteins from
misfolding or oligomerizing, then toxic species would not
appear, and the UPS pathway would be more effective at

clearing existing polyglutamine monomers. The studies ex-
amining compounds that target aggregation processes using
cellular models of polyQ diseases are not discussed here
because of space constraints (for a review see [25]). In
mouse model studies, this strategy was implemented by
using small molecules that bind to amyloids and inhibit
amyloid fibril formation or by using intrabody gene therapy
or chaperone activity modulation (Fig. 3).

Small Molecules and Intrabodies Small molecules that
inhibit oligomerization of polyQ proteins, including chlor-
promazine, minocycline, Congo red, trehalose, benzothia-
zoles, C2-8, and polyQ-binding peptide 1 were tested in
mouse models of Huntington disease with varying success
at reducing disease phenotype [26–34]. Although most of
these compounds prevent inclusion formation in in vitro
assays, these results have not always translated into a phe-
notype rescue when used in vivo to treat polyQ mice. It is
possible that some compounds that inhibit inclusion body
formation may prevent the soluble, toxic protein fraction
from being neutralized in inclusions, inducing adverse
effects of such therapeutic approach.

Intrabodies (iAbs) are engineered antibody fragments
that are encoded in a vector and expressed inside cells. A
number of intrabodies targeting various regions of the hun-
tingtin protein have been developed and tested on HD mice.
The mEM48-based iAb, which preferentially binds to mu-
tant huntingtin (HTT), improves the motor performance of
N171-82Q animals and reduces HTT neuropil aggregate
formation; however, it is not potent enough to remove the
intranuclear inclusions [35]. Patterson’s laboratory has per-
formed extensive studies in five HD models (N171-82Q,
R6/2, YAC128, BACHD, and lentiviral mouse model) with
two intrabodies (VL12.3 and Happ1) and has shown strong
therapeutic potential of this approach. Happ1, which recog-
nizes polyproline and polyproline-rich domains, improves
motor performance, reduces neurological and cognitive ab-
normalities, and prolongs average lifespan. VL12.3, an
intrabody recognizing the N-terminus of HTT, has benefi-
cial effects in lentiviral model, but does not improve phe-
notype in YAC128, and increases mortality in R6/2 mice.
Both iAbs reduce aggregate formation in cell culture and
HD mouse models [36]. Recently, Snyder-Keller and col-
leagues reported a reduction in the aggregate phenotype in
R6/1 mouse brains, even when treatment with an intrabody
that recognizes the N-terminal huntingtin region was initi-
ated at a late stage of the disease [37]. A possible explana-
tion of the beneficial effects of intrabodies rests in their
ability to bind to the huntingtin protein, alter its conforma-
tion and therefore make the mutant huntingtin protein more
accessible to the UPS system. Indeed, Wang’s intrabody
seems to promote the ubiquitination and clearance of mutant
huntingtin fragments [35].
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Chaperones Chaperones are proteins that assist in the prop-
er folding of synthesized proteins, refold those proteins that
are folded incorrectly and, together with other UPS compo-
nents, recognize proteins with incorrect conformations that
cannot be restored to their native states and designate them
for degradation. The robust aggregation of polyQ proteins
that occurs in cells of patients and animal models also
indicates that chaperones cannot efficiently process the per-
manently misfolded polyQ stretches. Thus, increasing the
levels of chaperone proteins is a reasonable approach to
treating polyQ diseases. Despite numerous successes in
inhibiting aggregate formation and rescuing cell death in
non-mammalian and cell culture models (for example
[38–40]), inducing the expression of various chaperones in
polyQ mice, has had only modest effects in the amelioration
of the polyglutamine-dependent disease phenotypes
(Table 1). Overexpression of Hsp70, Hsp104, or BAG1
(an Hsp70 co-chaperone) or induction of chaperone expres-
sion by heat shock transcription factors does not reduce
either motor or neurological abnormalities in N171-82Q or
R6 HD animals, even though the aggregation processes are
significantly hindered in these animals [41–45]. In contrast,
overexpression of Hsp70 in SCA1 B05 and SBMA AR-97Q
mice or pharmacologically increasing the levels of Hsp70,
Hsp90, and Hsp105 in SBMA animals with orally adminis-
tered geranylgeranylacetone improves both motor and neu-
rological phenotypes [46–48]. Additionally, geldanamycin
analogs 17-AAG and 17-DMAG, which bind directly to
Hsp90, inhibit the formation of stable Hsp90/client protein
complexes, and promote the formation of degradable
proteasome-targeting complexes in the SBMA AR-97Q
model. This strategy results in the clearing of mutant AR
aggregates in both muscle tissue and in the spinal cord,
which restores motor performance and prolongs the short-
ened lifespan [49, 50]. At present, it is not clear why the
chaperone strategy works in SCA1 and SBMA models and
not in HD models. First, the therapeutic effects of Hsps may
depend on the expression patterns and the levels of both the
chaperones and the transgenic polyQ protein. Second, be-
cause chaperones form a complex network of mutual inter-
actions and need specific partners to function properly,
increasing the level of only one Hsp protein may not be
sufficient to obtain enhanced polyQ turnover in different
cell types. Finally, the cause may lie within the polyQ
protein itself. Induced chaperone activity was ineffective in
studies that were performed using the HD mouse models
with artificially truncated huntingtin fragments. Such pro-
teins may misfold and aggregate very aggressively; conse-
quently, chaperones may not be able to overcome this effect
even when they are expressed at relatively high levels.
Additional studies are needed to clarify whether enhanced
chaperone activity may be beneficial in treating Huntington
disease, especially in the full-length HD models.

Target: PolyQ Protein Expression

Selective and permanent elimination of mutations from the
genome would effectively cure polyQ patients; however,
DNA editing technologies, such as homologous recombina-
tion or the use of zinc finger nucleases or TALENs, are
difficult to translate to in vivo systems as therapeutic tools
[51]. An alternative approach that can be considered etio-
logical or preventive is to target the messenger RNA, there-
by repressing the formation of the toxic polyQ protein.
Davidson’s group has used RNAi in both SCA1 and HD
mice. By constructing AAV vectors that can produce siR-
NAs inside neurons, her group has achieved potent long-
term silencing of polyQ transgenes. Injection of viral par-
ticles directly into the cerebellum and striatum of B05 and
N171-82Q animals, respectively, results in a significant
improvement in the disease phenotype in terms of both
motor and neurological impairment [52, 53]. Similar results
were obtained in R6 models by using vectorized shRNA and
naked siRNA against human huntingtin [54, 55].

Transgenic mice are good models that have allowed us to
study the selective silencing of mutant genes without alter-
ing the expressions of the endogenous mouse counterparts
[53–56], but naturally, such allele sets do not exist in the
patient population. To study more natural conditions, RNAi
reagents targeting sequences present in both transgenes and
endogenes were used to achieve nonselective silencing. It
was expected that partial elimination of wild-type allele
expression would be a minimally harmful compromise for
the effective removal of the polyQ protein. Interestingly,
significant knockdown of endogenous huntingtin in the
striatum of N171-82Q is well-tolerated even after 4 months
despite the significant involvement of this protein in various
cellular processes [57]. Similar results were also observed in
lentiviral rat and mouse models of Huntington disease [58].
In addition, ataxin-3 knockout mice do not show any signs
of gross pathology, indirectly indicating that the nonselec-
tive approach may be relatively safe [59, 60]. However,
prolonging the wild-type allele silencing to years or decades
in patients may lead to the gradual accumulation of unde-
sirable effects, and eventually, such a strategy could prove to
be more harmful than beneficial. To overcome this potential
danger, allele-specific reagents that distinguish between the
mutant and normal transcripts could be used; however, their
effectiveness has only been shown in cellular and lentiviral
rat models. Such allele specificity may be obtained using
reagents that target SNP sites [61–63] or act through
miRNA-like mechanisms that can distinguish between
alleles by targeting the different lengths of the CAG repeat
region in the normal and mutant transcripts [64–66].

The therapeutic strategy of targeting polyQ mRNA with
RNA interference decreases the expression of mutant pro-
tein and transcripts containing elongated CAG tracts.
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Table 1 Chaperone-related therapeutic approaches in mouse models of polyQ diseases

Drug Route/dose Model Therapeutic outcomes Reference

17-AAG Intraperitoneal
(7.5 or 75
mg/kg/week)

AR-97Q (SBMA) ✓ Improved motor phenotype (rotarod,
cage activity, gait pattern); alleviated
aggregate formation and nuclear
localization of mutant AR; reduced
muscle atrophy; decreased body
weight loss rate; prolonged life span

Waza et al.
2005 [49]

17-DMAG Oral (3 or
30 mg/kg/week)

AR-97Q (SBMA) ✓ Improved motor phenotype (rotarod,
cage activity, gait pattern); alleviated
aggregate formation and nuclear
localization of mutant AR; reduced
muscle atrophy; decreased body weight
loss rate; prolonged life span

Tokui et al.
2009 [50]

BAG1 Overexpression N171-82Q (HD) ✓ Improved rotarod phenotype (only in males) Orr et al.
2008 [43]× No change in aggregate formation, body

weight loss rate, life span, and clasping
phenotype

GGA Oral (~600 and
1,200 mg/kg/day)

AR-97Q (SBMA) ✓ Improved motor phenotype (rotarod,
cage activity, gait pattern); alleviated
aggregate formation and nuclear localization
of mutant AR; reduced muscle atrophy;
decreased body weight loss rate; prolonged
life span

Katsuno et al.
2005 [48]

HSF1 Overexpression R6/2 (HD) ✓ Reduced muscular atrophy and muscular
inclusions; prolonged life span

Fujimoto et al.
2005 [45]

× No change in clasping phenotype and body
weight loss rate; no reduction in brain
atrophy and neuronal inclusion formation

hsp104 Overexpression N171-82Q (HD) ✓ Reduced number of cortical aggregates;
prolonged life span

Vacher et al.
2005 [42]

× No change in rotarod and grip strength
performance; no change in body weight
loss rate

Hsp70 Overexpression
(5- to 10-fold of
endogenous level)

AR-97Q (SBMA) ✓ Improved motor phenotype (rotarod,
cage activity, gait pattern); alleviated
aggregate formation and nuclear
localization of mutant AR; decreased
body weight loss rate; prolonged life span

Adachi et al.
2003 [47]

Hsp70 Overexpression
(~10- to 20-fold
of endogenous level)

B05 (SCA1) ✓ Improved rotarod phenotype; improved
Purkinje cell morphology

Cummings et al.
2001 [46]

× No change in NII formation

Hsp70 Overexpression
(5- to 15-fold of
endogenous level)

R6/2 (HD) ✓ Decreased body weight loss rate Hansson et al.
2003 [41]× No change in clasping behavior; no

reduction in brain atrophy and neuronal
abnormal morphology; no change in NII
formation and life span

Hsp70 Overexpression R6/2 (HD) ✓ Delayed aggregate formation in
hippocampal slice culture

Hay et al.
2004 [44]

× No change in rotarod and grip strength
performance; increased body weight
loss rate

HSP70/HDJ2 Overexpression
(5- to 10-fold of
endogenous level)

90Q R7E (SCA7) × No change in rod photoreceptor functions,
no morphological changes of retinal layers,
and no change in NII formation

Helmlinger et al.
2004 [392]

HSJ1a Overexpression R6/2 (HD) ✓ Reduced nuclear aggregate load; increased
levels of soluble huntingtin; improved
rotarod performance and forelimb grip
strength; improved exploratory activity;
increased BDNF level

Labbadia et al.
2012 [393]

× No change in body and brain weight loss rate
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Silencing of both components in the cell may provide addi-
tional therapeutic benefits because recently, RNA gain-of-
function by transcripts harboring expanded CAG repeats has
been increasingly recognized as a pathogenic factor in
polyQ diseases [67, 68].

Target: Degenerating Neurons—Neuroprotection/
Neuromodulation

The most striking aspect of polyglutamine diseases is the
progressive morphological and physiological degeneration,
followed by the death of specific neuronal subpopulations.
Several experimental therapeutic strategies have been
designed to prevent neuronal death by strengthening the
overall health of neurons and promoting their survival de-
spite the neurotoxicity of the mutant polyQ protein (Fig. 4).

Neurotrophic Factors

Neurotrophic factors are naturally occurring signaling pro-
teins that are essential for nervous system development
and promote neuronal growth, differentiation, and the
formation of neuronal connections [69]. They also play
important roles in the adult brain and peripheral nervous

system, where they are responsible for maintaining proper
neuronal phenotypes and functions and supporting neuro-
nal survival [70, 71]. Additionally, neurotrophic factors
are involved in neuronal protection and regeneration in
several neurodegenerative diseases and following neuro-
traumatic injuries [72–75]. The neuroprotective properties
of neurotrophic factors make them attractive candidates
for preventing the damage caused by mutant polyQ pro-
teins (Table 2).

BDNF The brain-derived neurotrophic factor (BDNF) has
emerged as the most promising therapeutic neurotrophic
factor because it is important in both developing and adult
neurons and its expression is deregulated in HD patients and
animal models [76, 77]. Normally, BDNF is produced in
cortical neurons and is anterogradely transported to the
striatum. Mutant huntingtin alters this physiological condi-
tion in two ways. First, polyQ mutations affect the normal
function of wild-type HTT, which is part of the motor
protein complex and promotes vesicular transport along
microtubules, subsequently leading to decreased BDNF
transportation [78]. Second, mutant huntingtin, through ab-
errant interactions with transcription factors, can affect the
regulation of BDNF promoters, inducing its striatal deficits
[79]. Alberch’s group used R6/1 mice with a partial deple-
tion of endogenous BDNF to demonstrate that this protein is
involved in the regulation of both the age of onset and the
severity of motor and neuronal dysfunctions in vivo
[80–82]. Moreover, intrastriatal injection of BDNF in R6/1
animals is sufficient to restore the enkephalin level in striatal
projection neurons; this population of neurons is one of the
most affected populations in HD [80]. The beneficial effects
of increases in BDNF level were observed by other groups
and confirmed the results from studies of toxin-induced HD
rats that had originally demonstrated the neuroprotective
effect of neurotrophins [83–85]. Gharami and colleagues
and Xie and colleagues increased BDNF levels by crossing
R6/1 and YAC128 animals, respectively, with mice that
were overexpressing BDNF under the control of the pro-
moter for the alpha subunit of Ca2+/calmodulin-dependent
protein kinase II. This strategy resulted in increased levels
of BDNF and TrkB signaling activity in the cerebral
cortex and striatum, which ameliorated motor dysfunction
and rescued brain weight loss [86, 87]. Cho and col-
leagues used adenoviral vectors to deliver BDNF- and
Noggin-encoding constructs to the ependymal cells of
R6/2 animals. They observed recruitment of neuronal cells
to the adult striatum from subependymal progenitors and
the subsequent development of recruited neuronal cells
into DARPP-32+ and GABAergic medium spiny neurons.
Moreover, treated mice showed improvements in motor
performance and lived longer than mock-treated and un-
treated controls [88].

Neuronal survival

Neurotrophic factor
Environmental enrichment

pQ

1
2

3

MAPK/
ERK

PI3K/
AKT

Fig. 4 Neuroprotective and neuromodulatory strategies targeting the
degenerating neurons in polyQ diseases. These experimental therapeu-
tic strategies prevent neuronal death by supporting overall health and
promoting survival. The therapy can be implemented in the following
ways: by administering or inducing the expression of neurotrophic
factors that promote neuronal survival (1); by exposing the animals
to an enriched environment that results in the upregulation of endog-
enous neurotrophic factors and genes involved in synaptic plasticity,
growth, and neurogenesis (2); or by other neuromodulation-related
therapeutic strategies (e.g., the regulation of neurotransmitter activity)
that also lead to the induction of neuroprotection (3). See the text for a
detailed description
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Table 2 Neurotrophic factor-related therapeutic approaches in mouse models of polyQ diseases

Drug Route/dose Model Therapeutic outcomes Reference

BDNF Osmotic pump
(4.5 μg/day)

R6/1 (HD) ✓ Enhanced number of encephalin+neurons Canals et al.
2004 [80]× No change in number of substance P+neurons

BDNF Overexpression (3- fold
of endogenous level)

R6/1 (HD) ✓ Improved rotarod phenotype; decreased
body weight loss rate (females); increased
brain weight; normalized cortical and striatal
volumes; reduced aggregates formation

Gharami et al.
2008 [86]

× No change in ventricle size

BDNF Intrastriatal injection of
6×105 MSC cells
overexpressing BDNF

YAC128 (HD) ✓ Improved rotarod and clasping behavior;
reduced neuronal loss within the striatum

Dey et al.
2010 [91]

BDNF Overexpression (2-3-fold
of endogenous level)

YAC128 (HD) ✓ Improved gait pattern, rotarod, and beam walk
phenotype; reversed cognitive deficits; reduced
brain atrophy and loss of striatal neurons;
normalized spine morphology and expression
of the striatal dopamine receptor D2 and enkephalin

Xie et al.
2010 [87]

× No change in grip strength

BDNF and
Noggin

Adenoviral-mediated
expression (~1.5×109

vector genomes each)

R6/2 (HD) ✓ Improved motor phenotype (rotarod and
open field activity); increased neurogenesis;
prolonged life span

Cho et al.
2007 [88]

CNTF AAV-mediated expression
(2.7×109 vector genomes)

R6/1 (HD) ✓ Increased body weight loss rate; aggravated
rotarod phenotype; aggravated general
appearance and behavior; no change in
morphology and distribution of striatal
cells; no change in aggregate load

Denovan-Wright
et al. 2008 [94]

CNTF Lentiviral-mediated
expression

YAC72 (HD) ✓ Reduced hyperactivity; reduced number
of striatal dark cells

Zala et al.
2004 [93]

× No change in clasping behavior, rotarod
phenotype, and brain weight loss; decreased
number of DARPP-32 and neun positive
neurons; no change in the number of
NADPH-d neurons

FGF-2 Subcutaneous injection
(1.5 μg/week)

R6/2 (HD) ✓ Increased neurogenesis; improved rotarod
phenotype; reduced tremor; reduced aggregate
formation; decreased body weight loss rate;
prolonged life span

Jin et al.
2005 [92]

GDNF AAV-mediated expression
(4×109 vector genomes)

N171-82Q (HD) ✓ Improved rotarod and clasping phenotype;
increased number and volume of striatal neurons

McBride et al.
2006 [89]

× No change in striatal volume and number of
total striatal inclusion

GDNF Intrastriatal injection of
3×105 mNPC cells
overexpressing GDNF

N171-82Q (HD) ✓ Improved rotarod phenotype; alleviated
aggregate formation; reduced neuronal loss

Ebert et al.
2010 [394]

× No change in cortical thickness and in number
of dopamine neurons; no long-term change in
body weight loss rate

GDNF Lentiviral-mediated
expression

R6/2 (HD) × No change in motor phenotype (rotarod,
clasping behavior, open field activity); no
change in body weight loss rate; no reduction
in brain atrophy, neuronal inclusion formation,
and cell proliferation in DG

Popovic et al.
2005 [395]

Neurturin AAV-mediated expression
(4×109 vector genomes)

N171-82Q (HD) ✓ Improved motor phenotype (rotarod, clasping
behavior, gait pattern); reduced neuronal loss

Ramaswamy et
al. 2009 [90]

× No change in neuronal morphology and aggregate
formation; no change in shortened life span

NGF Intrastriatal injection of
6×105 MSC cells
overexpressing NGF

YAC128 (HD) ✓ Improved rotarod and clasping behavior Dey et al.
2010 [91]× No change in neuronal loss within the striatum

VEGF Overexpression or
intracerebroventricular
infusion of recombinant
Vegf (2.5 μg)

154Q/2Q (SCA1) ✓ Improved rotarod phenotype; increased
cerebellar vessel total length and density;
increased staining for calbindin

Cvetanovic et
al. 2011 [396]
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Other Factors Other neurotrophic factors have also been
tested in HD mouse models (Table 2). Kordower’s group
induced the overexpression of exogenous glial cell line-
derived neurotrophic factor and neurturin in the N171-82Q
mouse striatum by using AAV vectors. Injection of both
factors resulted in neuroprotection of the injected structures
against striatal cell loss, as well as a delay in motor deficit
progression [89, 90]. Dey and colleagues transplanted bone
marrow mesenchymal stem cells that had been genetically
engineered to overexpress nerve growth factor or BDNF
into YAC128 mice. Both factors reduced clasping behavior,
although BDNF also reduced neuronal loss within the stria-
tum of YAC animals [91]. In R6/2 mice, subcutaneously
administered fibroblast growth factor 2 crossed the blood–
brain barrier, increased the number of proliferating cells by
150 %, reduced polyglutamine aggregates, improved motor
performance, and extended the lifespan [92]. Interestingly,
lentiviral and AAV vectors mediating the long-term expres-
sion of ciliary neurotrophic factor have not produced bene-
ficial effects in YAC72 and R6/1 mice, respectively. In the
second case, the mice developed motor impairments at an
earlier age and displayed significant decreases in the levels
of striatal transcripts instead [93, 94].

Approaches that Involve Inducing the Expression of Endoge-
nous Neurotrophic Factors Whereas viral-mediated overex-
pression, transplantation of engineered cells or crossing
approaches are useful methods of inducing the expression
of neurotrophic factors in laboratory animals; implementing
this strategy in humans would require more convenient
methods. One possible method would be to enhance the
expression of endogenous factors by means of small mole-
cules that are capable of crossing the blood–brain barrier.
Antidepressants that belong to the selective serotonin reup-
take inhibitor (SSRI) class, such as sertraline, fluoxetine and
paroxetine, prolong lifespan, improve motor and neuropath-
ological phenotypes and enhance neurogenesis in the R6
and N171-82Q mouse models of HD. These beneficial
effects may be partially mediated by the ability of SSRIs
to increase endogenous BDNF levels [95–99]. The positive
effect of SSRI treatment may also result from serotonin-
induced neuroprotective pathways. Serotonin triggers sig-
naling cascade that lead to neurite outgrowth, synaptogene-
sis, neurogenesis and cell survival, and BDNF can promote
the development and function of serotonergic neurons [100].

BDNF upregulation was reported in several experimental
HD treatment approaches, including:

& Modulation of AMPA-type glutamate receptor by ampa-
kine CX929 [101, 102]

& Modulation of signaling pathways, such as JNK and
ERK (using CEP-1347), cAMP/CREB (using phospho-
diesterase inhibitors rolipram and TP-10), or the Ask1

apoptotic pathway (using an anti-Ask1 antibody)
[103–106]

& Strategies aimed at reversing mitochondrial energy im-
pairment [107–109]

& Transglutaminase activity modulation with cystamine
and cysteamine treatment [110]

& Dietary restriction [111]
& Anti-excitotoxic drugs memantine and riluzole, which

have been used in HD mouse treatment and have also
increased BDNF levels in other studies [112, 113]

The finding that BDNF expression and activity are con-
trolled by a complex network that involves many regulatory
activities in which polyQ HTT also participates may explain
the frequent reports of BDNF upregulation in conjunction
with HD therapy [114, 115]. Therefore, using nonselective
drugs or targeting signaling pathways that regulate BDNF
expression may coincidently result in increased BDNF
levels. Although such upregulation is generally positive
from a therapeutic point of view, it may be misleading when
the molecular mechanisms of the beneficial effects need to
be interpreted.

Environmental Enrichment

The environmental enrichment strategy is one where the
animals are kept in improved environmental conditions rel-
ative to standard laboratory housing methods and are pro-
vided with objects that promote physical, cognitive, and
social development (Fig. 4). The experimental method of
enrichment is complex and usually includes more than one
of the following: large cages and housing in larger groups,
tunnels, nesting materials, toys that are changed frequently
and introduced as an element of novelty, and opportunities
for physical activity (usually running wheels or treadmills)
[116]. The initial reports of the beneficial effect of environ-
mental enrichment in experimental therapy for Huntington
disease appeared in 2000 and showed that exposing R6 mice
to a stimulating, enriched environment from an early age
reduced motor impairment and some of the neuropatholog-
ical aspects of HD [117, 118]. Subsequently, many groups
tested the ability of enriched conditions, dietary enhance-
ment, or voluntary or forced motor training to elicit pheno-
typic improvements, and these groups found effects that
were generally positive but rather moderate [28, 119–129]
(Table 3). The mechanisms that account for such a rescue of
neuropathological and motor functions are not fully under-
stood. Environmental manipulations result in the upregula-
tion of genes involved in synaptic plasticity and growth,
including neurotrophic factors and neurotransmitters,
which, as a result, may lead to general improvement in the
health of the nervous system due to increased neuroprotec-
tion and neurogenesis [130–132]. In R6/1 studies, Spires
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Table 3 Environmental enrichment-related therapeutic approaches in mouse models of polyQ diseases

Approach Model Therapeutic outcomes Reference

Environmental enrichment
cages (exercise wheels,
hiding tubes, and social
interaction)

N171-82Q (HD) ✓ Improved rotarod performance; attenuated
body weight decline

Schilling et al.
2004 [28]

× No change in life span

Environmental enrichment
cages (cardboard, paper,
and plastic objects)

R6/1 (HD) ✓ Delayed “turning task” phenotype and
clasping behavior; attenuated peristriatal
cerebral atrophy

van Dellen et al.
2000 [117]

× No change in body weight loss rate and no
significant change in striatal volume; no
significant difference in the overall density of inclusions

Environmental enrichment
cages (cardboard boxes,
open wooden boxes,
cylindrical cardboard
tunnels, and folded
sheets of paper)

R6/1 (HD) ✓ Improved rotarod performance; partially
ameliorated body weight loss; increased
striatal BDNF level; increased cortical
DARPP-32 level

Spires et al.
2004 [121]

× No improvement in brain weight loss;
no change in striatal DARPP-32 level

Voluntary physical
exercise (running wheels)

R6/1 (HD) ✓ Reduced abnormal rearing behavior; delayed
rear paw clasping behavior; rescued deficit in
spatial working memory; increased striatal
mRNA BDNF level

Pang et al.
2006 [123]

× No change in rotarod performance; no
change in abnormal BDNF levels

Environmental
enrichment cages
(plastic and cardboard objects)

R6/1 (HD) ✓ Increased number of BrdU+amd DCX+
cells in dentate gyrus; increased length of
neuritis; increased DCX+cells migration
distance from subgranular zone

Lazic et al.
2006 [122]

× No change in the number of BrdU+cells
in subventricular zone; no change in rotarod performance

Environmental enrichment
cages (cardboard boxes,
plastic conical tubes,
cylindrical cardboard
tunnels, and folded
sheets of paper)

R6/1 (HD) ✓ Improved performance on accelerating rotarod
rescued abnormal habituation of locomotor
activity and exploratory behavior

van Dellen et al.
2008 [125]

× No change in body and brain weight loss;
no reduction in shrinkage of the striatum
and anterior cingulate cortex; no change
in density of protein aggregates

Voluntary physical
exercise (running wheels)

R6/1 (HD) ✓ Delayed horizontal rod phenotype and
clasping phenotype; rescued abnormal
habituation of locomotor activity and
exploratory behavior

van Dellen et al.
2008 [125]

× No change in performance on accelerating
rotarod; no change in body and brain weight
loss; no reduction in shrinkage of the striatum
and anterior cingulate cortex; no change in
density of protein aggregates

Environmental
enrichment cages
(objects varying in
shape, texture and
size); more frequent
animal handling

R6/1 (HD) ✓ Ameliorated deficit in spatial learning on
the Barnes maze; increased cortical and
hippocampal synaptophysin levels;
increased hippocampal PSD-95 level

Nithianantharajah
et al. 2008 [124]

Environmental
enrichment cages
(novel objects)

R6/1 (HD) ✓ Reduced accumulation and size of NII Benn et al.
2010 [126]× No change in dopamine and adenosine

receptor binding levels; no significant
environmental enrichment-related changes
detectable by microarray; no difference
in the level of transgene mRNA expression

Environmental
enrichment cages
(cardboard rolls,
wire, mesh, shredded

R6/1 (HD) ✓ Altered methylation pattern at specific
sites within CpG islands

Zajac et al.
2010 [128]

× No change in hippocampal BDNF mRNA
level in R6/1 mice
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Table 3 (continued)

Approach Model Therapeutic outcomes Reference

paper, wooden, and
plastic objects)

Voluntary physical
exercise (running wheels)

R6/1 (HD) ✓ Increased hippocampal BDNF mRNA levels
(females only); altered methylation pattern
at specific sites within CpG islands

Zajac et al.
2010 [128]

Enhanced diet+mixed
housing of TG mice
with WT mice

R6/2 (HD) ✓ Decreased body weight loss rate; increased
in the survival of the first 50 % of mice to die

Carter et al.
2000 [118]

Enhanced diet+early
weaning and
behavioral testing

R6/2 (HD) ✓ Increased in the survival of the first 50 % of
mice to die

Carter et al.
2000 [118]

× No change in body weight loss rate

Enhanced diet+
involvement in a
breeding program

R6/2 (HD) ✓ Increased in the survival of the first 50 % of mice to die Carter et al.
2000 [118]× Increased body weight loss rate

Enhanced diet R6/2 (HD) ✓ Decreased body weight loss rate; prolonged
life span; increased hind limb grooming and burrowing

Carter et al.
2000 [118]

× No change in open field phenotype

Minimally enriched
living conditions
(food pellets on the
cage floor+a
cardboard tube

R6/2 (HD) ✓ Increased rotarod performance; not significant
trend toward increase of the grip strength

Hockly et al.
2002 [119]

× No change in body weight loss rate; no
change in brain weight loss

Highly enriched living
conditions (larger cages,
mixed genotypes, maize
fibers, paper strips,
cellulose pads, and
cotton wool; running
wheels and other toys)

R6/2 (HD) ✓ Increased rotarod performance; increased
grip strength at endpoint; not significant
trend toward increase of the striatal volume;
increased peristriatal cerebral volume

Hockly et al.
2002 [119]

× No change in body weight loss rate; no change
in brain weight loss; no change in striatal and
cortical aggregate densities

Voluntary physical
xercise (running wheels)

R6/2 (HD) × No change in proliferation of hippocampal
cells in R6/2 mice; no change in number of
neural precursor cells (DCX+) in the DG of
R6/2 mice; no change in the total number
of newly generated neurons

Kohl et al.
2007 [133]

Environmental
enrichment cages
(playground/no handling)

R6/2 (HD) ✓ Increased activity; prolonged life span Wood et al.
2010 [129]× No change in overall cognitive performance

of R6/2 mice in morris water maze
(sex-dependent improvement in some tasks);
sex-specific mix of beneficial and detrimental
effects on body weight loss

Environmental
enrichment cages
(playground/ handling)

R6/2 (HD) ✓ Increased activity Wood et al.
2010 [129]× No change in overall cognitive performance

of R6/2 mice in morris water maze
(sex-dependent improvement in some tasks);
sex-specific mix of beneficial and
detrimental effects on body weight loss;
shortened life span (males)

Motor stimulation
(enforced physical
exercise on the rotarod)

R6/2 (HD) ✓ Increased rotarod performance (females only) Wood et al.
2011 [127]× Decreased body weight loss rate; no change in

survival; no change in cognitive function (Lashley
maze performance)

Cognitive stimulation
(training in the OX maze)

R6/2 (HD) ✓ Increased cognitive function in males (Lashley
maze performance); prolonged life span (males);
sex-specific mix of beneficial and detrimental
effects on body weight loss; increased rotarod
performance (females)

Wood et al.
2011 [127]

Mixed stimulation
(access to a playground)

R6/2 (HD) ✓ Increased rotarod performance Wood et al.
2011 [127]× No change in body weight loss rate; no

change in cognitive function (Lashley maze
performance); shortened life span (males)
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and colleagues reported increased BDNF levels in the mouse
hippocampus and striatum [121], Glass and colleagues
showed that an enriched environment reduced the depletion
of cannabinoid CB1 receptors [120], and Lazic demonstrated
that improved conditions may affect neurogenesis [122].
However, recent reports using microarray profiling have not
confirmed the previous observations and have shown no
specific changes in enrichment-related gene expression in
either transgenic or wild-type mice. In the same work, a
nonsignificant trend toward the preservation of downregulated
neurotransmitter receptors in the striatum of environmentally
enriched mice was observed [126]. Similarly, motor training
does not enhance hippocampal neurogenesis in R6/2 mice and
does not rescue the deficits of BDNF expression in R6/1 mice
[123, 133]. The complex character of the environmental mod-
ulation methods, consisting of many unspecified motor and
cognitive stimuli whose effects may overlap and act synergis-
tically, may generate numerous variables that influence the
experimental outcome. Further studies separating the individ-
ual elements of environmental enrichment are required to
assess their contributions to the overall effect and determine
the relevant mechanisms.

Target: Aberrant Neurotransmission and Excitotoxicity

The hypothesis that a pathogenic mechanism in HD may
depend on excitotoxic neuronal damage arose from experi-
ments where exogenous excitotoxins, such as kainic acid and
quinolinic acid (QUIN), were applied by direct injection into
the healthy rodent striatum, which produced a behavioral
phenotype and cell damage pattern that were reminiscent of
HD (for review [134]). Quinolinic acid, a selective N-methyl-
D-aspartate (NMDA) receptor agonist, is useful because its
injection selectively affects medium spiny neurons (MSNs),
and most of the interneurons remain intact [135]. Excitotoxic
neuronal injury in response to the injection of quinolinic acid
affects cells that have NMDA receptors (NMDARs) on the
cell membrane; these cells are physiologically excitable and
may be considered healthy neuronal cells. Moreover, the
excitotoxic injury in the QUIN model happens in healthy
striata where the connectivity of the corticostriatal pathway
is intact (developing young animals where the corticostriatal
pathway is not fully established are resistant to QUIN excito-
toxicity [136]). This chemical QUIN-evoked model was used
to investigate HD in the absence of an identified causative
gene and a lack of genetic mouse models, and although these
experiments were performed almost 30 years ago, why MSNs
are selectively vulnerable in HD is still unknown. Once the
R6/2, YAC72, and YAC128 models were generated, they
revealed some aspects of the excitotoxic phenomenon, show-
ing electrophysiological alterations in MSNs and cortical py-
ramidal neurons [137–144]. The electrophysiological changes
in HD are biphasic between presymptomatic and symptomatic

HD phases and have opposite characteristics between MSNs
and pyramidal neurons, and these changes include both excit-
atory and inhibitory events. Based on these findings, it has
been proposed that the connectivity in the corticostriatal path-
way is disrupted in HD [145]. A sign of this connectivity loss
is the lack of an excitotoxic response in symptomatic R6/2 and
YAC128 models following the injection of QUIN [137].

Excitotoxicity is initiated by a glutamate receptor-
mediated, excessive influx of Ca2+ ions into the neuronal
cells, which subsequently may lead to the cascade of de-
structive events. It is still elusive why neurons that express a
polyglutamine protein are more vulnerable to the endoge-
nous excitotoxic insult. One possible explanation is that
deregulation of the kynurenine pathway leads to elevated
levels of endogenous excitotoxins [146]. Alterations in the
metabolism and transport of glutamate or the oversensitivity
of glutamate receptors in affected neurons may also contribute
to the observed vulnerability [134].

NMDA Receptors

Although the central role of NMDA receptors in pathogenesis
of HD is well established [147], the receptors were deemed
poor therapeutic targets because of their essential physiolog-
ical role. However, it has been recently discovered that the
extrasynaptic pool of NMDARs mediates the deleterious
effects of glutamate in neurons, whereas synaptically localized
NMDA receptors do not induce Ca2+ overload or toxic cellu-
lar effects [148–151]. Two studies have demonstrated that
selectively blocking extrasynaptic NMDA receptors with
low concentrations of memantine, an NMDAR blocker, may
represent a novel therapeutic strategy for HD; these studies
have also shown that high concentrations of memantine block
all NMDA receptors and do not produce beneficial therapeutic
effects in transgenic mice [149, 150].

Subcutaneous injection of an NR2B-selective NMDA re-
ceptor antagonist does not relieve any disease phenotypes in
R6/2 mice [152]. NMDA–NR2B receptors are believed to be
located extrasynaptically; however, because the study on R6/2
mice used high doses of NR2B antagonists, the whole pool of
NMDA receptors may have been inhibited, which is not ben-
eficial [149, 152]. In addition, the low-affinity NMDA antag-
onist remacemide has beneficial effects on motor performance
in N171-82Q mice but has no effect on survival [28, 153].
Instead, beneficial effects, such as increased survival, have
been shown in R6/2 and N171–82Q animals that were treated
with remacemide combined with coenzyme Q10 [154].

Other Receptors

Other receptors that are present in the membranes of MSNs,
such as the adenosine A2A receptor and metabotropic gluta-
mate receptors mGluR5 and mGluR2 may also be possible
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targets for providing neuronal protection in HD [155–158].
For instance, treatment with CGS21680, an A2A agonist,
ameliorates motor and neuropathological phenotypes and
reduces hyperglycemia in R6/2 mice [157, 159]. The metab-
otropic glutamate receptors modulate glutamate-mediated
excitotoxicity by controlling membrane enzymes and sec-
ond messenger systems. The mGluR5 antagonist MPEP and
the mGluR2 agonist LY379268 modify disease progression
and increase survival in the R6/2 model [160, 161]. More-
over, interfering with glutamatergic neurotransmission by
increasing the expression of glutamate transporter protein
GLT-1 may be beneficial in HD mouse models [162, 163].
The upregulation of glutamate transporters in astroglia fol-
lowing treatment with PACAP, EGF, or TGF-α presents a
potential therapeutic option in neurodegenerative diseases
[164, 165]. Other therapeutic options include using reuptake
inhibitors or supplying neurotransmitter precursors to inter-
fere with other excitatory and inhibitory neurotransmitters,
such as dopamine and GABA, and serotonin [166–169].

Kynurenine Pathway

The kynurenine pathway (KP) is a major route of tryptophan
catabolism in mammalian cells and contains three important
neuroactive metabolites: quinolinic acid, its precursor 3-
hydroxykynurenine (3-HK) and kynurenic acid (KYNA)
[170]. Because of their properties—the potent excitotoxicity
of QUIN, the generation of reactive oxygen species by 3-HK,
and the neuroprotective abilities of KYNA—all of these com-
pounds may participate in HD pathogenesis [146, 171, 172].
For detailed mechanisms of neurodegeneration associated with
kynurenine pathway see the following references [134, 146].

Therapeutic interventions that modulate the production of
KP metabolites have recently been shown to have beneficial
effects in a drosophila model of Huntington disease [173]
and in mouse models of Alzheimer disease and Huntington
disease [174]. In these reports, researchers inhibited kynur-
enine 3-monooxygenase (KMO, an enzyme that converts
kynurenine into 3-HK), which resulted in the increased
synthesis of a neuroprotective KYNA metabolite and de-
creased extracellular glutamate levels. Interestingly, JM6, a
KMO inhibitor that was used in the mouse studies, does not
trigger these effects directly in central nervous system
(CNS) cells because of its inability to cross the blood–brain
barrier. Instead, JM6 inhibits KMO in blood cells, which
results in an increased level of circulating kynurenine, active
transport of kynurenine through the blood–brain barrier, and
the subsequent conversion of kynurenine into KYNA in
CNS cells. R6/2 mice that were orally administered JM6
did not exhibit cortical or striatal synaptic losses or inflam-
matory microglial responses, and they lived longer than
untreated R6/2 animals. No changes in the abundance or
sizes of huntingtin inclusions were recorded [174].

Target: Mitochondrial Dysfunction

Numerous observations in postmortem HD brains and ani-
mal models of HD support the idea that mitochondrial
impairment may contribute to the pathogenesis and neuro-
toxicity of HD [175–179]. Subsequent studies revealed the
existence of several different mechanisms that directly or
indirectly link mitochondrial dysfunction with the mutant
huntingtin protein (Fig. 5). Among them, the most exten-
sively studied and the most plausible mechanisms are: tran-
scriptional deregulation of nuclear-encoded mitochondrial
proteins, Ca2+ handling impairment, and trafficking deficits.

Mutant huntingtin induces transcriptional deregulation of
nuclear-encoded mitochondrial proteins by binding to sev-
eral transcription factors, such as p53, CBP, TAFII130 and
SP1, and altering their physiological functions. By interfer-
ing with CREB function, huntingtin downregulates the ex-
pression of PPARγ co-activator-1α (PGC-1α), thus
deregulating the expression of numerous proteins that are
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Fig. 5 The therapeutic strategies targeting mitochondrial dysfunction
induced by expanded polyQ proteins. By interfering with CREB func-
tion, huntingtin downregulates the expression of PGC-1α and induces
transcriptional deregulation of nuclear-encoded mitochondrial proteins
that are involved in respiration, thermogenesis, and ROS defense.
Mutant huntingtin has been proposed to interact with the outer mito-
chondrial membrane to significantly decrease the mitochondrial Ca2+

capacity and directly induce MPT pore opening. These alterations can
cause increased vulnerability to glutamate receptor-mediated excito-
toxic stimuli. Finally, mutant huntingtin causes defects in mitochon-
drial trafficking through long dendritic and axonal projections.
Mitochondria-related therapeutic strategies include compensating for
energy deficits (1) and oxidative stress (2) caused by mitochondrial
dysfunction; restoring the altered transcription of mitochondrial factors
(3); inhibiting the mitochondrial permeability transition (4); and ad-
ministering NMDAR inhibitors to protect against excitotoxicity-
mediated cell death (5). PPARγ co-activator-1α (PGC-1α), reactive
oxygen species (ROS), mitochondrial permeability transition (MPT)
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essential for proper mitochondrial operation, including re-
active oxygen species (ROS)-scavenging enzymes, respira-
tory chain components, and thermogenic factors [180, 181].

When the mitochondrial Ca2+-buffering capacity is over-
loaded, mitochondria lose their membrane potential and
open the mitochondrial permeability transition (MPT) pores,
which results in the activation of cellular death pathways
[182]. Mutant huntingtin may interact with the outer mito-
chondrial membrane and directly induce MPT pore opening.
Furthermore, mutant huntingtin significantly decreases the
Ca2+ threshold necessary to initiate this cascade [183]. In-
creased mitochondrial sensitivity to intracellular calcium
concentrations may therefore explain the excitotoxicity-
mediated death of neuronal cells that contain mutant
huntingtin.

Neurons with long dendritic and axonal projections are
particularly dependent on proper trafficking of mitochondria
to distant energy-consuming sites. One of the normal func-
tions of wild-type huntingtin is interacting with numerous
trafficking mediators to regulate intracellular microtubule-
mediated transport [184]. It has been demonstrated that
mutant huntingtin can negatively influence the trafficking
regulation network and cause defects in organelle movement
[185]. In addition, large intracellular aggregates of mutant
huntingtin can physically block the transport of mitochon-
dria along these projections [186].

Energy Deficit and Oxidative Stress

Mitochondria-related therapeutic strategies that have been
examined in mouse models of Huntington disease were
primarily designed to compensate for energy deficits and
oxidative stress caused by mitochondrial dysfunction
(Fig. 5). Several studies tested coenzyme Q10 (CoQ10), an
essential cofactor of the electron transport chain and potent
free radical scavenger, both alone and in multidrug therapies.
Schilling and colleagues evaluated the effects of CoQ10 and
the excitotoxic protector remacemide on the phenotype of
N171-82Q mice. They observed an improvement in rotarod
performance and a rescue from body weight loss but not from
premature death [28, 153]. The Beal’s and Ferrante’s groups
also detected significant rescue of motor impairment and
neuropathology in addition to extensions of the lifespans of
R6/2 and N171-82Q animals by as much as 20–30 % upon
treatment with CoQ10 alone [187] or in conjunction with
remacemide [154], minocycline [188], or creatine [189]
(Table 4). However, a recent paper by Menalled and col-
leagues questioned the beneficial effects of CoQ10 (and min-
ocycline; see “Target: Apoptosis” section) by showing a lack
of improvement in survival, body weight, rotarod perfor-
mance, open field performance, and climbing performance
following oral administration of 0.2 % CoQ10. Treatment
with a higher dose (0.6 %) had additional negative effects that

were specific to HD (Table 4) [190]. These contradictory
results may have been caused by methodological variations
in testing paradigms and by differences in animal husbandry
like access to food or housing conditions. Additionally, high
molecular weight, insolubility in water, and limited solubility
in lipids are reasons for the poor absorption and brain pene-
tration of orally administered CoQ10, so its bioavailability is
strongly dependent on the formulation [191]. Various formu-
lation strategies for improving CoQ10 bioavailability are cur-
rently under intensive development [192].

Other energy compensators, such as dichloroacetate and
lipoic acid (which are pyruvate dehydrogenase complex
stimulators), triacetyluridine, creatine, or modified diet
regimes, also have beneficial effects on motor and neuro-
pathological phenotypes, prolong the shortened lifespan and
rescue body weight loss in R6 and N171-82Q mice [107,
111, 118, 193–198].

Damaged mitochondria lose their free radical scavenging
properties, which leads to elevation of free radical concentra-
tion [199]. To mitigate this aspect of HD pathogenesis, several
antioxidant approaches have been extensively investigated. In
addition to having anti-oxidative properties, the chemical
compounds NDGA and TUDCA also mitigate mitochondrial
insufficiency and toxicity and improve the phenotype of R6/2
mice [200, 201]. Other potent free radical scavengers, such as
BN82451, ascorbate and L-carnitine, or triterpenoids and
fumaric acid, which indirectly stimulate the Nrf2 antioxidative
signaling pathways, reduce ROS and have a high therapeutic
potential for HD treatment [202–206].

Transcriptional Deregulation of Mitochondrial Proteins

Approaches that restore the altered transcription of mitochon-
drial factors target the activity of PGC-1α, a key transcrip-
tional co-activator involved in energy homeostasis, glucose
metabolism, and mitochondrial biogenesis [180]. Chaturvedi
and colleagues mimicked the effects of endurance exercise
training by treating NLS-N171-82Q mice with GPA (beta-
guanidinopropionic acid), which reduces phosphocreatine and
ATP levels. They found that muscles in HD mice cannot
overcome an energetic stress by inducing the PGC-1α path-
way, as it happens in muscles of wild-type mice. This defi-
ciency is caused by alterations located upstream of PGC-1α
that impair the activation of the PGC-1α-inducing AMPK
pathway, the sensor for energy regulation. Expression of ex-
ogenous PGC-1α directly in the muscles of NLS-N171-82Q
mice increases the oxidative capacities of the muscles and
reverses the blunted response to GPA treatment [207].

PGC-1α activity is also regulated through its deacetyla-
tion by NAD-dependent deacetylase sirtuin-1 (Sirt1). Sirt1
activity can be enhanced by resveratrol, a natural polyphe-
nolic compound. Ho and colleagues found that orally ad-
ministered resveratrol increased both PGC-1α activity and
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the expression of its direct downstream targets, NRF-1 and
UPC-1 (both of which regulate mitochondrial function) in
N171-82Q transgenic mice. However, this improvement
was only observed in brown adipose tissue. As a result of
insufficient striatal penetration, resveratrol could not induce
similar effects in neurons; thus, the treatment resulted in a
lack of improvement in motor performance, survival, and
striatal atrophy [208]. A similar strategy, leading to an
increase in PGC-1α activity, was applied by Hathorn and

colleagues. They used nicotinamide, an Sirt1 inhibitor, and
postulated that it can also act as an Sirt1 activator. In
contrast to Ho’s report, nicotinamide improved HD-
associated motor deficits [108]. However, because nicotin-
amide is not a specific drug (it can also increase BDNF
expression), PGC-1α-independent mechanisms may also
contribute to the observed improvement. Recently, two stud-
ies showed that Sirt1 exerts neuroprotection in HD mouse
brains by activating pro-survival transcription factors/

Table 4 Therapeutic approaches using CoQ10 in mouse models of polyQ diseases

Drug Route/Dose Model Therapeutic outcomes Reference

CoQ10/remacemide Food supplemented with 0.2 %
of CoQ10 (500 mg/kg/day)
and 0.007 % of remacemide
(17.5 mg/kg/day)

N171-82Q (HD) ✓ Improved rotarod performance;
decreased body weight loss rate

Schilling et al.
2001 [153]

× No change in survival; no change
in inclusion formation

CoQ10 Powdered food supplemented
with 0.2 % of CoQ10
(500 mg/kg/day)

N171-82Q (HD) ✓ Improved rotarod performance Schilling et al.
2004 [28]× Shortened life span (powdered

food formulations effect)

CoQ10/remacemide Food supplemented with 0.2 %
of CoQ10 (400 mg/kg/day)
and 0.007 % of remacemide
(14 mg/kg/day)

N171-82Q (HD) ✓ Attenuated body weight loss;
prolonged life span

Ferrante et al.
2002 [154]

CoQ10/remacemide Food supplemented with 0.2 %
of CoQ10 (400 mg/kg/day)
and 0.007 % of remacemide
(14 mg/kg/day)—separate
or combined

R6/2 (HD) ✓ Improved rotarod performance;
attenuated body weight loss; prolonged
life span; delayed brain weight loss;
attenuated gross brain atrophy and
ventricular enlargement; attenuated
neuronal atrophy; reduced number
of striatal aggregates

Ferrante et al.
2002 [154]

CoQ10 Food supplemented 1,000,
5,000, 10,000, or 20,000
mg/kg/day (Chemco)

R6/2 (HD) ✓ Prolonged life span (dose dependent);
reduced body weight loss; improved
rotarod phenotype; increased forelimb
strength; attenuated gross brain size
decline and striatal atrophy; reduced
aggregate formation

Smith et al.
2006 [187]

CoQ10 Food supplemented 400,
1,000, and 2,000 mg/kg/day
(Tishcon)

R6/2 (HD) ✓ Prolonged life span (dose dependent);
reduced body weight loss; improved
rotarod phenotype

Smith et al.
2006 [187]

CoQ10/minocycline Food supplemented with 0.2 %
of CoQ10 and intraperitoneal
injection of minocycline
(5 mg/kg/day)—separate
or combined

R6/2 (HD) ✓ Prolonged life span; improved rotarod
phenotype; reduced body weight loss
(CoQ10 specific); attenuated gross brain
atrophy and ventricular enlargement;
attenuated neuronal atrophy; reduced
aggregate formation (CoQ10 specific);
attenuated the microglial response
(minocycline specific)

Stack et al.
2006 [188]

CoQ10/creatine Food supplemented with 1 %
of CoQ10 and 2 % of
creatine—separate or
combined

R6/2 (HD) ✓ Improved rotarod performance;
prolonged life span

Yang et al.
2009 [189]

CoQ10 Food supplemented with
0.2 % of CoQ10

R6/2 (HD) × No change in survival, body weight and
rotarod performance; no change in rearing
frequency and climbing performance;
transient deleterious effects in the open
field and grip strength;

Menalled et al.
2010 [190]

CoQ10 Food supplemented with
0.6 % of CoQ10

R6/2 (HD) × No change in survival, rotarod performance,
grip strength performance, and climbing;
transiently decreased body weight,
locomotor activity, and rearing in R6/2

Menalled et al.
2010 [190]
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coactivators, including Foxo3a and TORC1. Mutant hun-
tingtin interacts with Sirt1 and inhibits its deacetylase activ-
ity, which results in hyperacetylation of Sirt1 substrates and
repressed transcription of pro-survival genes. Notably, Sirt1
overexpression restores the aberrant acetylation status of
Sirt1 substrates, promotes the BDNF and DARPP32 expres-
sion, and improves HD phenotype in N171-82Q and
BACHD mice [209, 210].

Finally, Chiang and colleagues showed that treatment of
R6/2 mice with thiazolidinedione to activate pathways medi-
ated by PPARγ (a nuclear receptor that acts upstream of the
PGC-1α gene), can rescue the progressive weight loss, dete-
rioration of motor skills, formation of mutant HTT aggregates
and reduced lifespan phenotypes. Similar to nicotinamide
treatment, thiazolidinediones also induce the expression of
two neuroprotective proteins, BDNF and Bcl-2 [109].

Calcium-buffering Capacity

The importance ofmitochondrial permeability in the transition
to cell death has been tested twice in R6/2 mice. Administra-
tion of nortriptyline, a strong inhibitor of MPT, delays disease
onset but also accelerates disease progression once the phe-
notype appears [211]. In addition, Perry et al. obtained dis-
couraging results when they crossbred R6/2 mice with
cyclophilin D (CypD)-deficient animals. CypD is a structural
component of the MPT pore, and knockout of the gene encod-
ing CypD increases mitochondrial Ca2+ buffering, thereby
protecting cells from calcium overload. However, increasing
the mitochondrial Ca2+ capacity fails to ameliorate the HD-
related behavioral and neuropathological phenotypes [212].

Target: Apoptosis

Aberrant interactions between polyQ proteins and the compo-
nents of apoptotic pathways have been reported in patients’
brains and in cellular and animal models (Fig. 6). The pres-
ence ofmutant huntingtin results inmitochondrial cytochrome
c release, followed by the activation of caspases 9 and 3 and
the upregulation and/or activation of caspases 1, 2, 3, 6, 7, and
8 in the brains of humans with HD and in mouse models of
HD [213–218]. Expanded ataxin-3 and ataxin-7 upregulate
Bax and PUMA (which are pro-apoptotic proteins) and down-
regulate Bcl-xL (which is an anti-apoptotic protein), which
may subsequently lead to the release of the apoptogenic
proteins from mitochondria [219–221]. Moreover, the expres-
sion of androgen receptors in cultured neurons induces the
Bax-dependent apoptotic cascade initiated by the JNK signal-
ing pathway in response to polyQ-mediated stress [222].
These observations suggest that polyQ proteins may interfere
with both the intrinsic (mitochondria-mediated) and extrinsic
(receptor-mediated) apoptotic pathways. Additionally, several
polyQ proteins that undergo proteolytic cleavage by cellular

proteases, such as huntingtin, ataxin-3 and -7, AR and
atrophin-1, are also substrates for caspases [223–227]. Trun-
cated fragments of these proteins may play crucial roles in the
pathogenesis of each disease because they are more toxic than
their full-length forms. For example, huntingtin containing a
mutation at the caspase-6 cleavage site was unable to induce
neurodegeneration in HDYAC128 transgenicmice [228]. The
mice expressing the N-terminal 586 aa caspase fragment of
HTT show cytoplasmic inclusions and neurological pheno-
type milder than R6/2. This indicates that further cleavage is
needed to worsen the phenotype and evoke more intensive
nuclear accumulation [229, 230].

Although molecular markers of apoptosis are easily de-
tectable even before gross neuronal loss, typical cellular
apoptotic features and the presence of neurons undergoing
apoptosis have rarely been reported in mouse models. It is
widely accepted that expanded polyglutamine proteins may
also induce other forms of cellular death [231]. Differences
in spatiotemporal expression patterns and polyQ protein
contexts between humans and mouse models may influence
the proportion of individual death mechanisms that are
activated and, as a result, apoptosis may be masked in polyQ
mice, even with the activation of apoptotic mediators.
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Fig. 6 Anti-apoptotic therapeutic strategies target aberrant interactions
between polyglutamine proteins and the components of apoptotic path-
ways. PolyQ proteins cause the upregulation and/or activation of
several caspases, upregulate pro-apoptotic proteins and downregulate
anti-apoptotic factors, which may subsequently lead to the release of
apoptogenic proteins from mitochondria. Several polyQ proteins un-
dergo proteolytic cleavage by caspases, which results in the production
of toxic truncated protein fragments. Therapeutic approaches tested in
mouse models include the inhibition of caspase functions (1), the
inhibition of mitochondrial release of cytochrome c and subsequent
intrinsic apoptotic pathway activation (2), and the modulation of the
initiation of apoptotic signals (3). Cytochrome c (Cyt c), apoptotic
protease activating factor 1 (Apaf-1)
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Minocycline Treatment

The efficacy of minocycline in Huntington disease treatment
has been extensively debated over the last decade. Initial
encouraging results were obtained by Ona and colleagues
who showed that blocking caspase function could delay
both disease onset and mortality in R6/2 mice [232]. The
same group found that minocycline inhibits caspase-1,
caspase-3, and iNOS activities in HD animals and observed
a reduction in both disease progression and mortality of R6/
2 animals [214]. The beneficial effect of minocycline was
thought to be caused by the attenuation of HD-mediated
induction of the caspase cascade and decreased production
of toxic HTT fragments [214, 233]. However, Bates’s labo-
ratory was unable to replicate those findings despite using
the same drug and mouse model but with different dosing
and different administration routes [27]. Subsequent studies
performed on R6/2, N171-82Q, and 3-nitroproprionic acid
HD models demonstrated that minocycline treatment had
either favorable efficacy [188] or no efficacy [234, 235]

(Table 5). Recently, Menalled and colleagues attempted
to reevaluate the preclinical effects of minocycline (and
coenzyme Q10) using the R6/2 model. A low dose of
minocycline (Table 5) induced some transient beneficial
effect, although it was not comparable to the results
published by Chen and colleagues and Stack and col-
leagues. Higher doses (Table 5) resulted in HD-specific
toxicity (including reduced survival rates and body
weights) and lack of amelioration of the disease pheno-
type [190], which confirmed previous observations [27].
The reason for these discrepancies is unclear and may
be explained by differences in husbandry conditions,
drug preparation, or methodological variations in testing
paradigms [190, 236].

At the same time, four minocycline clinical trials were
being conducted. A small study of 14 patients showed
stabilization of general motor and neuropsychological func-
tion after 2 years of treatment [237]. Another short-term
pilot study, designed to examine the safety of orally admin-
istered minocycline at the dosage of 200 mg/day, revealed

Table 5 Therapeutic approaches using minocycline in mouse models of polyQ diseases

Drug Route/Dose Model Therapeutic outcomes Reference

Minocycline Intraperitoneal, 5 mg/kg/day R6/2 (HD) ✓ Prolonged life span; improved rotarod
performance

Chen et al.
2000 [214]

No change in body weight loss rate and
blood glucose level; no change in aggregate
formation and receptor-binding

Minocycline 1 and 5 mg/mL in drinking
water, (~150 and 750 mg/kg/day)

R6/2 (HD) ✓ Reduced elevated glucose levels Smith et al.
2003 [27]No change in body weight loss rate, rotarod

performance, and grip strength; no change in
aggregate formation; higher dose (10 mg/mL)
induced severe initial weight loss

Minocycline Intraperitoneal, 5 mg/kg/day R6/2 (HD) ✓ Prolonged life span; improved rotarod
performance; attenuated gross brain atrophy
and ventricular hypertrophy; attenuated striatal
neuronal atrophy and microglial response;
therapeutic effect increased with the combined
minocycline/CoQ10 treatment

Stack et al.
2006 [188]

× No change in body weight loss rate and
aggregate formation

Minocycline Intraperitoneal, 10 mg/kg/day N171-82Q (HD) × No change in survival and body weight
loss rate; no change in rotarod and open
field performance; no change in striatal
atrophy, ventricle enlargement, and cortical
thickness

Mievis et al.
2007 [235]

Minocycline Intraperitoneal, 5 mg/kg/day R6/2 (HD) ✓ Transiently increased body weight,
locomotor activity, and rearing (males)

Menalled et al.
2010 [190]

× No change in survival, grip strength, rotarod
performance, and climbing phenotype;

Minocycline Food supplemented with 0.1 %
and 0.375 % of minocycline
(~200 and 750 mg/kg/day)

R6/2 (HD) ✓ Transiently increased body weight and rearing
(0.1 %); minor and transient beneficial effect
on rotarod performance (0.375 %)

Menalled et al.
2010 [190]

× Decreased survival (both doses); reduced body
weight and rearing (0.375 %); decreased open
field activity (0.375 %); no change in grip strength
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that although there was a lack of medication-related side
effects, there was also no significant motor improvement
[238]. Similar results were obtained by the Huntington
Study Group, although minocycline at 100 and 200 mg/
day induced a drop in platelet count and increase in blood
urea nitrogen that were not clinically relevant [239]. Ob-
served toxicity is consistent with other studies in humans
where low doses of minocycline show no or minor toxicity,
and high-dose treatment results in negative effects [240]. In
ALS patients, dosages as high as 400 mg of minocycline/
day increased mortality, gastrointestinal, and neurological
adverse events [241]. Recent results from a futility study
(which is used to determine whether phase III efficacy
studies should be pursued) suggest that minocycline is inef-
fective in the treatment of HD [242].

Other Treatment Targeting Apoptotic Pathway

Methazolamide has been isolated in an in vitro screen from the
library of 1,040 compounds for inhibitors of mitochondrial
cytochrome c release (and caspase activation).Methazolamide
treatment results in the alleviation of motor and neuropatho-
logical phenotypes of R6/2 mice [243]. Expression of the
P2X7 receptor, an ATP-gated cation channel that may mediate
apoptosis in response to elevated Ca2+ levels, is increased as a
consequence of polyQ-mediated transcriptional deregulation.
Thus, inhibition of the P2X7 receptor by Brilliant Blue-G
prevents neuronal apoptosis, reduces body weight loss, and
improves motor deficits in R6/2 animals [244].

Target: Transcriptional Deregulation

The expression of expanded forms of polyQ proteins leads to
transcriptional changes that can be detected in animal models
and polyglutamine disease patients [245–249]. Transcription-
al deregulation is a common phenomenon that occurs in
polyglutamine and other neurodegenerative disorders. Dereg-
ulation affects genes that are responsible for neuroprotection
and neuronal plasticity; genes that are involved in signaling
pathways (including those leading to cellular death); genes
that regulate the function of intracellular systems, such as in
the mitochondria and in clearance pathways; and genes that
are essential for neuronal communication [249]. Therefore,
transcriptional aberrations may participate in or even induce
other pathological mechanisms, and therapeutic strategies
aimed at restoring an altered gene expression pattern may
have great potential because they can produce beneficial
effects through multiple mechanisms (Fig. 7).

Transcription Factors

The polyQ proteins, e.g., the androgen receptor and TATA-
binding protein are well-known DNA-binding transcription

factors. Moreover, ataxin-7 is a subunit of a STAGA
transcriptional coactivator complex [250], and ataxin-1
interacts with and modulates the function of transcrip-
tional coregulators [251–253]. Ataxin-3 is thought to
repress transcription via histone-dependent chromatin
remodeling [254, 255], and huntingtin modulates the
expression of NRSE-controlled genes [79]. The polyglut-
amine mutations expressed in these proteins change their
physiological properties by diminishing or enhancing
their abilities to bind other protein partners or by chang-
ing their binding to DNA response elements, which
ultimately results in the up- or downregulation of many
genes. Expanded polyQ stretches may also endow mutant
proteins with new abilities to interact with or to sequester
transcription factors and cofactors that do not interact
with proteins containing normal polyQ tracts (Fig. 7).
This mechanism was observed in several studies that reported
that polyQ stretches located in various proteins were able to
modulate the activities of the transcription factors TAFII130,
PQBP-1, p53, and Sp1 [221, 256–259]. The different polyQ
proteins often share similar interactions with same transcrip-
tion factors [249].
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Fig. 7 Transcriptional deregulation in therapeutic strategies of polyQ
diseases. PolyQ tract may influence the binding of polyQ proteins with
other protein partners or DNA response elements. Expanded polyQ
stretches may interact with or sequester transcription factors leading to
the up- or downregulation of many genes. In particular, mutant polyQ
proteins abnormally interact with HATs and/or HDACs, which results
in the alteration of histone modification patterns and leads to transcrip-
tional activation or inhibition at specific genomic loci. Therapeutic
strategies include activation of transcription factors whose activities
are reduced by polyQ proteins (1), modulation of transcription factor
activity using DNA-binding anthracycline antibiotics (2), and restora-
tion of altered transcription patterns through the modulation of nucle-
osome dynamics using HDAC inhibitors (3). PolyQ protein with
normal polyglutamine stretch (WT), histone acetyltransferase (HAT),
histone deacetylase (HDAC), acetyl group (Ac)
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The strategy of restoring the activity of transcription factors
that were deregulated and/or sequestered by mutant polyQ
proteins was applied to a rat HD model and to striatal cell
lines established from HdhQ111 knock-in mice. The over-
expression of CA150 transcriptional regulator fully rescues
the 109Q/109Q striatal cell death in culture and delays stria-
tum shrinkage and the degeneration of striatal cells in the
lentiviral rat model of HD [260]. Similarly, an abnormal
interaction between mutant huntingtin and Bcl11b, a zinc
finger DNA-binding protein, is thought to contribute to the
striatal transcriptional deficits that are observed in HD, and
overexpression of Bcl11b in STHdhQ111 cells partially
reverses the expression changes of Bcl11b target genes [261].

Chromatin Remodeling

Mutant polyQ proteins often interact abnormally with his-
tone acetyltransferases (HATs) and/or histone deacetylases
(HDACs), altering physiological histone modification pat-
terns thereby changing gene expression in the cell (for
review [262]). The transcriptional coactivator CREB-
binding protein (CBP) contains a HAT domain and interacts
with several polyQ mutant causative proteins [263–266].
The inhibition of the acetyltransferase activity of CBP (as
well as other HATs, such as p300, PCAF, or TIP60) may
lead to hypo-acetylation of histones at several promoters
and, consequently, to transcriptional inhibition at specific
genomic loci [267].

In healthy cells, cAMP/CREB signaling often leads to the
activation of “pro-survival” gene promoters. The polyQ
disease mutant proteins may also recruit CREB, preventing
the activation of genes. A possible therapy should involve
the increase of the intracellular level of cAMP to induce the
activation of more CREB molecules. Indeed, the adminis-
tration of phosphodiesterase (PDE) inhibitors increases
cAMP levels by inhibiting its degradation. In R6/2 mice,
this kind of treatment using either the PDE type IV inhibitor
rolipram [104, 268] or the PDE10E inhibitor TP-10 [105],
improves the disease phenotypes.

HDAC Inhibitors The inhibition of HDAC activity appears
to be the transcription–restoration strategy that has been
most extensively tested in mouse models of polyQ diseases.
Although HDAC inhibitors lack specificity because they
can also disturb the expression of other, unrelated, genes,
some of these inhibitors display promising therapeutic prop-
erties. Aliphatic acids, such as butyric, phenylbutyric and
valproic acids, administered as sodium salt solutions, have
been analyzed in SCA3 Q79, SBMA AR-97Q, DRPLA
Atro 118Q and N171-82Q, and R6/2 HD animals
[269–274]. These compounds are generally beneficial, re-
store the hypo-acetylation phenotype, and improve motor
performance (Table 6). Despite significant improvements in

numerous neuropathological phenotypes, sodium butyrate
cannot reduce the amount of polyQ aggregates.

Another HDAC inhibitor, suberoylanilide hydroxamic
acid (SAHA), administered orally in drinking water as cy-
clodextrin complex, strongly improves motor performance
on the rotarod apparatus and decreases neuronal atrophy in
R6/2 mice. Like sodium butyrate, SAHA rescues the global
hypo-acetylation of histones and has no effect on polyQ
aggregates [275]. Finally, Thomas and colleagues treated
R6/2 mice (300Q) with a benzamide-type HDAC inhibitor,
HDACi 4b. In an in vitro test, this compound had lower
toxicity than previously tested HDAC inhibitors, and it
prevented motor deficits and neurodegenerative processes
in vivo even when treatment was begun after the onset of
motor deficits. Microarray analysis revealed that HDACi 4b
treatment partially restored the expression changes that had
been detected in R6/2 300Q brains [276].

Other Chromatin Remodeling Approaches The anthracy-
cline antibiotics mithramycin and chromomycin directly bind
to DNA sequences with guanosine–cytosine base specificity
and may interfere with binding of transcription factors to
DNA, which activates the transcription of the gene encoding
ESET (amethyltransferase) [277]. The mithramycin-mediated
Sp1 and Sp3 displacement downregulates ESET expression
and reduces the hypertrimethylation of histone H3 at lysine 9.
In contrast to histone acetylation, histone methylation is asso-
ciated with decreased transcriptional activity. The beneficial
effects of these clinically approved antibiotics were observed
in both R6/2 and N171-82Q HD mice. Mithramycin and
chromomycin shift the balance from methylation to acetyla-
tion of histone H3 (K9), rescue the downregulation of the
subset of affected genes, and improve locomotor and neuro-
pathological phenotypes [277–279].

Another broad transcription regulator, lithium, affects
a wide range of cellular functions, for example, it
increases the levels of anti-apoptotic factors and affects
the PKC and Wnt (through GSK3 inhibition) signaling
pathways [280–282]. Zoghbi’s group has shown that
lithium carbonate mitigates some motor, neuropatholog-
ical, and cognitive dysfunctions in 154Q knock-in
mouse model of SCA1 [283]. In R6/2 HD mice, lithium
treatment is associated with improvements in motor
function; however, those effects have not been linked
to transcriptional rescue [284].

Other Therapeutic Strategies

Mouse models of polyglutamine diseases have also been
used to test therapeutic strategies that do not directly corre-
spond to the categories described above. These other thera-
peutic strategies include targeting the diabetes that is present
in HD mouse models, modulating transglutaminase activity,
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interfering with testosterone levels, and activity in SBMA
models and regulating sleep/wake cycles. The DNA vacci-
nation against the mutant protein was used in R6/2 HD
model, and the overexpression of ataxin-11 (a paralog of
ataxin-1) was used to enhance aggregate formation in the
SCA1 154/2 model [285, 286]. Using Cox inhibitors to
target inflammatory pathways has no beneficial and some
deleterious effects on the pathogenesis of HD in R6/2 and
N171-82Q mice [28, 287].

Anti-diabetic Treatment

Diabetes is present in the pathology of HD patients, and
elevated levels of blood and urine glucose develop in some
but not all animals in the R6/2, R6/1, Hdh(CAG)150, and
N171-82Q models [111, 288–290]. Hypoglycemic agents,
such as glibenclamide and rosiglitazone, are not effective for
treating diabetes in R6/2 mice [291]. The administration of
insulin decreases blood glucose levels in mice, but it can be

Table 6 Therapeutic approaches using HDAC inhibitors in mouse models of polyQ diseases

Drug Route/dose Model Therapeutic outcomes Reference

HDACi 4b 1 g/L in drinking water,
(~150 mg/kg/day)

R6/2300Q (HD) ✓ Improved motor phenotype (rotarod performance,
clasping phenotype and general locomotion);
reduced hunchback posture; attenuated gross
brain size decline and striatal atrophy; attenuated
body weight decline

Thomas et al.
2008 [276]

× No change in aggregate formation

Phenylbutyrate Intraperitoneal
(100 mg/kg/day)

N171-82Q (HD) ✓ Prolonged life span; attenuated gross brain atrophy,
ventricular enlargement, and striatal neuron atrophy;

Gardian et al.
2005 [272]

× No change in rotarod performance and aggregate
formation

SAHA 0.67 g/L in drinking
water, (~100 mg/kg/day)

R6/2 (HD) ✓ Improved rotarod performance; attenuated neuronal
atrophy

Hockly et al.
2003 [275]

× No change in grip strength, gross brain atrophy,
and aggregate formation; increased body weight
loss rate

SAHA 0.67 mg/mL in drinking
water (~100 mg/kg/day)

R6/2 (HD) ✓ Decreased HDAC 2 and 4 protein levels;
decreased HDAC 7 and 11 mRNA levels; restored
cortical BDNF mRNA level; reduced cortical
aggregate load

Mielcarek et al.
2011 [397]

Sodium butyrate 4 and 8 g/L in drinking
water (~800–900 mg/
kg/day)

AR-97Q (SBMA) ✓ Improved motor phenotype (rotarod, cage activity,
gait pattern); ameliorated muscle atrophy and body
posture; decreased body weight loss rate; prolonged
life span; improved motor neurons and muscle cells
morphology

Minamiyama
et al. 2004
[270]

× No change in aggregate formation and nuclear
localization of mutant AR; higher doses (16 and
40 g/L) accelerated the disease onset

Sodium butyrate Intraperitoneal (400 or
800 mg/kg/day)

Ataxin-3-Q79
(SCA3)

✓ Improved rotarod phenotype and gait pattern; reversed
reduction of locomotor activity; improved Purkinje
cell morphology; decreased body weight loss rate;
prolonged life span; reduced pelvic elevation and
abnormal hunchback posture

Chou et al.
2011 [269]

Sodium butyrate Intraperitoneal (0.5 and
1.5 mg/kg/day)

Atro 118Q
(DRPLA)

✓ Improved motor phenotype (rotarod and grip strength);
prolonged life span

Ying et al.
2006 [271]

× No change in aggregate formation and nuclear
localization of mutant atrophin; no change in somal
size of neurons in dentate cerebellar nucleus

Sodium butyrate Intraperitoneal (200, 400,
600, 1,200 mg/kg/day)

R6/2 (HD) ✓ Prolonged life span; improved rotarod performance;
increased brain weight; attenuated gross brain atrophy;
reduced striatal neuron atrophy

Ferrante et al.
2003 [274]

× No treatment related reduction of body weight loss; no
significant reduction in huntingtin-positive striatal
aggregates

Sodium valproate Intraperitoneal
(100 mg/kg/day)

N171-82Q (HD) ✓ Prolonged life span; improved open field activity Zádori et al.
2009 [273]× No changes in the striatal dopamine, DOPAC, or

HVA levels
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deleterious to them and may impair their survival, which
indicates that these animals have dramatic insulin resistance.
In humans and in most models of type 2 diabetes, exercise is
considered beneficial for health and lifespan [292]. Howev-
er, intensive physical exercise, such as excessive behavioral
testing, may evoke an earlier onset of diabetes and decrease
survival in R6/2 mice [291]. Insulin resistance is only par-
tially ameliorated in male R6/2 mice by metformin and is
not ameliorated in female R6/2 mice [293]. Exendin-4, the
long-acting glucagon-like peptide-1 receptor agonist, ameli-
orates high blood glucose and improves motor phenotype in
N171-82Q animals [294]. Exendin-4 can cross the blood–
brain barrier and bind to the receptors in neurons, which
promotes cell survival; exendin‐4 also promotes pancreatic
beta-cell growth and the production of insulin.

Cystamine Treatment

The transglutaminase inhibitor cystamine has beneficial
effects in various HD mouse models such as R6/2
[295–297], YAC128 [298], and the R6/1 and Q111 knock-
in models [110]. Moreover, Mastroberardino and co-
workers demonstrated that the genetic transglutaminase
knockout has rescuing effects when combined with the
R6/1 HD model [299]. Despite this body of consistent
evidence for a significant role of transglutaminase in the
pathogenesis of HD, the mechanism of its pathogenic con-
tribution remains unclear. Some evidence of the mechanism
was provided by examining the expression of histone H3
(K9) methyltransferase and observing reductions in the
hypertrimethylation of H3 in R6/2 mice in the presence of
mithramycin and cystamine. This reduction of methylation
by cystamine suggested that transglutaminase 2 could be
involved in HD pathogenesis by inducing transcriptional
deregulation and chromatin remodeling [277]. Moreover,
mithramycin, and cystamine act in an additive way, suggest-
ing that multiple and additive mechanisms induce chromatin
remodeling [277]. More direct evidence was provided re-
cently, showing that the polyamination of the N-terminal tail
of histone H3 by transglutaminase 2 leads to transcriptional
repression of genes that are important for energy homeosta-
sis and that are defective in HD. Moreover, the authors
demonstrated that TG2 inhibition protects neurons from
NMDA toxicity in YAC128 animals [300].

Regulation of the Sleep/Wake Cycle

The deregulation of the sleep–wake cycle is deleterious to
cognitive function in healthy individuals and can contribute
to disease progression in Huntington [301] and SCA disease
patients and transgenic animals [302]. Selective loss of
orexin neurons in the hippocampus of the R6/2 and SCA3
models leads to sleep disturbances and narcolepsy [303].

Sleep–wake cycles can be normalized in transgenic R6/2
animals by administering alprazolam and modafinil, which
are sleep- and wake-promoting agents, respectively [304].
Interestingly, the cognitive function of HD mice improves
not only after promoting regular sleep but also after promot-
ing regular waking, with the most beneficial results reached
when both drugs are used regularly [304, 305].

Testosterone-Related Approaches

Ataxin-3, huntingtin, androgen receptor, and other polyQ
proteins are expressed at high levels in the testes [60, 306].
In patients suffering from polyQ diseases, the testes are
often atrophic, and the males of transgenic mouse models
are sometimes infertile. SBMA is a special disease condition
because the causative gene is the androgen receptor, and
affected individuals are males or females who have been
exposed to testosterone. The effectiveness of testosterone
deprivation in SBMA therapy in mice has been confirmed
by castration; administration of leuprorelin, a luteinizing
hormone receptor antagonist; or by injection of a testoster-
one receptor antagonist [307–309]. All of these therapies
ameliorate the disease phenotype or even reverse it.

In HD, the problem is different from the problem in
SBMA because the HD patients suffer from testicular atro-
phy thus their testosterone levels are decreased by neuroen-
docrine changes in hypothalamus [310]. To date, no
therapeutic interventions supplementing testosterone or en-
hancing testosterone production in mouse models of HD
have been investigated.

PolyQ Mouse Models in Experimental Therapies

PolyQ experimental therapies are almost exclusively tested
in HD mouse models, which were used in tests of approx-
imately 90 % of all approaches (Fig. 8). In addition, more
than 80 % of all experimental polyQ therapies were tested in
the R6/2, R6/1 [311], and N171-82Q [312] HD models. The
remaining studies involve mouse models of SCA1, 2, 3, 7,
and 17 (6.4 %); SBMA (4.8 %); and DRPLA (0.4 %). In our
previous part I data table (part I of this review) which
characterized the polyQ mouse models, we listed over 100
different transgenic animals and their variants. For the pres-
ent therapeutic data table (Supplementary Material), we
found that among nearly 250 experimental therapies, only
21 models were used (Fig. 2).

HD Fragment Models

The R6/2, R6/1, and N171-82Q are therapeutic models of
choice and not always match the specific mechanisms of
HD in patients. First, the rapid onset of disease phenotypes
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observed in these models is rare in patients and is only
observed in juvenile forms of HD, the disease symptoms
of which differ from adult forms of HD. Second, the mutant
HTT proteolysis cleavage step that initiates the pathogenesis
of HD may not be required in the R6/2, R6/1, or N171-82Q
models because these animals express a transgene protein
that is an extremely shortened form of the native protein and
that mimics the toxic cleavage fragment. N-terminal cleav-
age fragments were recently detected in homozygous Hdh
(CAG)150 knock-in animals [313]. The putative cleavage of
mutant HTT may be a limiting step and may delay patho-
genesis in space (not all cell types can cleave HTT) and time
(the kinetics of this process may be different in different cell
types). These limitations do not exist in the R6/2, R6/1, or
N171-82Q mice but may be present in patients. In addition,
the behavioral phenotypes that are induced in these animals
may result from dysfunction in several brain regions and

types of neurons; they may also be more pronounced and
less specific than in YAC128 animals. Although the R6/2,
R6/1, and N171-82Q models do not imitate HD as it occurs
in patients, they exhibit a low degree of variability in tested
phenotypes between individual animals. This low variability
influences the low standard deviation in experiments and
results in a need for fewer animals to record the therapeutic
outcome.

HD YAC Models

The YAC animal models (YAC128, YAC72), which have
been used in 22 therapeutic approaches, contain full-length
huntingtin with an expanded tract of CAG repeats
[314–316]. The mild disease that appears in YAC animals
result in slower experimental turnover, and the phenotypes
have much greater variability than the phenotypes in R6/2.
According to a power analysis performed in Hayden’s lab-
oratory, eight to 35 animals may be required to detect a 33 %
change in a tested phenotype, and four to 15 animals may be
required to detect a 50 % change in the tested phenotype
following the application of a treatment [315]. Rotarod
performance is highly variable in YAC128 animals, and 99
and 43 animals would be needed to detect 33 % and 50 %
changes, respectively, when testing animals at 6 months of
age [315]. These numbers contrast to R6/2 mice, where the
experimental cohort can be as small as ten animals for the
detection of 10 % changes in some tested phenotypes [317].
Although YAC transgenic animals are not particularly con-
venient for testing therapeutic approaches, they recapitulate
the adult pathogenesis of HD. YAC128 mice show biphasic
HD disease, with initial hyperactivity and subsequent hypo-
activity that is followed by brain atrophy and neuronal cell
loss. Other HD animals that are used in therapeutic
approaches include knock-ins containing 140 and 111
CAG repeats [318, 319], the BACHD model [320] and the
EGFP HD190QG model [321].

Other PolyQ Models

Other polyQ disorders are represented by 17 therapeutic
approaches in the SCA group (together with DRPLA) and
12 therapeutic approaches for SBMA. The small number of
therapeutic approaches for SCA can be explained by the low
prevalence of all forms of hereditary SCA, which is estimat-
ed to be four cases per 100,000, whereas HD alone could
have twice as many cases [322, 323]. Moreover, the absence
of therapeutic investigations cannot simply be explained by
the lack of suitable mouse models because there is a rela-
tively broad range of choices. The models that exhibit a
relatively rapid and broad phenotype include the B05 [324],
SCA1 154/2 [325], SCA7 266Q/5Q [326], DRPLA Atro-
118Q [271], and Q129 [327] models. However, with the

R6/2
49.8%

R6/1
10.9%

N171-82Q
15.3%

YAC128
6.9%

Other HD
3.6%

SCA1
5.1%

SCA2
0.7%

SCA3
1.5%

SCA7
1.1%

SCA17
0.4%

DRPLA
0.4%

SBMA
4.3%

Fig. 8 The diagram demonstrates the use of various mouse models in
polyglutamine disease therapeutic approaches. The vast majority of
these approaches were performed on four Huntington disease models:
YAC128, N171‐82Q, R6/1, and R6/2. Overall, Huntington disease
animals were used in studies of nearly 90 % of therapeutic approaches
(243 of 280). The remaining studies utilized mouse models of SBMA
(11 approaches were tested in the AR97Q model and one was tested in
the 112Q model), SCA1 (six approaches in the B05 and eight in the
154Q/2Q models), SCA3 (four approaches were tested in four different
models—polyQ69, MJD84.2, 70.61CAG, and Q79), and SCA7 (two
approaches were tested in the 90QR7E model). In addition, the SCA2
58Q, DRPLA 118Q, and Sca17 L7-hTBP models were also used for
experimental therapy

Mol Neurobiol (2012) 46:430–466 451



exceptions of the B05 and SCA1 154/2 models, these mod-
els are not available in commercial repositories (Jackson
Laboratories), which may partially explain why they are
not as widely studied.

Suitability of PolyQ Mouse Models for Experimental
Therapies

There is no simple answer to the question of which model is
the best suited for testing an experimental therapy. For
example, would N171-82Q animals that have truncated
gene, artificial promoter, and with a significantly reduced
lifespan (a good therapeutic marker) be more useful than
knock-in mice that are etiologically more similar to human
HD but that exhibit a mild and relatively slow phenotype?
Do the hyper-/hypobiphasic activity and marked cognitive
deficits displayed by YAC128 mice qualify these animals as
an ideal therapeutic model and eliminate the other models
with phenotypes that are severe but less natural?

The concept of validity, adapted from Paul Willner’s work
for use in the polyQ field, can be used to identify the strengths
and weaknesses of a mouse model and help answer questions
about its therapeutic suitability [328, 329], see also part I of
this review). According to Willner, three main validation
criteria can be used to compare and describe the usefulness
of any given mouse model: construct validity, face validity,
and predictive validity. Although the original idea and the
definitions of different forms of validity may at first sound
complicated, the concept is quite intuitive [4, 330].

The construct validity of genetically engineered models
may be understood as the degree of etiological similarity
between polyQ animals and the human condition. The major
feature of the polyQ disease etiology is the underlying
mutation represented by CAG repeats encoding the gluta-
mine stretches in polyQ models. Almost all models express
an elongated polyglutamine stretch in various genes, but the
variable length of this stretch also contributes to variable
degrees of construct validities with respect to different dis-
orders. However, there are several other differences between
models contributing to the degree of construct validity. For
example, the construct validity of the N171-82Q model is
reduced because it utilizes a nonnative promoter that drives
the expression of truncated protein, whereas the expression
of full-length human huntingtin driven by native promoter
and regulatory sequences in YAC128 animals gives them a
higher score in terms of construct validity. Obviously, crite-
ria for such validation are rather subjective (see part I of this
review). How, then, does the construct validity impact the
therapeutic suitability of polyQ models? First, it affects the
severity of the phenotype in mice. Truncated models seem
to produce aggressive phenotypes, some aspects of which
may not be induced by molecular mechanisms that are
related to a particular disease but may instead be the effect

of general polyglutamine toxicity. Second, the lack of some
gene or protein sequences precludes selected polyQ models
from being useful for testing certain therapeutic strategies.
For example, all R6 models or N171-82 animals cannot be
used to test the in vivo efficacy of RNAi reagents targeting
3´ region of HTT mRNA or to test the use of intrabodies that
are specific to the C-terminus of human huntingtin, simply
because these mice do not have the sequence (target) of
interest.

The face validity of mouse models is the degree of
similarity between the disease phenotype observed in
mice and the pathophysiology and symptomatology that
occur in patients. Mice differ from humans in their
genetic, physiological, and anatomical features, which
may significantly influence the disease presentation.
The use of mice to mirror human disorders has inherent
inaccuracies and is only a rough approximation of nat-
urally existing conditions. The open question is whether
the significant differences that are observed between
models with high and low degree of face validity can
be considered therapeutically or biologically relevant in
light of a much greater distance between model animals
and patients. Nevertheless, it seems that models that are
genetically closer to humans (models that possess higher
construct validity) also possess a more accurate pheno-
type (higher face validity), which is rather slow and
mild. Unfortunately, using such animals slows down
the data collection and publication processes and is
one of the reasons why the vast majority of therapeutic
approaches are tested using animals that display severe
phenotypes that are manifested early, such as the R6/2,
R6/1, and N171-82Q mice (Fig. 8). Furthermore, both
the severity of phenotypes and the time at which they
occur during the course of disease are related to the
disease penetrance, and consequently, they are related to
the degree of variation between individual animals. A
slow disease progression raises the possibility that small
phenotypic differences caused by external sources (e.g.,
housing conditions) accumulate and eventually amplify
undesirable phenotypic variability. In contrast, the re-
duced lifespan observed in “fast models” may narrow
the breeding window to a period of as short as 3–
4 weeks in R6/2 males. In addition, severe phenotypes,
which weaken the animals’ overall health, may lead to
infertility and problems with gestation. Thus, these
models tend to be more problematic in terms of breed-
ing and maintenance (Tables 7 and 8). Overall, the
suitability of polyQ mouse models for testing a preclin-
ical therapy with respect to their face validity is not
straightforward; sometimes, strong markers of the ther-
apeutic outcome (such as an extremely shortened life-
span) are desirable even at the expense of their face
validity.
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If we assume that instead of assessing the absolute face
validity of a givenmodel we can evaluate the validity of certain
aspects of its phenotype, then the important question becomes
one of determining which model best reflects the particular
phenotypes that can be used as the indicators of the therapy
outcome. For phenotypes that were the most often analyzed in
therapeutic approaches using mouse models of polyQ disease
see Fig. S1. Table 9 shows the frequencies of the individual
phenotypes that were analyzed in the four HD mouse models
that are most extensively used in studies of polyQ therapy: R6/
2, N171-82Q, R6/1, and YAC128. How frequently a certain
phenotype is tested tells about its detectability in the model and
its usefulness as a potent marker of a therapeutic intervention.
Rotarod analyses are commonly conducted in all four models
revealing that the balance and coordination impairment are
strongly reflected in all of these animals. Rotarod performance
is used as a phenotypic improvement marker in studies of 66–
79 % of all therapeutic approaches.

Although an interpretation of the frequency with which
various phenotypes are studied in YAC128 mice may be
imprecise because of the small number of therapeutic
approaches (only 21), some general trends may be observed.
In contrast to R6/2 and N171-82 mice, the YAC128 model
does not allow us to interpret therapy effectiveness by
studying the survival rate or body weight losses. On the
other hand, the YAC128 model is more suitable for testing
the impact of the evaluated therapeutics on learning deficits
and neuronal cell loss. Interestingly, the neuronal cell loss is
used as an indicator of therapeutic effectiveness only in
seven out of 120 therapeutic approaches in R6/2 animals
that were collected in the data table, which indirectly indi-
cates a lack of cell loss in R6/2 model (Table 9).

When discussing the suitability of mouse models for
preclinical therapy, the most relevant among Willner’s
criteria is probably that of predictive validity. This form
of validity can be used to describe how well a test
predicts future performance. For the purpose of analyz-
ing the therapeutic usefulness of a mouse model, this
question can be changed to: is the model capable of
predicting the efficacy of a therapeutic intervention in
human trials? Answering this question is not trivial; to
validate a mouse model according to its predictive abil-
ities, it is necessary to compare the outcomes of thera-
peutic interventions between the model and humans.
Unfortunately, whereas numerous preclinical trials have
been conducted in polyQ mouse models, only a few
clinical trials have been conducted in patients [331].
Moreover, because there may be differences between
mice and humans in both the optimal doses and phar-
macokinetics of various therapeutic agents, the compar-
ison and interpretation of study results may be difficult.
Nevertheless, our data table, which lists the therapeutic
outcomes of over 250 preclinical trials, may be used as
a basis for the assessment of the predictive validities of
polyQ mouse models as soon as more information about
human trials is published.

Conclusions

The past two decades of intensive study of polyQ dis-
eases have revealed the genetic background of these
diseases, uncovered many aspects of their pathogenesis,
and have brought forth a broad spectrum of animal

Table 7 Summarizes the suitability of the mouse models of HD for the evaluation of experimental therapies

N171-82Q R6/1 R6/2 YAC128 YAC72 CAG140 Q111 BACHD HD190QG

Construct validity—genetic similarity to the
human patients (full-length protein/natural
promoter/targeted transgene integration)

−/−/− −/+/− −/+/− +h/+/− +h/+/− +hb/+/+ +hb/+/+ +h/+/− −/+/−

Face validity—phenotypic similarity to the
human patients (specific cell loss/rotarod
impairment/ cognitive alterations)

+/+/− −/+/+ −/+/+ +/+/+ −/+/− +/+/+ −/+/− −/+/− −/−/−

Number of therapeutic approaches published 42 30 139 21 1 1 1 5 2

Number of phenotypes identified 64 71 170 51 12 44 15 23 11

Phenotype progression (AD50; age at 50 %
detected phenotypes)

13 16 8 35 41 30 66 17 8

Breeding and husbandry (severe phenotype/
reduced fertility)

+/nr nr +/+ nr nr nr nr nr +/nr

This suitability can be evaluated by using construct validity (genetic similarities), face validity (phenotypic similarities), and predictive validity
(cannot be determined at present). Moreover, this suitability can be assessed by the number of therapeutic approaches published (based on the data
table) and the number of phenotypes identified (based on the data table in part I of the review). Additionally, the AD50 parameter (expressed as the
number of weeks) reflects the disease dynamic in the models (see review part I for detailed information). The separate issue in assessing the
therapeutic suitability in mouse models is the model maintenance and breeding

h human sequence, hb hybrid human/mouse sequence, nr not reported, ret 90Q R7E phenotype is limited to the eye retina
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models. Unfortunately, an effective cure is still not
available, and several intriguing questions remain un-
solved. What we know is that expanded polyglutamine
proteins alter many different cellular processes, which
has important therapeutic implications. The pathome-
chanisms involved in disease development and progres-
sion are complex, independent, and often occur in
parallel. Examples of such mechanisms are transcrip-
tional deregulation, clearance machinery deficiency, and
mitochondrial impairment. Therefore, a successful ther-
apeutic approach should probably target multiple aspects
of disease pathogenesis. Introducing genetic mouse
models into the polyQ field has facilitated understand-
ing of the etiologies of polyQ diseases and has acceler-
ated the design and testing of new therapeutic
approaches. In this work, we have reviewed approxi-
mately 250 therapeutic interventions that have been
studied in mouse models of polyQ diseases. Our review
is supported by the data table that contains over 2,000
records describing the in vivo therapeutic approaches.
The data table includes detailed information about the
mouse models, therapeutic strategies, methods of testing,
outcomes, phenotypes used to test the outcomes, active
substances, and their targets. Although the vast majority
of therapeutic approaches have involved mouse models
of HD, there are some common therapeutic approaches
that were tested in other diseases. We believe that
integrating the information about polyQ therapy in one

Table 9 Phenotypes commonly used as therapeutic outcome
indicators

N171-82Q R6/1 R6/2 YAC 128

Brain atrophy 39 % 22 % 39 % 63 %

Cell loss 20 % 7 % 4 % 58 %

PolyQ aggregates 48 % 40 % 54 % 26 %

Brain weight 5 % 30 % 17 % 37 %

Rotarod test 78 % 66 % 69 % 79 %

Stride abnormalities 22 % 18 % 20 % 32 %

Locomotor impairment 10 % 19 % 32 % 26 %

Grip strength 7 % 4 % 13 % 5 %

Clasping 10 % 40 % 24 % 16 %

Learning deficits 2 % 15 % 13 % 26 %

Premature death 85 % 4 % 70 % 0 %

Body weight loss 71 % 63 % 76 % 12 %

Table 9 demonstrates how frequently a certain phenotype is tested to
reveal the therapeutic outcome. This indirectly indicates the detectabil-
ity and usefulness of a given phenotype in mice as a potent marker of a
therapeutic intervention. Note that when a particular phenotype was
tested in an individual therapeutic approach several times (e.g., using
different methods), it was counted in the table only once. Phenotypes
that were frequently selected as therapeutic intervention markers (in
more than 50 % of the approaches) are marked in bold
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framework can provide a new perspective for therapeutic
research.

Therapeutic references not directly cited in text, [332–391].
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