Skip to main content

Advertisement

Log in

Optimization of the Transductional Efficiency of Lentiviral Vectors: Effect of Sera and Polycations

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively charged polycations reduces the electrostatic repulsion forces between a negatively charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here, we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bukrinsky, M. I., & Haffar, O. K. (1999). HIV-1 nuclear import: In search of a leader. Frontiers in Bioscience, 4, D772–D781.

    Article  CAS  Google Scholar 

  2. Vigna, E., & Naldini, L. (2000). Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. Journal of Gene Medicine, 2(5), 308–316.

    Article  CAS  Google Scholar 

  3. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272(5259), 263–267.

    Article  CAS  Google Scholar 

  4. Naldini, L. (2006). Inserting optimism into gene therapy. Nature Medicine, 12(4), 386–388.

    Article  CAS  Google Scholar 

  5. Frecha, C., Levy, C., Cosset, F. L., & Verhoeyen, E. (2010). Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Molecular Therapy, 18(10), 1748–1757.

    Article  CAS  Google Scholar 

  6. Kumar, P., & Woon-Khiong, C. (2011). Optimization of lentiviral vectors generation for biomedical and clinical research purposes: Contemporary trends in technology development and applications. Current Gene Therapy, 11(2), 144–153.

    Article  CAS  Google Scholar 

  7. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., et al. (1998). A third-generation lentivirus vector with a conditional packaging system. Journal of Virology, 72(11), 8463–8471.

    CAS  Google Scholar 

  8. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. Journal of Virology, 72(12), 9873–9880.

    CAS  Google Scholar 

  9. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., & Verma, I. M. (1998). Development of a self-inactivating lentivirus vector. Journal of Virology, 72(10), 8150–8157.

    CAS  Google Scholar 

  10. Bukovsky, A. A., Song, J. P., & Naldini, L. (1999). Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. Journal of Virology, 73(8), 7087–7092.

    CAS  Google Scholar 

  11. Kay, M. A., Glorioso, J. C., & Naldini, L. (2001). Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nature Medicine, 7(1), 33–40.

    Article  CAS  Google Scholar 

  12. Naldini, L., Blomer, U., Gage, F. H., Trono, D., & Verma, I. M. (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11382–11388.

    Article  CAS  Google Scholar 

  13. Kordower, J. H., Bloch, J., Ma, S. Y., Chu, Y., Palfi, S., Roitberg, B. Z., et al. (1999). Lentiviral gene transfer to the nonhuman primate brain. Experimental Neurology, 160(1), 1–16.

    Article  CAS  Google Scholar 

  14. Pizzato, M., Marlow, S. A., Blair, E. D., & Takeuchi, Y. (1999). Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. Journal of Virology, 73(10), 8599–8611.

    CAS  Google Scholar 

  15. Sharma, S., Miyanohara, A., & Friedmann, T. (2000). Separable mechanisms of attachment and cell uptake during retrovirus infection. Journal of Virology, 74(22), 10790–10795.

    Article  CAS  Google Scholar 

  16. Jensen, T. W., Chen, Y., & Miller, W. M. (2003). Small increases in pH enhance retroviral vector transduction efficiency of NIH-3T3 cells. Biotechnology Progress, 19(1), 216–223.

    Article  CAS  Google Scholar 

  17. Swaney, W. P., Sorgi, F. L., Bahnson, A. B., & Barranger, J. A. (1997). The effect of cationic liposome pretreatment and centrifugation on retrovirus-mediated gene transfer. Gene Therapy, 4(12), 1379–1386.

    Article  CAS  Google Scholar 

  18. O’Doherty, U., Swiggard, W. J., & Malim, M. H. (2000). Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. Journal of Virology, 74(21), 10074–10080.

    Article  Google Scholar 

  19. Toyoshima, K., & Vogt, P. K. (1969). Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions. Virology, 38(3), 414–426.

    Article  CAS  Google Scholar 

  20. Le Doux, J. M., Landazuri, N., Yarmush, M. L., & Morgan, J. R. (2001). Complexation of retrovirus with cationic and anionic polymers increases the efficiency of gene transfer. Human Gene Therapy, 12(13), 1611–1621.

    Article  CAS  Google Scholar 

  21. Hodgson, C. P., & Solaiman, F. (1996). Virosomes: Cationic liposomes enhance retroviral transduction. Nature Biotechnology, 14(3), 339–342.

    Article  CAS  Google Scholar 

  22. Cornetta, K., & Anderson, W. F. (1989). Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: Implications for human gene therapy. Journal of Virological Methods, 23(2), 187–194.

    Article  CAS  Google Scholar 

  23. Andreadis, S., & Palsson, B. O. (1997). Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Human Gene Therapy, 8(3), 285–291.

    Article  CAS  Google Scholar 

  24. Themis, M., Forbes, S. J., Chan, L., Cooper, R. G., Etheridge, C. J., Miller, A. D., et al. (1998). Enhanced in vitro and in vivo gene delivery using cationic agent complexed retrovirus vectors. Gene Therapy, 5(9), 1180–1186.

    Article  CAS  Google Scholar 

  25. Seitz, B., Baktanian, E., Gordon, E. M., Anderson, W. F., LaBree, L., & McDonnell, P. J. (1998). Retroviral vector-mediated gene transfer into keratocytes: In vitro effects of polybrene and protamine sulfate. Graefes Archive for Clinical and Experimental Ophthalmology, 236(8), 602–612.

    Article  CAS  Google Scholar 

  26. Lizee, G., Gonzales, M. I., & Topalian, S. L. (2004). Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Human Gene Therapy, 15(4), 393–404.

    Article  CAS  Google Scholar 

  27. Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., & Schubert, M. (1996). Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proceedings of the National Academy of Sciences of the United States of America, 93(26), 15266–15271.

    Article  CAS  Google Scholar 

  28. Protocol available online at: http://www.invitrogen.com/site/us/en/home/References/protocols/proteins-expression-isolation-and-analysis/protein-expression-protocol/lentiviral-expression-systems.html#2. Retrieved 15 February 2012.

  29. Portis, J. L., McAtee, F. J., & Evans, L. H. (1985). Infectious entry of murine retroviruses into mouse cells: Evidence of a postadsorption step inhibited by acidic pH. Journal of Virology, 55(3), 806–812.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grant R21 AI063967. UAB Center for AIDS Research (CFAR) Virology Core was instrumental in the preparation of lentiviral vectors. We thank Dr. E. S. Helton and Dr. R. P. Huijbregts for critical reading of this manuscript.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Hel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denning, W., Das, S., Guo, S. et al. Optimization of the Transductional Efficiency of Lentiviral Vectors: Effect of Sera and Polycations. Mol Biotechnol 53, 308–314 (2013). https://doi.org/10.1007/s12033-012-9528-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9528-5

Keywords

Navigation