Skip to main content

Advertisement

Log in

P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y2 receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burnstock G, Campbell G, Satchell D, Smythe A (1997) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. 1970. Br J Pharmacol 120(4 Suppl):337–357, discussion 334–336

    Article  PubMed  CAS  Google Scholar 

  2. Heilbronn E, Knoblauch BH, Müller CE (1997) Uridine nucleotide receptors and their ligands: structural, physiological, and pathophysiological aspects, with special emphasis on the nervous system. Neurochem Res 22(8):1041–1050

    Article  PubMed  CAS  Google Scholar 

  3. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475

    Article  PubMed  CAS  Google Scholar 

  4. von Kügelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):310–323

    Google Scholar 

  5. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16(5):433–440

    Article  PubMed  CAS  Google Scholar 

  6. Sak K, Webb TE (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 397(1):131–136. doi:10.1006/abbi.2001.2616

    Article  PubMed  CAS  Google Scholar 

  7. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31(1–3):169–183

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez FA, Weisman GA, Erb L, Seye CI, Sun GY, Velazquez B, Hernandez-Perez M, Chorna NE (2005) Mechanisms for inhibition of P2 receptors signaling in neural cells. Mol Neurobiol 31(1–3):65–79. doi:10.1385/MN:31:1-3:065

    Article  PubMed  CAS  Google Scholar 

  9. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366. doi:10.1007/s12035-010-8115-7

    Article  PubMed  CAS  Google Scholar 

  10. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    Article  Google Scholar 

  11. Ferrero ME (2011) Purinoceptors in inflammation: potential as anti-inflammatory therapeutic targets. Front Biosci 17:2172–2186

    Article  Google Scholar 

  12. Fumagalli M, Lecca D, Abbracchio MP (2011) Role of purinergic signalling in neuro-immune cells and adult neural progenitors. Front Biosci 17:2326–2341

    Article  Google Scholar 

  13. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174(11):7268–7277

    PubMed  CAS  Google Scholar 

  14. Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI, Erb L, Simonyi A, Wood WG, Sun GY, Weisman GA (2009) Interleukin-1β enhances nucleotide-induced and α-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2 receptor. J Neurochem 109(5):1300–1310. doi:10.1111/j.1471-4159.2009.06048.x

    Article  PubMed  CAS  Google Scholar 

  15. MacKenzie AB, Surprenant A, North RA (1999) Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci 868:716–729

    Article  PubMed  CAS  Google Scholar 

  16. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580. doi:10.1146/annurev.pharmtox.40.1.563

    Article  PubMed  CAS  Google Scholar 

  17. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371(6497):516–519. doi:10.1038/371516a0

    Article  PubMed  CAS  Google Scholar 

  18. Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25(9):487–493

    Article  PubMed  CAS  Google Scholar 

  19. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    PubMed  CAS  Google Scholar 

  20. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532. doi:10.1038/nature04886

    Article  PubMed  CAS  Google Scholar 

  21. Koles L, Furst S, Illes P (2007) Purine ionotropic (P2X) receptors. Curr Pharm Des 13(23):2368–2384

    Article  PubMed  CAS  Google Scholar 

  22. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16(8):2495–2507

    PubMed  CAS  Google Scholar 

  23. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93(15):8063–8067

    Article  PubMed  CAS  Google Scholar 

  24. Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407(1):11–32. doi:10.1002/(SICI)1096-9861(19990428)407:1<11::AID-CNE2>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  25. Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36(9):1229–1242

    Article  PubMed  CAS  Google Scholar 

  26. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36(9):1277–1283

    Article  PubMed  CAS  Google Scholar 

  27. Atkinson L, Batten TF, Deuchars J (2000) P2X(2) receptor immunoreactivity in the dorsal vagal complex and area postrema of the rat. Neuroscience 99(4):683–696

    Article  PubMed  CAS  Google Scholar 

  28. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21(18):7143–7152

    PubMed  CAS  Google Scholar 

  29. Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21(2):641–653

    PubMed  CAS  Google Scholar 

  30. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24(28):6307–6314. doi:10.1523/JNEUROSCI.1469-04.2004

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka J, Murate M, Wang CZ, Seino S, Iwanaga T (1996) Cellular distribution of the P2X4 ATP receptor mRNA in the brain and non-neuronal organs of rats. Arch Histol Cytol 59(5):485–490

    Article  PubMed  CAS  Google Scholar 

  32. Nakatsuka T, Gu JG (2001) ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21(17):6522–6531

    PubMed  CAS  Google Scholar 

  33. Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ (2004) P2X receptor subtype-specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol 558(Pt 3):745–757. doi:10.1113/jphysiol.2004.066845

    Article  PubMed  CAS  Google Scholar 

  34. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25(27):6286–6295. doi:10.1523/JNEUROSCI.0628-05.2005

    Article  PubMed  CAS  Google Scholar 

  35. Patti L, Raiteri L, Grilli M, Parodi M, Raiteri M, Marchi M (2006) P2X7 receptors exert a permissive role on the activation of release-enhancing presynaptic alpha7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals. Neuropharmacology 50(6):705–713. doi:10.1016/j.neuropharm.2005.11.016

    Article  PubMed  CAS  Google Scholar 

  36. Jameson HS, Pinol RA, Mendelowitz D (2008) Purinergic P2X receptors facilitate inhibitory GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1224:53–62. doi:10.1016/j.brainres.2008.06.012

    Article  PubMed  CAS  Google Scholar 

  37. Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist. doi:10.1177/1073858411418524

  38. Duan S, Neary JT (2006) P2X7 receptors: properties and relevance to CNS function. Glia 54(7):738–746. doi:10.1002/glia.20397

    Article  PubMed  Google Scholar 

  39. Takenouchi T, Sekiyama K, Sekigawa A, Fujita M, Waragai M, Sugama S, Iwamaru Y, Kitani H, Hashimoto M (2010) P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz) 58(2):91–96. doi:10.1007/s00005-010-0069-y

    Article  CAS  Google Scholar 

  40. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403(6765):86–89. doi:10.1038/47495

    Article  PubMed  CAS  Google Scholar 

  41. Vial C, Evans RJ (2000) P2X receptor expression in mouse urinary bladder and the requirement of P2X1 receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle. Br J Pharmacol 131(7):1489–1495. doi:10.1038/sj.bjp.0703720

    Article  PubMed  CAS  Google Scholar 

  42. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198(4):661–667. doi:10.1084/jem.20030144

    Article  PubMed  CAS  Google Scholar 

  43. Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15(3):131–144. doi:10.1080/09537100410001682788

    Article  PubMed  CAS  Google Scholar 

  44. Calvert JA, Evans RJ (2004) Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Mol Pharmacol 65(1):139–148. doi:10.1124/mol.65.1.139

    Article  PubMed  CAS  Google Scholar 

  45. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28(21):5473–5480. doi:10.1523/JNEUROSCI.1149-08.2008

    Article  PubMed  CAS  Google Scholar 

  46. Rettinger J, Schmalzing G (2003) Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations. J Gen Physiol 121(5):451–461. doi:10.1085/jgp.200208730

    Article  PubMed  CAS  Google Scholar 

  47. Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418(1–2):195–199

    Article  PubMed  CAS  Google Scholar 

  48. Torres GE, Haines WR, Egan TM, Voigt MM (1998) Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54(6):989–993

    PubMed  CAS  Google Scholar 

  49. Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X1 and P2X5 isoforms. Mol Pharmacol 56(4):720–727

    PubMed  CAS  Google Scholar 

  50. Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274(22):15415–15419

    Article  PubMed  CAS  Google Scholar 

  51. Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G (2006) P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J Biol Chem 281(51):39561–39572. doi:10.1074/jbc.M606113200

    Article  PubMed  CAS  Google Scholar 

  52. Ase AR, Bernier LP, Blais D, Pankratov Y, Seguela P (2010) Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem 113(6):1676–1684. doi:10.1111/j.1471-4159.2010.06734.x

    PubMed  CAS  Google Scholar 

  53. Kidd EJ, Grahames CB, Simon J, Michel AD, Barnard EA, Humphrey PP (1995) Localization of P2X purinoceptor transcripts in the rat nervous system. Mol Pharmacol 48(4):569–573

    PubMed  CAS  Google Scholar 

  54. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10(12):3898–3902

    Article  PubMed  CAS  Google Scholar 

  55. Xiang Z, Bo X, Oglesby I, Ford A, Burnstock G (1998) Localization of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus. Brain Res 813(2):390–397

    Article  PubMed  CAS  Google Scholar 

  56. Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121(3):169–179. doi:10.1007/s00418-004-0620-1

    Article  PubMed  CAS  Google Scholar 

  57. Brass D, Grably MR, Bronstein-Sitton N, Gohar O, Meir A (2011) Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal. doi:10.1007/s11302-011-9278-z

  58. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683. doi:10.1124/pr.110.003129

    Article  PubMed  CAS  Google Scholar 

  59. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99(1–2):11–19

    Article  PubMed  CAS  Google Scholar 

  60. Jarvis MF (2003) Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Expert Opin Ther Targets 7(4):513–522. doi:10.1517/14728222.7.4.513

    Article  PubMed  CAS  Google Scholar 

  61. Koshimizu TA, Ueno S, Tanoue A, Yanagihara N, Stojilkovic SS, Tsujimoto G (2002) Heteromultimerization modulates P2X receptor functions through participating extracellular and C-terminal subdomains. J Biol Chem 277(49):46891–46899. doi:10.1074/jbc.M205274200

    Article  PubMed  CAS  Google Scholar 

  62. Wirkner K, Sperlagh B, Illes P (2007) P2X3 receptor involvement in pain states. Mol Neurobiol 36(2):165–183. doi:10.1007/s12035-007-0033-y

    Article  PubMed  CAS  Google Scholar 

  63. Trang T, Beggs S, Salter MW (2006) Purinoceptors in microglia and neuropathic pain. Pflugers Arch 452(5):645–652. doi:10.1007/s00424-006-0074-5

    Article  PubMed  CAS  Google Scholar 

  64. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389(6652):749–753. doi:10.1038/39639

    Article  PubMed  CAS  Google Scholar 

  65. Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10(11):3470–3478

    Article  PubMed  CAS  Google Scholar 

  66. Nakatsuka T, Mena N, Ling J, Gu JG (2001) Depletion of substance P from rat primary sensory neurons by ATP, an implication of P2X receptor-mediated release of substance P. Neuroscience 107(2):293–300

    Article  PubMed  CAS  Google Scholar 

  67. Ford AP (2011) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal. doi:10.1007/s11302-011-9271-6

  68. Gum RJ, Wakefield B, Jarvis MF (2011) P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinergic Signal. doi:10.1007/s11302-011-9272-5

  69. Cheung KK, Chan WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133(4):937–945. doi:10.1016/j.neuroscience.2005.03.032

    Article  PubMed  CAS  Google Scholar 

  70. Buell G, Collo G, Rassendren F (1996) P2X receptors: an emerging channel family. Eur J Neurosci 8(10):2221–2228

    Article  PubMed  CAS  Google Scholar 

  71. Bo X, Kim M, Nori SL, Schoepfer R, Burnstock G, North RA (2003) Tissue distribution of P2X4 receptors studied with an ectodomain antibody. Cell Tissue Res 313(2):159–165. doi:10.1007/s00441-003-0758-5

    Article  PubMed  CAS  Google Scholar 

  72. Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28. doi:10.1186/1744-8069-5-28

    Article  PubMed  CAS  Google Scholar 

  73. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28(44):11263–11268. doi:10.1523/jneurosci.2308-08.2008

    Article  PubMed  CAS  Google Scholar 

  74. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29(14):2290–2300. doi:10.1038/emboj.2010.126

    Article  PubMed  CAS  Google Scholar 

  75. Baxter AW, Choi SJ, Sim JA, North RA (2011) Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 34(2):213–220. doi:10.1111/j.1460-9568.2011.07763.x

    Article  PubMed  Google Scholar 

  76. Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G, North RA, Rassendren F (2006) Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 26(35):9006–9009. doi:10.1523/jneurosci.2370-06.2006

    Article  PubMed  CAS  Google Scholar 

  77. Le KT, Babinski K, Seguela P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18(18):7152–7159

    PubMed  CAS  Google Scholar 

  78. Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92(4):925–933. doi:10.1111/j.1471-4159.2004.02939.x

    Article  PubMed  CAS  Google Scholar 

  79. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72(6):1447–1456. doi:10.1124/mol.107.035980

    Article  PubMed  CAS  Google Scholar 

  80. Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z (2008) Expression of P2X5 receptors in the mouse CNS. Neuroscience 156(3):673–692. doi:10.1016/j.neuroscience.2008.07.062

    Article  PubMed  CAS  Google Scholar 

  81. Guo W, Sun J, Xu X, Bunstock G, He C, Xiang Z (2009) P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol 131(1):29–41. doi:10.1007/s00418-008-0493-9

    Article  PubMed  CAS  Google Scholar 

  82. Kotnis S, Bingham B, Vasilyev DV, Miller SW, Bai Y, Yeola S, Chanda PK, Bowlby MR, Kaftan EJ, Samad TA, Whiteside GT (2010) Genetic and functional analysis of human P2X5 reveals a distinct pattern of exon 10 polymorphism with predominant expression of the nonfunctional receptor isoform. Mol Pharmacol 77(6):953–960. doi:10.1124/mol.110.063636

    Article  PubMed  CAS  Google Scholar 

  83. Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11(3):378–386

    Article  PubMed  CAS  Google Scholar 

  84. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304. doi:10.1016/s0074-7696(04)40002-3

    Article  PubMed  CAS  Google Scholar 

  85. da Silva RL, Resende RR, Ulrich H (2007) Alternative splicing of P2X6 receptors in developing mouse brain and during in vitro neuronal differentiation. Exp Physiol 92(1):139–145. doi:10.1113/expphysiol.2006.921304

    Article  PubMed  CAS  Google Scholar 

  86. Jones CA, Vial C, Sellers LA, Humphrey PP, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-linked glycosylation: identification of a novel alpha beta-methylene ATP-sensitive phenotype. Mol Pharmacol 65(4):979–985. doi:10.1124/mol.65.4.979

    Article  PubMed  CAS  Google Scholar 

  87. Ormond SJ, Barrera NP, Qureshi OS, Henderson RM, Edwardson JM, Murrell-Lagnado RD (2006) An uncharged region within the N terminus of the P2X6 receptor inhibits its assembly and exit from the endoplasmic reticulum. Mol Pharmacol 69(5):1692–1700. doi:10.1124/mol.105.020404

    Article  PubMed  CAS  Google Scholar 

  88. Egan TM, Cox JA, Voigt MM (2004) Molecular structure of P2X receptors. Curr Top Med Chem 4(8):821–829

    Article  PubMed  CAS  Google Scholar 

  89. Yu Q, Zhao Z, Sun J, Guo W, Fu J, Burnstock G, He C, Xiang Z (2010) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133(2):177–188. doi:10.1007/s00418-009-0659-0

    Article  PubMed  CAS  Google Scholar 

  90. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4(5). doi:10.1186/1476-9255-4-5

  91. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082. doi:10.1038/sj.emboj.7601378[doi]

    Article  PubMed  CAS  Google Scholar 

  92. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    PubMed  CAS  Google Scholar 

  93. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  PubMed  CAS  Google Scholar 

  94. Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. NeuroReport 7(15–17):2533–2537

    Article  PubMed  CAS  Google Scholar 

  95. Brandle U, Guenther E, Irrle C, Wheeler-Schilling TH (1998) Gene expression of the P2X receptors in the rat retina. Brain Res Mol Brain Res 59(2):269–272

    Article  PubMed  CAS  Google Scholar 

  96. Gonzalez FA, Ahmed AH, Lustig KD, Erb L, Weisman GA (1989) Permeabilization of transformed mouse fibroblasts by 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate and the desensitization of the process. J Cell Physiol 139(1):109–115. doi:10.1002/jcp.1041390116

    Article  PubMed  CAS  Google Scholar 

  97. Erb L, Lustig KD, Ahmed AH, Gonzalez FA, Weisman GA (1990) Covalent incorporation of 3′-O-(4-benzoyl)benzoyl-ATP into a P2 purinoceptor in transformed mouse fibroblasts. J Biol Chem 265(13):7424–7431

    PubMed  CAS  Google Scholar 

  98. Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brune B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol 275(6 Pt 2):F962–F971

    PubMed  CAS  Google Scholar 

  99. Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM, Falzoni S, Pinton P, Rizzuto R, Olson MF, Di Virgilio F (2003) Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell 14(7):2655–2664. doi:10.1091/mbc.02-04-0061

    Article  PubMed  CAS  Google Scholar 

  100. Verhoef PA, Estacion M, Schilling W, Dubyak GR (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. J Immunol 170(11):5728–5738

    PubMed  CAS  Google Scholar 

  101. Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287(5):C1349–C1358. doi:10.1152/ajpcell.00256.2004

    Article  PubMed  CAS  Google Scholar 

  102. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X7 receptor: death or life? Purinergic Signal 1(3):219–227. doi:10.1007/s11302-005-6322-x

    Article  PubMed  CAS  Google Scholar 

  103. Roger S, Pelegrin P, Surprenant A (2008) Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28(25):6393–6401. doi:10.1523/JNEUROSCI.0696-08.2008

    Article  PubMed  CAS  Google Scholar 

  104. Steinberg TH, Silverstein SC (1987) Extracellular ATP4− promotes cation fluxes in the J774 mouse macrophage cell line. J Biol Chem 262(7):3118–3122

    PubMed  CAS  Google Scholar 

  105. Weisman GA, De BK, Pritchard RS (1989) Ionic dependence of the extracellular ATP-induced permeabilization of transformed mouse fibroblasts: role of plasma membrane activities that regulate cell volume. J Cell Physiol 138(2):375–383. doi:10.1002/jcp.1041380221

    Article  PubMed  CAS  Google Scholar 

  106. Hickman SE, Semrad CE, Silverstein SC (1996) P2Z purinoceptors. CIBA Found Symp 198:71–83, discussion 83-90

    PubMed  CAS  Google Scholar 

  107. Atkinson L, Batten TF, Moores TS, Varoqui H, Erickson JD, Deuchars J (2004) Differential co-localisation of the P2X7 receptor subunit with vesicular glutamate transporters VGLUT1 and VGLUT2 in rat CNS. Neuroscience 123(3):761–768

    Article  PubMed  CAS  Google Scholar 

  108. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8(8):1078–1086. doi:10.1038/nn1498

    Article  PubMed  CAS  Google Scholar 

  109. Kong Q, Wang M, Liao Z, Camden JM, Yu S, Simonyi A, Sun GY, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons. Purinergic Signal 1(4):337–347. doi:10.1007/s11302-005-7145-5

    Article  PubMed  CAS  Google Scholar 

  110. Sugiyama T, Oku H, Shibata M, Fukuhara M, Yoshida H, Ikeda T (2010) Involvement of P2X7 receptors in the hypoxia-induced death of rat retinal neurons. Invest Ophthalmol Vis Sci 51(6):3236–3243. doi:10.1167/iovs.09-4192

    Article  PubMed  Google Scholar 

  111. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75(3):965–972

    Article  PubMed  CAS  Google Scholar 

  112. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7. doi:10.1523/JNEUROSCI.3792-03.2004

    Article  PubMed  CAS  Google Scholar 

  113. Ballerini P, Ciccarelli R, Caciagli F, Rathbone MP, Werstiuk ES, Traversa U, Buccella S, Giuliani P, Jang S, Nargi E, Visini D, Santavenere C, Di Iorio P (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18(3):417–430

    PubMed  CAS  Google Scholar 

  114. Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108(1):115–125. doi:10.1111/j.1471-4159.2008.05744.x

    Article  PubMed  CAS  Google Scholar 

  115. Cavaliere F, Amadio S, Sancesario G, Bernardi G, Volonte C (2004) Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow Metab 24(4):392–398. doi:10.1097/00004647-200404000-00004

    Article  PubMed  CAS  Google Scholar 

  116. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63(7):686–699

    PubMed  CAS  Google Scholar 

  117. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114(3):386–396. doi:10.1016/j.pain.2005.01.002

    Article  PubMed  CAS  Google Scholar 

  118. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278(15):13309–13317. doi:10.1074/jbc.M209478200

    Article  PubMed  CAS  Google Scholar 

  119. McLarnon JG, Ryu JK, Walker DG, Choi HB (2006) Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65(11):1090–1097. doi:10.1097/01.jnen.0000240470.97295.d3

    Article  PubMed  CAS  Google Scholar 

  120. Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT, Lucas JJ (2009) Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 23(6):1893–1906. doi:10.1096/fj.08-122275

    Article  PubMed  CAS  Google Scholar 

  121. Nguyen T, Erb L, Weisman GA, Marchese A, Heng HH, Garrad RC, George SR, Turner JT, O’Dowd BF (1995) Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem 270(52):30845–30848

    Article  PubMed  CAS  Google Scholar 

  122. Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman GA (1995) Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem 270(9):4185–4188

    Article  PubMed  CAS  Google Scholar 

  123. Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276(15):11939–11948. doi:10.1074/jbc.M009909200

    Article  PubMed  CAS  Google Scholar 

  124. Flores RV, Hernandez-Perez MG, Aquino E, Garrad RC, Weisman GA, Gonzalez FA (2005) Agonist-induced phosphorylation and desensitization of the P2Y2 nucleotide receptor. Mol Cell Biochem 280(1–2):35–45. doi:10.1007/s11010-005-8050-5

    Article  PubMed  CAS  Google Scholar 

  125. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341. doi:10.1124/pr.58.3.3

    Article  PubMed  CAS  Google Scholar 

  126. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452(5):552–562

    Article  PubMed  CAS  Google Scholar 

  127. Shaver SR (2001) P2Y receptors: biological advances and therapeutic opportunities. Curr Opin Drug Discov Dev 4(5):665–670

    CAS  Google Scholar 

  128. Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol 52(3):499–507

    PubMed  CAS  Google Scholar 

  129. Jacobson KA, Hoffmann C, Kim YC, Camaioni E, Nandanan E, Jang SY, Guo DP, Ji XD, von Kugelgen I, Moro S, Ziganshin AU, Rychkov A, King BF, Brown SG, Wildman SS, Burnstock G, Boyer JL, Mohanram A, Harden TK (1999) Molecular recognition in P2 receptors: ligand development aided by molecular modeling and mutagenesis. Prog Brain Res 120:119–132

    Article  PubMed  CAS  Google Scholar 

  130. Burnstock G, Dumsday B, Smythe A (1972) Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 44(3):451–461

    Article  PubMed  CAS  Google Scholar 

  131. Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42(1):3–8

    Article  PubMed  CAS  Google Scholar 

  132. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32(4):189–198. doi:10.1016/j.tins.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  133. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. doi:10.1038/cddis.2009.11

    Article  PubMed  CAS  Google Scholar 

  134. Fumagalli M, Brambilla R, D’Ambrosi N, Volonté C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43(3):218–303. doi:10.1002/glia.10248

    Article  PubMed  Google Scholar 

  135. Kreda SM, Seminario-Vidal L, Heusden C, Lazarowski ER (2008) Thrombin-promoted release of UDP-glucose from human astrocytoma cells. Br J Pharmacol 153(7):1528–1537. doi:10.1038/sj.bjp.0707692

    Article  PubMed  CAS  Google Scholar 

  136. Brandenburg LO, Jansen S, Wruck CJ, Lucius R, Pufe T (2010) Antimicrobial peptide rCRAMP induced glial cell activation through P2Y receptor signalling pathways. Mol Immunol 47(10):1905–1913. doi:10.1016/j.molimm.2010.03.012

    Article  PubMed  CAS  Google Scholar 

  137. Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinoceptor subtypes recruit different mek activators in astrocytes. Br J Pharmacol 129(5):927–936. doi:10.1038/sj.bjp.0703138

    Article  PubMed  CAS  Google Scholar 

  138. Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141(7):1106–1117. doi:10.1038/sj.bjp.0705685

    Article  PubMed  CAS  Google Scholar 

  139. Espada S, Ortega F, Molina-Jijón E, Rojo AI, Pérez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y13 receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49(3):416–426. doi:10.1016/j.freeradbiomed.2010.04.031

    Article  PubMed  CAS  Google Scholar 

  140. Köles L, Leichsenring A, Rubini P, Illes P (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61:441–493. doi:10.1016/B978-0-12-385526-8.00014-X

    Article  PubMed  CAS  Google Scholar 

  141. Rodrigues RJ, Almeida T, de Mendonca A, Cunha RA (2006) Interaction between P2X and nicotinic acetylcholine receptors in glutamate nerve terminals of the rat hippocampus. J Mol Neurosci 30(1–2):173–176. doi:10.1385/JMN:30:1:173

    Article  PubMed  CAS  Google Scholar 

  142. Sperlágh B, Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3(1–2):117–127. doi:10.1007/s11302-006-9043-x

    Article  PubMed  CAS  Google Scholar 

  143. Fischer W, Krügel U (2007) P2Y receptors: focus on structural, pharmacological and functional aspects in the brain. Curr Med Chem 14(23):2429–2455

    Article  PubMed  CAS  Google Scholar 

  144. Simon J, Webb TE, Barnard EA (1997) Distribution of [35 S]dATP α S binding sites in the adult rat neuraxis. Neuropharmacology 36(9):1243–1251

    Article  PubMed  CAS  Google Scholar 

  145. Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421(3):374–384. doi:10.1002/(SICI)1096-9861(20000605)421:3<374::AID-CNE6>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  146. Morán-Jiménez MJ, Matute C (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78(1–2):50–58

    Article  PubMed  Google Scholar 

  147. Simon J, Webb TE, King BF, Burnstock G, Barnard EA (1995) Characterisation of a recombinant P2Y purinoceptor. Eur J Pharmacol 291(3):281–289

    Article  PubMed  CAS  Google Scholar 

  148. Fujita T, Tozaki-Saitoh H, Inoue K (2009) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57(3):244–257. doi:10.1002/glia.20749

    Article  PubMed  Google Scholar 

  149. Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110(Pt 5):583–588

    PubMed  CAS  Google Scholar 

  150. Bianco F, Fumagalli M, Pravettoni E, D’Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48(2):144–156. doi:10.1016/j.brainresrev.2004.12.004

    Article  PubMed  CAS  Google Scholar 

  151. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684. doi:10.1242/dev.02233

    Article  PubMed  CAS  Google Scholar 

  152. Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H, Kikkawa R (2002) Increase in intracellular Ca2+and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 111(2):413–422

    Article  PubMed  CAS  Google Scholar 

  153. Ruan HZ, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120(5):415–426. doi:10.1007/s00418-003-0579-3

    Article  PubMed  CAS  Google Scholar 

  154. Kobayashi K, Fukuoka T, Yamanaka H, Iyamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498(4):443–454. doi:10.1002/cne.21066

    Article  PubMed  CAS  Google Scholar 

  155. Gerevich Z, Müller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521(1–3):34–38. doi:10.1016/j.ejphar.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  156. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109(3):297–324. doi:10.1016/j.pharmthera.2005.06.002

    Article  PubMed  CAS  Google Scholar 

  157. Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci 65(19):3074–3080. doi:10.1007/s00018-008-8210-3

    Article  PubMed  CAS  Google Scholar 

  158. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3(125):ra45. doi:10.1126/scisignal.2000549

    Article  PubMed  CAS  Google Scholar 

  159. Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273(3 Pt 1):C1100–C1107

    PubMed  CAS  Google Scholar 

  160. Koshiba M, Apasov S, Sverdlov V, Chen P, Erb L, Turner JT, Weisman GA, Sitkovsky MV (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci U S A 94(3):831–836

    Article  PubMed  CAS  Google Scholar 

  161. Seye CI, Kong Q, Erb L, Garrad RC, Krugh B, Wang M, Turner JT, Sturek M, Gonzalez FA, Weisman GA (2002) Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106(21):2720–2726

    Article  PubMed  CAS  Google Scholar 

  162. Shen J, Seye CI, Wang M, Weisman GA, Wilden PA, Sturek M (2004) Cloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells. Mol Pharmacol 66(5):1265–1274. doi:10.1124/mol.104.002642

    Article  PubMed  CAS  Google Scholar 

  163. Schrader AM, Camden JM, Weisman GA (2005) P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjogren’s syndrome. Arch Oral Biol 50(6):533–540. doi:10.1016/j.archoralbio.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  164. Rodríguez-Zayas AE, Torrado AI, Miranda JD (2010) P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 28(6):413–421. doi:10.1016/j.ijdevneu.2010.07.001

    Article  PubMed  CAS  Google Scholar 

  165. Franke H, Krügel U, Grosche J, Heine C, Härtig W, Allgaier C, Illes P (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127(2):431–441. doi:10.1016/j.neuroscience.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  166. Degagne E, Grbic DM, Dupuis AA, Lavoie EG, Langlois C, Jain N, Weisman GA, Sevigny J, Gendron FP (2009) P2Y2 receptor transcription is increased by NF-κB and stimulates cyclooxygenase-2 expression and PGE2 released by intestinal epithelial cells. J Immunol 183(7):4521–4529

    Article  PubMed  CAS  Google Scholar 

  167. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21(1):146–158. doi:10.1038/cr.2010.175

    Article  PubMed  CAS  Google Scholar 

  168. Soltoff SP (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J Biol Chem 273(36):23110–23117

    Article  PubMed  CAS  Google Scholar 

  169. Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273(5):2653–2660

    Article  PubMed  CAS  Google Scholar 

  170. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279(34):35679–35686

    Article  PubMed  CAS  Google Scholar 

  171. Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA (2010) P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 285(10):7545–7555. doi:10.1074/jbc.M109.078170

    Article  PubMed  CAS  Google Scholar 

  172. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αVβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153(3):491–501

    Article  PubMed  CAS  Google Scholar 

  173. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with αv integrins to activate Go and induce cell migration. J Biol Chem 280(47):39050–39057. doi:10.1074/jbc.M504819200

    Article  PubMed  CAS  Google Scholar 

  174. Liao Z, Seye CI, Weisman GA, Erb L (2007) The P2Y2 nucleotide receptor requires interaction with αV integrins to access and activate G12. J Cell Sci 120(Pt 9):1654–1662. doi:10.1242/jcs.03441

    Article  PubMed  CAS  Google Scholar 

  175. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114(2):201–214

    Article  PubMed  CAS  Google Scholar 

  176. Jang DH, Han JH, Lee SH, Lee YS, Park H, Kim H, Kaang BK (2005) Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc Natl Acad Sci U S A 102(44):16072–16077. doi:10.1073/pnas.0507675102

    Article  PubMed  CAS  Google Scholar 

  177. Yu N, Erb L, Shivaji R, Weisman GA, Seye CI (2008) Binding of the P2Y2 nucleotide receptor to filamin A regulates migration of vascular smooth muscle cells. Circ Res 102(5):581–588. doi:10.1161/CIRCRESAHA.107.162271

    Article  PubMed  CAS  Google Scholar 

  178. Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, González A, Huidobro-Toro JP (2010) UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 285(5):2940–2950. doi:10.1074/jbc.M109.081166

    Article  PubMed  CAS  Google Scholar 

  179. Xie Z, Smith CJ, Van Eldik LJ (2004) Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 45(2):170–179. doi:10.1002/glia.10314

    Article  PubMed  Google Scholar 

  180. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33(10):1539–1556. doi:10.1007/s12272-010-1006-7

    Article  PubMed  CAS  Google Scholar 

  181. Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12 [corrected]. Neuroscience 134(1):207–214. doi:10.1016/j.neuroscience.2005.03.050

    Article  PubMed  CAS  Google Scholar 

  182. Boucsein C, Zacharias R, Färber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17(11):2267–2276

    Article  PubMed  Google Scholar 

  183. Kim HJ, Ajit D, Peterson TS, Wang Y, Camden JM, Wood WG, Sun GY, Erb LE, Petris M, Weisman GA (2012) Nucleotides released from fibrillar Aβ1-42-treated microglial cells increase cell migration and fibrillar Aβ1-42 uptake through P2Y2 receptor activation. J Neurochem. doi:10.1111/j.1471-4159.2012.07700.x

  184. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4):343–346. doi:10.1016/j.neuropharm.2009.06.031

    Article  PubMed  CAS  Google Scholar 

  185. Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, Gonzalez FA (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91(1):119–132

    Article  PubMed  CAS  Google Scholar 

  186. Webb TE, Henderson DJ, Roberts JA, Barnard EA (1998) Molecular cloning and characterization of the rat P2Y4 receptor. J Neurochem 71(4):1348–1357

    Article  PubMed  CAS  Google Scholar 

  187. Brunschweiger A, Muller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 13(3):289–312

    Article  PubMed  CAS  Google Scholar 

  188. Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5(1):75–89. doi:10.1007/s11302-008-9106-2

    Article  PubMed  CAS  Google Scholar 

  189. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521(1–3):107–119

    PubMed  CAS  Google Scholar 

  190. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262

    PubMed  CAS  Google Scholar 

  191. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6(1):43–50. doi:10.1038/nn980

    Article  PubMed  CAS  Google Scholar 

  192. Communi D, Parmentier M, Boeynaems JM (1996) Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 222(2):303–308

    Article  PubMed  CAS  Google Scholar 

  193. Calvert JA, Atterbury-Thomas AE, Leon C, Forsythe ID, Gachet C, Evans RJ (2004) Evidence for P2Y1, P2Y2, P2Y6 and atypical UTP-sensitive receptors coupled to rises in intracellular calcium in mouse cultured superior cervical ganglion neurons and glia. Br J Pharmacol 143(5):525–532. doi:10.1038/sj.bjp.0705959

    Article  PubMed  CAS  Google Scholar 

  194. Bennett GC, Ford AP, Smith JA, Emmett CJ, Webb TE, Boarder MR (2003) P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 139(2):279–288. doi:10.1038/sj.bjp.0705242

    Article  PubMed  CAS  Google Scholar 

  195. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095

    Article  PubMed  CAS  Google Scholar 

  196. Liu GD, Ding JQ, Xiao Q, Chen SD (2009) P2Y6 receptor and immunoinflammation. Neurosci Bull 25(3):161–164

    Article  PubMed  CAS  Google Scholar 

  197. Communi D, Robaye B, Boeynaems JM (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128(6):1199–1206. doi:10.1038/sj.bjp.0702909

    Article  PubMed  CAS  Google Scholar 

  198. Volonté C, Amadio S, D’Ambrosi N, Colpi M, Burnstock G (2006) P2 receptor web: complexity and fine-tuning. Pharmacol Ther 112(1):264–280. doi:10.1016/j.pharmthera.2005.04.012

    Article  PubMed  CAS  Google Scholar 

  199. Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179(12):8544–8553

    PubMed  CAS  Google Scholar 

  200. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207

    Article  PubMed  CAS  Google Scholar 

  201. Kunapuli SP, Ding Z, Dorsam RT, Kim S, Murugappan S, Quinton TM (2003) ADP receptors–targets for developing antithrombotic agents. Curr Pharm Des 9(28):2303–2316

    Article  PubMed  CAS  Google Scholar 

  202. Carrasquero LM, Delicado EG, Jiménez AI, Pérez-Sen R, Miras-Portugal MT (2005) Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y13-like receptors. Purinergic Signal 1(2):153–159. doi:10.1007/s11302-005-6211-3

    Article  PubMed  CAS  Google Scholar 

  203. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3):242–250. doi:10.1002/glia.10293

    Article  PubMed  Google Scholar 

  204. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi:10.1038/nn1805

    Article  PubMed  CAS  Google Scholar 

  205. Amadio S, Tramini G, Martorana A, Viscomi MT, Sancesario G, Bernardi G, Volonté C (2006) Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain. Neuroscience 141(3):1171–1180. doi:10.1016/j.neuroscience.2006.05.058

    Article  PubMed  CAS  Google Scholar 

  206. Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1):104–112. doi:10.1124/mol.64.1.104

    Article  PubMed  CAS  Google Scholar 

  207. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    PubMed  CAS  Google Scholar 

  208. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272(51):31969–31973

    Article  PubMed  CAS  Google Scholar 

  209. Jiménez E, Zafra F, Pérez-Sen R, Delicado EG, Miras-Portugal MT, Aragón C, López-Corcuera B (2011) P2Y purinergic regulation of the glycine neurotransmitter transporters. J Biol Chem 286(12):10712–10724. doi:10.1074/jbc.M110.167056

    Article  PubMed  CAS  Google Scholar 

  210. Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40(4):797–806

    Article  PubMed  CAS  Google Scholar 

  211. Ortega F, Pérez-Sen R, Miras-Portugal MT (2008) Gi-coupled P2Y-ADP receptor mediates GSK-3 phosphorylation and β-catenin nuclear translocation in granule neurons. J Neurochem 104(1):62–73. doi:10.1111/j.1471-4159.2007.05021.x

    PubMed  CAS  Google Scholar 

  212. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275(15):10767–10771

    Article  PubMed  CAS  Google Scholar 

  213. Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24(2):52–55

    Article  PubMed  CAS  Google Scholar 

  214. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27(3):166–176

    Article  PubMed  CAS  Google Scholar 

  215. Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003) Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol 63(5):1190–1197

    Article  PubMed  CAS  Google Scholar 

  216. Skelton L, Cooper M, Murphy M, Platt A (2003) Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucose. J Immunol 171(4):1941–1949

    PubMed  CAS  Google Scholar 

  217. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28(9):465–472. doi:10.1016/j.tips.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  218. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. doi:10.1038/nri2725

    Article  PubMed  CAS  Google Scholar 

  219. Pfeiffer ZA, Aga M, Prabhu U, Watters JJ, Hall DJ, Bertics PJ (2004) The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75(6):1173–1182. doi:10.1189/jlb.1203648

    Article  PubMed  CAS  Google Scholar 

  220. Potucek YD, Crain JM, Watters JJ (2006) Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem Int 49(2):204–214. doi:10.1016/j.neuint.2006.04.005

    Article  PubMed  CAS  Google Scholar 

  221. Lenertz LY, Gavala ML, Hill LM, Bertics PJ (2009) Cell signaling via the P2X7 nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal 5(2):175–187. doi:10.1007/s11302-009-9133-7

    Article  PubMed  CAS  Google Scholar 

  222. Skaper SD, Debetto P, Giusti P (2009) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24(2):337–345. doi:10.1096/fj.09-138883

    Article  PubMed  CAS  Google Scholar 

  223. Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K (2010) P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem 114(3):810–819. doi:10.1111/j.1471-4159.2010.06809.x

    Article  PubMed  CAS  Google Scholar 

  224. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8–9):959–969

    Article  PubMed  CAS  Google Scholar 

  225. Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22(2):214–219. doi:10.1016/j.semcdb.2011.02.009

    Article  PubMed  CAS  Google Scholar 

  226. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182(7):4378–4385. doi:10.4049/jimmunol.0803612[doi]

    Article  PubMed  CAS  Google Scholar 

  227. El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–632. doi:10.1016/j.tips.2008.08.004

    Article  PubMed  CAS  Google Scholar 

  228. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168(12):6436–6445

    PubMed  CAS  Google Scholar 

  229. McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146(4):1817–1828. doi:10.1016/j.neuroscience.2007.03.035

    Article  PubMed  CAS  Google Scholar 

  230. Lucattelli M, Cicko S, Muller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Durk T, Zissel G, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M (2011) P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 44(3):423–429. doi:10.1165/rcmb.2010-0038OC

    Article  PubMed  CAS  Google Scholar 

  231. Friedle SA, Curet MA, Watters JJ (2010) Recent patents on novel P2X7 receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat CNS Drug Discov 5(1):35–45

    Article  PubMed  CAS  Google Scholar 

  232. Arulkumaran N, Unwin RJ, Tam FW (2011) A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 20(7):897–915. doi:10.1517/13543784.2011.578068

    Article  PubMed  CAS  Google Scholar 

  233. Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskelet 66(8):635–649. doi:10.1002/cm.20388

    Article  CAS  Google Scholar 

  234. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci U S A 102(52):19138–19143. doi:10.1073/pnas.0505913102

    Article  PubMed  CAS  Google Scholar 

  235. Arthur DB, Akassoglou K, Insel PA (2006) P2Y2 and TrkA receptors interact with Src family kinase for neuronal differentiation. Biochem Biophys Res Commun 347(3):678–682. doi:10.1016/j.bbrc.2006.06.141

    Article  PubMed  CAS  Google Scholar 

  236. Grimm I, Messemer N, Stanke M, Gachet C, Zimmermann H (2009) Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J Cell Sci 122(Pt 14):2524–2533. doi:10.1242/jcs.044891

    Article  PubMed  CAS  Google Scholar 

  237. Arthur DB, Georgi S, Akassoglou K, Insel PA (2006) Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J Neurosci 26(14):3798–3804. doi:10.1523/JNEUROSCI.5338-05.2006

    Article  PubMed  CAS  Google Scholar 

  238. Walker DG, Kim SU, McGeer PL (1995) Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res 40(4):478–493. doi:10.1002/jnr.490400407

    Article  PubMed  CAS  Google Scholar 

  239. Sudo S, Tanaka J, Toku K, Desaki J, Matsuda S, Arai T, Sakanaka M, Maeda N (1998) Neurons induce the activation of microglial cells in vitro. Exp Neurol 154(2):499–510. doi:10.1006/exnr.1998.6911

    Article  PubMed  CAS  Google Scholar 

  240. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403. doi:10.1038/nrneurol.2010.74

    Article  PubMed  CAS  Google Scholar 

  241. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic–neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113. doi:10.1016/j.neures.2011.06.004

    Article  PubMed  Google Scholar 

  242. Takenouchi T, Sugama S, Iwamaru Y, Hashimoto M, Kitani H (2009) Modulation of the ATP-lnduced release and processing of IL-1β in microglial cells. Crit Rev Immunol 29(4):335–345

    Article  PubMed  CAS  Google Scholar 

  243. Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8(4):277–284

    Article  PubMed  CAS  Google Scholar 

  244. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99. doi:10.1038/nrn2757

    Article  PubMed  CAS  Google Scholar 

  245. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22(2):205–213. doi:10.1016/j.semcdb.2011.02.023

    Article  PubMed  CAS  Google Scholar 

  246. Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56(7):734–749. doi:10.1002/glia.20649

    Article  PubMed  Google Scholar 

  247. Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58(1):66–79. doi:10.1002/glia.20902

    Article  PubMed  Google Scholar 

  248. Burgos M, Neary JT, González FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103(5):1785–1800. doi:10.1111/j.1471-4159.2007.04872.x

    Article  PubMed  CAS  Google Scholar 

  249. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y nucleotide receptor interaction with αV integrin mediates astrocyte migration. J Neurochem 95(3):630–640

    Article  PubMed  CAS  Google Scholar 

  250. D’Alimonte I, Ciccarelli R, Di Iorio P, Nargi E, Buccella S, Giuliani P, Rathbone MP, Jiang S, Caciagli F, Ballerini P (2007) Activation of P2X7 receptors stimulates the expression of P2Y2 receptor mRNA in astrocytes cultured from rat brain. Int J Immunopathol Pharmacol 20(2):301–316

    PubMed  Google Scholar 

  251. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22(8):3061–3069

    PubMed  Google Scholar 

  252. Choi HB, Ryu JK, Kim SU, McLarnon JG (2007) Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 27(18):4957–4968. doi:10.1523/JNEUROSCI.5417-06.2007

    Article  PubMed  CAS  Google Scholar 

  253. Mingam R, De Smedt V, Amédée T, Bluthé RM, Kelley KW, Dantzer R, Layé S (2008) In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1 β in the murine brain. Brain Behav Immun 22(2):234–244. doi:10.1016/j.bbi.2007.08.007

    Article  PubMed  CAS  Google Scholar 

  254. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  PubMed  CAS  Google Scholar 

  255. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40(2):133–139. doi:10.1002/glia.10154

    Article  PubMed  Google Scholar 

  256. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29(3):381–393. doi:10.1016/j.mcn.2005.03.005

    Article  PubMed  CAS  Google Scholar 

  257. Turrin NP, Rivest S (2006) Tumor necrosis factor α but not interleukin 1 β mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 26(1):143–151. doi:10.1523/JNEUROSCI.4032-05.2006

    Article  PubMed  CAS  Google Scholar 

  258. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007

    Article  PubMed  CAS  Google Scholar 

  259. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–438. doi:10.1038/nm1555

    Article  PubMed  CAS  Google Scholar 

  260. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. doi:10.1126/science.1123511

    Article  PubMed  CAS  Google Scholar 

  261. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510. doi:10.1016/j.tins.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  262. Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1–2):92–99. doi:10.1016/j.jneuroim.2006.11.032

    Article  PubMed  CAS  Google Scholar 

  263. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi:10.1007/s12035-010-8105-9

    Article  PubMed  CAS  Google Scholar 

  264. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    PubMed  CAS  Google Scholar 

  265. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795

    Article  PubMed  CAS  Google Scholar 

  266. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    Article  PubMed  CAS  Google Scholar 

  267. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78(6):1339–1349

    Article  PubMed  CAS  Google Scholar 

  268. Crain JM, Nikodemova M, Watters JJ (2009) Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 6:24. doi:10.1186/1742-2094-6-24

    Article  PubMed  CAS  Google Scholar 

  269. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. doi:10.1038/nature08296

    Article  PubMed  CAS  Google Scholar 

  270. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39(5–6):333–340

    Article  PubMed  CAS  Google Scholar 

  271. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schön P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3(132):ra55. doi:10.1126/scisignal.2000588

    Article  PubMed  CAS  Google Scholar 

  272. Ben Yebdri F, Kukulski F, Tremblay A, Sévigny J (2009) Concomitant activation of P2Y2 and P2Y6 receptors on monocytes is required for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur J Immunol 39(10):2885–2894. doi:10.1002/eji.200939347

    Article  PubMed  CAS  Google Scholar 

  273. Kukulski F, Ben Yebdri F, Bahrami F, Fausther M, Tremblay A, Sevigny J (2010) Endothelial P2Y2 receptor regulates LPS-induced neutrophil transendothelial migration in vitro. Mol Immunol 47(5):991–999. doi:10.1016/j.molimm.2009.11.020

    Article  PubMed  CAS  Google Scholar 

  274. Chung H, Brazil MI, Soe TT, Maxfield FR (1999) Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer’s amyloid beta-peptide by microglial cells. J Biol Chem 274(45):32301–32308

    Article  PubMed  CAS  Google Scholar 

  275. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-β1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. doi:10.1038/87945

    Article  PubMed  CAS  Google Scholar 

  276. Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2):154–163. doi:10.1002/glia.20599[doi]

    Article  PubMed  Google Scholar 

  277. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 29(13):4252–4262. doi:10.1523/JNEUROSCI.5572-08.2009

    Article  PubMed  CAS  Google Scholar 

  278. Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30(35):11848–11857. doi:10.1523/JNEUROSCI.2985-10.2010

    Article  PubMed  CAS  Google Scholar 

  279. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36(9):1295–1301

    Article  PubMed  CAS  Google Scholar 

  280. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5(3):191–199. doi:10.1038/sj.cdd.4400341

    Article  PubMed  CAS  Google Scholar 

  281. Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T (2010) Macrophages in Alzheimer’s disease: the blood-borne identity. J Neural Transm 117(8):961–970. doi:10.1007/s00702-010-0422-7

    Article  PubMed  CAS  Google Scholar 

  282. Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 106(4):1261–1266. doi:10.1073/pnas.0805453106

    Article  PubMed  CAS  Google Scholar 

  283. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502. doi:10.1016/j.neuron.2006.01.022

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Weisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisman, G.A., Camden, J.M., Peterson, T.S. et al. P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation. Mol Neurobiol 46, 96–113 (2012). https://doi.org/10.1007/s12035-012-8263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8263-z

Keywords

Navigation