Skip to main content
Log in

Adipokine Effects on Bone

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The adipocyte is an important source of factors that act as circulating regulators of bone metabolism. These include estrogens, and the adipokines, leptin, resistin, adiponectin, and probably others. Leptin acts directly on bone cells, and in some experimental models these effects are modified by its actions on the central nervous system, which impact on appetite, body weight, and insulin sensitivity. While not strictly an adipokine, insulin circulates in increased concentrations in obesity and exerts anabolic effects on bone. Adipokine levels correlate with bone turnover, suggesting that they dynamically influence bone metabolism. In postmenopausal women, they may be among the principal regulators of bone turnover, accounting for their increasing importance as determinants of bone density with age. Of the adipokines, adiponectin appears to have the strongest relationships with bone parameters in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riis BJ, Rodbro P, Christiansen C. The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of postmenopausal osteoporosis. Calcif Tissue Int. 1986;38:318–22.

    Article  PubMed  CAS  Google Scholar 

  2. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab. 1992;75:45–51.

    Article  PubMed  CAS  Google Scholar 

  3. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  PubMed  CAS  Google Scholar 

  4. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke HZ, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.

    Article  PubMed  CAS  Google Scholar 

  5. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175:405–15.

    Article  PubMed  CAS  Google Scholar 

  6. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.

    Article  PubMed  CAS  Google Scholar 

  7. Gordeladze JO, Drevon CA, Syversen U, Reseland JE. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85:825–36.

    Article  PubMed  CAS  Google Scholar 

  8. Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, et al. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res. 2001;16:1426–33.

    Article  PubMed  CAS  Google Scholar 

  9. Iwaniec UT, Shearon CC, Heaney RP, Cullen DM, Yee JA. Leptin increases number of bone nodules in vitro. Bone. 1998;23(5 suppl):S212.

    Google Scholar 

  10. Maor G, Rochwerger M, Segev Y, Phillip M. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res. 2002;17:1034–43.

    Article  PubMed  CAS  Google Scholar 

  11. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17:200–9.

    Article  PubMed  CAS  Google Scholar 

  12. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology. 2001;142:3546–53.

    Article  PubMed  CAS  Google Scholar 

  13. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang XL, Liu XY, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20.

    Article  PubMed  CAS  Google Scholar 

  14. Takeda S, Elefteriou F, Levasseur R, Liu XY, Zhao LP, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  PubMed  CAS  Google Scholar 

  15. Morroni M, De Matteis R, Palumbo C, Ferretti M, Villa I, Rubinacci A, et al. In vivo leptin expression in cartilage and bone cells of growing rats and adult humans. J Anat. 2004;205:291–6.

    Article  PubMed  CAS  Google Scholar 

  16. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.

    Article  PubMed  CAS  Google Scholar 

  17. Iwaniec UT, Boghossian S, Dube MG, Torto R, Arzaga RR, Wronski TJ, et al. Effects of central leptin gene therapy on weight reduction and cancellous bone mass in female rats. J Bone Mineral Res. 2005;20(suppl 1):s13–4.

    Google Scholar 

  18. Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP. Central leptin differentially modulates ultradian secretory patterns of insulin, leptin and ghrelin independent of effects on food intake and body weight. Peptides. 2005;26:2559–66.

    Article  PubMed  CAS  Google Scholar 

  19. Hamrick MW, Ding K, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23:870–8.

    Article  PubMed  CAS  Google Scholar 

  20. Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, et al. Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Mineral Res. 2005;20:613–8.

    Article  CAS  Google Scholar 

  21. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90:5212–6.

    Article  PubMed  CAS  Google Scholar 

  22. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–83.

    Article  PubMed  CAS  Google Scholar 

  23. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Mineral Res. 2005;20:994–1001.

    Article  CAS  Google Scholar 

  24. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA. 2004;101:3258–63.

    Article  PubMed  CAS  Google Scholar 

  25. Martin A, David V, Malaval L, Lafage-Proust M, Vico L, Thomas T. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology. 2007;148:3419–25.

    Article  PubMed  CAS  Google Scholar 

  26. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.

    Article  PubMed  CAS  Google Scholar 

  27. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351:987–97.

    Article  PubMed  CAS  Google Scholar 

  28. Prouteau S, Berthamou L, Courteix D. Relationships between serum leptin and bone markers during stable weight, weight reduction and weight regain in male and female judoists. Eur J Endocrinol. 2006;154:389–95.

    Article  PubMed  CAS  Google Scholar 

  29. Bajoria R, Sooranna SR, Chatterjee R. Leptin and bone turnover in monochorionic twins complicated by twin–twin transfusion syndrome. Osteoporos Int. 2007;18:193–200.

    Article  PubMed  CAS  Google Scholar 

  30. Roux C, Arabi A, Porcher R, Garnero P. Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone. 2003;33:847–52.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss LA, Barrett-Connor E, von Muhlen D, Clark P. Leptin predicts BMD and bone resorption in older women but not older men: the Rancho Bernardo study. J Bone Mineral Res. 2006;21:758–64.

    Article  CAS  Google Scholar 

  32. Nakano Y, Tobe T, ChoiMiura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996;120:803–12.

    PubMed  CAS  Google Scholar 

  33. Wang Y, Lam KSL, Chan L, Chan KW, Lam JBB, Lam MC, et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem. 2006;281:16391–400.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki S, Wilson-Kubalek EM, Wert D, Tsao TS, Lee DH. The oligomeric structure of high molecular weight adiponectin. FEBS Lett. 2007;581:809–14.

    Article  PubMed  CAS  Google Scholar 

  35. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  PubMed  CAS  Google Scholar 

  36. Swarbrick MM, Havel PJ. Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord. 2008;6:87–102.

    Article  PubMed  CAS  Google Scholar 

  37. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380:24–30.

    Article  PubMed  CAS  Google Scholar 

  38. Hivert MF, Sullivan LM, Fox CS, Nathan DM, D’Agostino RB Sr, Wilson PW, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab. 2008;93:3165–72.

    Article  PubMed  CAS  Google Scholar 

  39. Hung J, McQuillan BM, Thompson PL, Beilby JP. Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity. Int J Obesity. 2008;32:772–9.

    Article  CAS  Google Scholar 

  40. Wannamethee SG, Tchernova J, Whincup P, Lowe GD, Rumley A, Brown K, et al. Associations of adiponectin with metabolic and vascular risk parameters in the British Regional Heart Study reveal stronger links to insulin resistance-related than to coronory heart disease risk-related parameters. Int J Obesity. 2007;31:1089–98.

    Article  CAS  Google Scholar 

  41. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29:1357–62.

    Article  PubMed  CAS  Google Scholar 

  43. Hoffstedt J, Arvidsson E, Sjolin E, Wahlen K, Arner P. Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J Clin Endocrinol Metab. 2004;89:1391–6.

    Article  PubMed  CAS  Google Scholar 

  44. Peake PW, Kriketos AD, Campbell LV, Shen Y, Charlesworth JA. The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Euro J Endocrinol. 2005;153:409–17.

    Article  CAS  Google Scholar 

  45. Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa H, et al. Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care. 2002;25:1665–6.

    Article  PubMed  Google Scholar 

  46. Lindstrom T, Frystyk J, Hedman CA, Flyvbjerg A, Arnqvist HJ. Elevated circulating adiponectin in type 1 diabetes is associated with long diabetes duration. Clin Endocrinol. 2006;65:776–82.

    Article  Google Scholar 

  47. Galler A, Gelbrich G, Kratzsch J, Noack N, Kapellen T, Kiess W. Elevated serum levels of adiponectin in children, adolescents and young adults with type 1 diabetes and the impact of age, gender, body mass index and metabolic control: a longitudinal study. Eur J Endocrinol. 2007;157:481–9.

    Article  PubMed  CAS  Google Scholar 

  48. Leth H, Andersen KK, Frystyk J, Tarnow L, Rossing P, Parving HH, et al. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes. J Clin Endocrinol Metab. 2008;93:3186–91.

    Article  PubMed  CAS  Google Scholar 

  49. Modan-Moses D, Stein D, Pariente C, Yaroslavsky A, Ram A, Faigin M, et al. Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J Clin Endocrinol Metab. 2007;92:1843–7.

    Article  PubMed  CAS  Google Scholar 

  50. Dostalova I, Smitka K, Papezova H, Kvasnickova H, Nedvidkova J. Increased insulin sensitivity in patients with anorexia nervosa: the role of adipocytokines. Physiol Res. 2007;56:587–94.

    PubMed  CAS  Google Scholar 

  51. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem. 2006;99:196–208.

    Article  PubMed  CAS  Google Scholar 

  52. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35:842–9.

    Article  PubMed  CAS  Google Scholar 

  53. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331:520–6.

    Article  PubMed  CAS  Google Scholar 

  54. Yamaguchi N, Kukita T, Li YJ, Argueta JGM, Saito T, Hanazawa S, et al. Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol Med Microbiol. 2007;49:28–34.

    Article  PubMed  CAS  Google Scholar 

  55. Nampei A, Hashimoto J, Maeda K, Ono T, Nakamur N, Ando W, et al. Adiponectin deficiency partially protects against age-related trabecular bone loss in male mice. J Bone Miner Res. 2004;19:S132.

    Google Scholar 

  56. Williams GA, Wang Y, Callon KE, Watson M, Lin J, Lam JBB, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology. 2009 (in press).

  57. Jurimae J, Rembel K, Jurimae T, Rehand M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res. 2005;37:297–302.

    Article  PubMed  CAS  Google Scholar 

  58. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–51.

    Article  PubMed  CAS  Google Scholar 

  59. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab. 2007;92:1517–23.

    Article  PubMed  CAS  Google Scholar 

  60. Cornish J, Callon KE, Lin J-M, Reid IR. Resistin, an adipocytokine, stimulates osteoblast and osteoclast proliferation. Bone. 2006;38(suppl 1):s9.

    Article  Google Scholar 

  61. Thommesein L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, et al. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 2006;99:824–34.

    Article  Google Scholar 

  62. Dagogojack S, Alali N, Qurttom M. Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab. 1997;82:2821–5.

    Article  CAS  Google Scholar 

  63. Wetvik J. Radiological features in generalized lipodystrophy. Acta Paediatr. 1996;413:44–51.

    Article  Google Scholar 

  64. Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int. 2006;17:495–500.

    Article  PubMed  Google Scholar 

  65. Reid IR, Evans MC, Cooper GJS, Ames RW, Stapleton J. Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol. 1993;265:E655–9.

    PubMed  CAS  Google Scholar 

  66. Stolk RP, Vandaele PLA, Pols HAP, Burger H, Hofman A, Birkenhager JC, et al. Hyperinsulinemia and bone mineral density in an elderly population—the Rotterdam study. Bone. 1996;18:545–9.

    Article  PubMed  CAS  Google Scholar 

  67. Haffner SM, Bauer RL. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metab Clin Exp. 1993;42:735–8.

    PubMed  CAS  Google Scholar 

  68. Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabetes Med. 2000;17:124–9.

    Article  CAS  Google Scholar 

  69. Ahmed LA, Schirmer H, Berntsen GK, Fonnebo V, Joakimsen RMJ. Features of the metabolic syndrome and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int. 2006;17:426–32.

    Article  PubMed  CAS  Google Scholar 

  70. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92:1305–10.

    Article  PubMed  CAS  Google Scholar 

  71. Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, et al. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol. 1996;50:1087–94.

    PubMed  CAS  Google Scholar 

  72. Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science. 2004;303:229–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, I.R., Richards, J.B. Adipokine Effects on Bone. Clinic Rev Bone Miner Metab 7, 240–248 (2009). https://doi.org/10.1007/s12018-009-9048-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9048-4

Keywords

Navigation