Skip to main content

Advertisement

Log in

Role of Osteoblasts in Regulation of Energy Metabolism

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Diseases of compromised glucose metabolism, such as type II diabetes, have been for years correlated with defects in bone mass or strength. However, a reverse regulation of energy homeostasis by the skeleton was not suspected until very recently. A series of genetic studies have demonstrated that the skeleton regulates glucose metabolism and energy expenditure in an endocrine manner. The bone-derived protein osteocalcin acts as a hormone that confers the signal of the osteoblasts to the peripheral tissues that regulate energy metabolism: pancreas, muscle, liver, and white adipose tissue. Osteocalcin favors β-cell proliferation, insulin secretion, insulin sensitivity, and energy expenditure. In addition, insulin signaling in osteoblasts is a positive regulator of osteocalcin production and activity, confirming the existence of a pancreas-bone feedback loop. At the molecular level, two transcription factors, the broadly expressed FoxO1 and the osteoblast-enriched ATF4, act in osteoblasts to regulate energy homeostasis by regulating the activity of osteocalcin. In addition to studies in rodents, a growing body of evidence in the clinical literature has confirmed a favorable link between osteocalcin and energy homeostasis, suggesting that the metabolic functions of the skeleton are retained in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto M, et al. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res. 2009;24(4):702–9.

    Article  PubMed  CAS  Google Scholar 

  2. Janghorbani M, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.

    Article  PubMed  Google Scholar 

  3. Schwartz AV, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ducy P, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  PubMed  CAS  Google Scholar 

  5. Takeda S, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.

    Article  PubMed  CAS  Google Scholar 

  6. Ferron M, et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA. 2008;105(13):5266–70.

    Article  PubMed  CAS  Google Scholar 

  7. Ferron M, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2011;50:568–75.

    Google Scholar 

  8. Lee NK, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  PubMed  CAS  Google Scholar 

  9. Rached MT, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010;120(1):357–68.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshizawa T, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest. 2009;119(9):2807–17.

    Article  PubMed  CAS  Google Scholar 

  11. Kronenberg HM, et al. Principles of endocrinology. In: Kronenberg HM, et al., editors. Williams textbook of endocrinology. Philadelphia: Elsevier; 2008. p. 3–11.

  12. Oury F, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.

    Article  PubMed  CAS  Google Scholar 

  13. Ferron M, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  PubMed  CAS  Google Scholar 

  14. Fulzele K, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Real JM, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab. 2009;94(1):237–45.

    Article  PubMed  CAS  Google Scholar 

  16. Pittas AG, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab. 2009;94(3):827–32.

    Article  PubMed  CAS  Google Scholar 

  17. Schafer AL, et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH Study). J Clin Endocrinol Metab. 2011;96:E1982–9.

    Google Scholar 

  18. Yeap BB, et al. Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur J Endocrinol. 2010;163(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  19. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.

    Article  PubMed  CAS  Google Scholar 

  20. Mauro LJ, et al. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem. 1994;269(48):30659–67.

    PubMed  CAS  Google Scholar 

  21. Dacquin R, et al. Knock-in of nuclear localised beta-galactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar. Dev Dyn. 2004;229(4):826–34.

    Article  PubMed  CAS  Google Scholar 

  22. Maduro MR, et al. Osteotesticular protein tyrosine phosphatase expression in rodent testis. J Urol. 2002;167(5):2282–3.

    Article  PubMed  CAS  Google Scholar 

  23. Wheeler MA, et al. Transcriptional activation of the tyrosine phosphatase gene, OST-PTP, during osteoblast differentiation. J Cell Biochem. 2002;87(4):363–76.

    Article  PubMed  CAS  Google Scholar 

  24. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  25. Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab. 2008;19(5):161–6.

    Article  PubMed  CAS  Google Scholar 

  26. Hauschka PV, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.

    PubMed  CAS  Google Scholar 

  27. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia. 2011;54(6):1291–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kanazawa I, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int. 2011;22(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  29. Yamauchi M, et al. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr. 2010;29(6):761–5.

    Article  PubMed  CAS  Google Scholar 

  30. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.

    Article  PubMed  CAS  Google Scholar 

  31. Pi M, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3(12):e3858.

    Article  PubMed  Google Scholar 

  32. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res. 2011;26(7):1680–3.

    Article  PubMed  CAS  Google Scholar 

  33. Kousteni S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone. 2011;50:437–43.

    Google Scholar 

  34. Kousteni S. FoxO1: a molecule for all seasons. J Bone Miner Res. 2011;26(5):912–7.

    Article  PubMed  CAS  Google Scholar 

  35. Yang X, Karsenty G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J Biol Chem. 2004;279(45):47109–14.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshikawa Y, et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res. 2011;26(9):2012–25.

    Article  PubMed  CAS  Google Scholar 

  37. Steppan CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    Article  PubMed  CAS  Google Scholar 

  38. Ducy P, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  PubMed  CAS  Google Scholar 

  39. Yadav VK, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.

    Article  PubMed  CAS  Google Scholar 

  40. Elefteriou F, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.

    Article  PubMed  CAS  Google Scholar 

  41. Hinoi E, et al. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183(7):1235–42.

    Article  PubMed  CAS  Google Scholar 

  42. Cousin W, et al. Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human. Biochem Biophys Res Commun. 2004;321(1):259–65.

    Article  PubMed  CAS  Google Scholar 

  43. Bacchetta J, et al. The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease. Nephrol Dial Transplant. 2009;24(10):3120–5.

    Article  PubMed  CAS  Google Scholar 

  44. Im JA, et al. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta. 2008;396(1–2):66–9.

    Article  PubMed  CAS  Google Scholar 

  45. Kanazawa I, et al. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone. 2011;48(4):720–5.

    Article  PubMed  CAS  Google Scholar 

  46. Kanazawa I, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  47. Kindblom JM, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009;24(5):785–91.

    Article  PubMed  CAS  Google Scholar 

  48. Reinehr T, Roth CL. A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obes (Lond). 2010;34(5):852–8.

    Article  CAS  Google Scholar 

  49. Rochefort GY, et al. Osteocalcin-insulin relationship in obese children: a role for the skeleton in energy metabolism. Clin Endocrinol (Oxf). 2011;75(2):265–70.

    Article  CAS  Google Scholar 

  50. Zhou M, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol. 2009;161(5):723–9.

    Article  PubMed  CAS  Google Scholar 

  51. Goliasch G, et al. Markers of bone metabolism in premature myocardial infarction (</= 40 years of age). Bone. 2011;48(3):622–6.

    Article  PubMed  CAS  Google Scholar 

  52. Winhofer Y, et al. Osteocalcin is related to enhanced insulin secretion in gestational diabetes mellitus. Diabetes Care. 2010;33(1):139–43.

    Article  PubMed  CAS  Google Scholar 

  53. Pollock NK, et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J Clin Endocrinol Metab. 2011;96(7):E1092–9.

    Article  PubMed  Google Scholar 

  54. Black DM, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349(13):1207–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula Kousteni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, B.C., Kousteni, S. Role of Osteoblasts in Regulation of Energy Metabolism. Clinic Rev Bone Miner Metab 11, 2–10 (2013). https://doi.org/10.1007/s12018-012-9128-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-012-9128-8

Keywords

Navigation