Skip to main content

Advertisement

Log in

A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The introduction of TNF inhibitors has revolutionized the treatment of some chronic inflammatory diseases, e.g., rheumatoid arthritis and Crohn’s disease. However, immunogenicity is one of the important mechanisms behind treatment failure, and generally, switching to another TNF inhibitor will be the first choice for patients and doctors, which results in unmet need for novel anti-TNF agents. Small antibody molecules with less number of epitope may be valuable in less immunogenicity. In this study, with the help of computer-guided molecular design, single-chain variable fragment (scFv) TSA2 was designed using consensus frameworks of human antibody variable region as scaffold to display anti-TNF antagonistic peptides. TSA2 showed evidently improved bioactivity over TSA1 (anti-TNF scFv explored before) and almost similar activity as S-Remicade (the scFv form of Remicade, anti-TNF antibody approved by FDA), especially in inhibiting TNF-induced cytotoxicity and NF-κB activation. Human antibody consensus frameworks with less immunogenicity have been used in the designing of VH domain antibody, scFv TSA1 and TSA2. A serial of TNF-related works convinced us that the novel design strategy was feasible and could be used to design inhibitors targeting more other molecules than TNF-α. More importantly, these designed inhibitors derived from computer modeling may form a virtual antibody library whose size depends on the number of candidate antagonistic peptides. It will be molecular-targeted virtual antibody library because of the specific antagonistic peptides and the potential antibodies could be determined by virtual screening and then confirmed by biologic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

mAb:

Monoclonal antibody

scFv:

Single-chain variable fragment

PT:

Peptide

CDRs:

Complementarity-determining regions

HCDR:

CDR of heavy chain

LCDR:

CDR of light chain

TNFR:

TNF-α receptor

rhTNF-α:

Recombinant human TNF-α

S-Remicade:

scFv form of Remicade

IL:

Interleukin

References

  1. Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov. 2003;2:736–46.

    Article  CAS  PubMed  Google Scholar 

  2. Atzeni F, Talotta R, Salaffi F, Cassinotti A, Varisco V, Battellino M, et al. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun Rev. 2013;12:703–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bendtzen K. Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-alpha antagonists. Discov Med. 2013;15:201–11.

    PubMed  Google Scholar 

  4. Vincent FB, Morand EF, Murphy K, Mackay F, Mariette X, Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann Rheum Dis. 2013;72:165–78.

    Article  CAS  PubMed  Google Scholar 

  5. Thalayasingam N, Isaacs JD. Anti-TNF therapy. Best Pract Res Clin Rheumatol. 2011;25:549–67.

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev. 2014;13:24–30.

    Article  CAS  PubMed  Google Scholar 

  7. Khanna R, Feagan BG. Ustekinumab for the treatment of Crohn’s disease. Immunotherapy. 2013;5:803–15.

    Article  CAS  PubMed  Google Scholar 

  8. Spinelli FR, Valesini G. Immunogenicity of anti-tumour necrosis factor drugs in rheumatic diseases. Clin Exp Rheumatol. 2013;31:954–63.

    PubMed  Google Scholar 

  9. Alawadhi A, Alawneh K, Alzahrani ZA. The effect of neutralizing antibodies on the sustainable efficacy of biologic therapies: what’s in it for African and Middle Eastern rheumatologists. Clin Rheumatol. 2012;31:1281–7.

    Article  PubMed  Google Scholar 

  10. van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:164–72.

    Article  PubMed  Google Scholar 

  11. Lowenberg M, de Boer N, Hoentjen F. Golimumab for the treatment of ulcerative colitis. Clin Exp Gastroenterol. 2014;7:53–9.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    Article  CAS  PubMed  Google Scholar 

  13. Worn A, Pluckthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol. 2001;305:989–1010.

    Article  CAS  PubMed  Google Scholar 

  14. Krenova Z, Pavelka Z, Lokaj P, Skotakova J, Kocmanova I, Teyschl O, et al. Successful treatment of life-threatening Candida peritonitis in a child with abdominal non-Hodgkin lymphoma using Efungumab and amphotericin B colloid dispersion. J Pediatr Hematol Oncol. 2010;32:128–30.

    Article  PubMed  Google Scholar 

  15. Bagai A, Armstrong PW, Stebbins A, Mahaffey KW, Hochman JS, Weaver WD, et al. Prognostic implications of left ventricular end-diastolic pressure during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: findings from the assessment of Pexelizumab in acute myocardial infarction study. Am Heart J. 2013;166:913–9.

    Article  PubMed  Google Scholar 

  16. Agunanne E, Horvat D, Uddin MN, Puschett J. The treatment of preeclampsia in a rat model employing Digibind. Am J Perinatol. 2010;27:299–305.

    Article  PubMed  Google Scholar 

  17. Shao EH, Sivagnanavel V, Dabbagh A, Dave R, Tempest-Roe S, Tam FW, et al. Multiphasic changes in systemic VEGF following intravitreal injections of ranibizumab in a child. Eye (Lond). 2015;. doi:10.1038/eye.2014.343.

    Google Scholar 

  18. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;288:2351–4.

    Article  CAS  PubMed  Google Scholar 

  19. De Genst E, Areskoug D, Decanniere K, Muyldermans S, Andersson K. Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design. J Biol Chem. 2002;277:29897–907.

    Article  PubMed  Google Scholar 

  20. Steed PM, Tansey MG, Zalevsky J, Zhukovsky EA, Desjarlais JR, Szymkowski DE, et al. Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science. 2003;301:1895–8.

    Article  CAS  PubMed  Google Scholar 

  21. Feng J, Li Y, Zhang W, Shen B. Rational design of potent mimic peptide derived from monoclonal antibody: antibody mimic design. Immunol Lett. 2005;98:311–6.

    Article  CAS  PubMed  Google Scholar 

  22. Qin W, Feng J, Li Y, Lin Z, Shen B. De novo design TNF-alpha antagonistic peptide based on the complex structure of TNF-alpha with its neutralizing monoclonal antibody Z12. J Biotechnol. 2006;125:57–63.

    Article  CAS  PubMed  Google Scholar 

  23. Qin W, Feng J, Li Y, Lin Z, Shen B. Fusion protein of CDR mimetic peptide with Fc inhibit TNF-alpha induced cytotoxicity. Mol Immunol. 2006;43:660–6.

    Article  CAS  PubMed  Google Scholar 

  24. Qin W, Feng J, Li Y, Lin Z, Shen B. A novel domain antibody rationally designed against TNF-alpha using variable region of human heavy chain antibody as scaffolds to display antagonistic peptides. Mol Immunol. 2007;44:2355–61.

    Article  CAS  PubMed  Google Scholar 

  25. Chang H, Qin W, Li Y, Zhang J, Lin Z, Lv M, et al. A novel human scFv fragment against TNF-alpha from de novo design method. Mol Immunol. 2007;44:3789–96.

    Article  CAS  PubMed  Google Scholar 

  26. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57–86.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Feng J, Shen B. Identification of binding epitope of a monoclonal antibody (Z12) against human TNF-alpha using computer modeling and deletion mutant technique. Sci China C Life Sci. 2004;47:279–86.

    CAS  PubMed  Google Scholar 

  28. Upchurch KS, Kay J. Evolution of treatment for rheumatoid arthritis. Rheumatology. 2012;51(6):vi28–36.

    CAS  PubMed  Google Scholar 

  29. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005;23:1105–16.

    Article  CAS  PubMed  Google Scholar 

  30. Paul S, Kolla RV, Sidney J, Weiskopf D, Fleri W, Kim Y, et al. Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource. Clin Dev Immunol. 2013;2013:467852.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012;40:W525–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Salimi N, Fleri W, Peters B, Sette A. The immune epitope database: a historical retrospective of the first decade. Immunology. 2012;137:117–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

S.G.& H.C. designed and performed experiments & data analysis, wrote the paper. W.Q. designed the PCR primers, offer suggestions for the experiments. M.L. assisted with experiments. J.F. performed computer modeling. B.S., Y.L. and J.F. contributed to conception, design and final approval of the paper. This work is supported by National 863 Fund (No. 2012AA02A302), National Sciences Fund (No. 31200701) and Hebei Sciences Fund (No. C2013206353) of China.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiannan Feng or Beifen Shen.

Additional information

Shusheng Geng and Hong Chang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Chang, H., Qin, W. et al. A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides. Immunol Res 62, 377–385 (2015). https://doi.org/10.1007/s12026-015-8667-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8667-8

Keywords

Navigation