Skip to main content

Advertisement

Log in

Decreased Levels of Circulating Adiponectin in Mild Cognitive Impairment and Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Adiponectin, an adipocytokine released by the adipose tissue and has important roles in the metabolic regulation and inflammatory control, may play an important roles in the physiopathology of psychiatric and neurodegenerative disorders. The aim of the present work was to evaluate adiponectin serum levels in patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) as compared to cognitively healthy elders and to correlate these levels with clinical and cognitive parameters. We further evaluated whether circulating adiponectin levels could predict progression from MCI to Alzheimer’s disease upon follow-up. We recruited 157 subjects (41 with AD, 65 with MCI and 51 elderly controls) in the baseline assessment. Follow-up data were available for 54 subjects with MCI and 43 controls in whom we ascertained the conversion to AD and the progression of cognitive impairment. Adiponectin was assayed by sandwich ELISA. Serum levels of adiponectin were significantly lower in MCI and AD as compared to controls (p < 0.001). After controlling for age, educational level and APOE genotype, adiponectin levels remained significantly reduced in these groups (p < 0.001). Circulating adiponectin levels did not predict cognitive decline in the elderly controls (i.e., progression from normal cognition to MCI) or progression to Alzheimer’s disease in subjects with MCI. We conclude that lower levels of adiponectin were associated with cognitive dysfunction, though it did not predict additional cognitive decline and conversion to dementia in this cohort of elderly subjects. Decreased adiponectin may be a surrogate marker of the pathological process in AD, linking clinical comorbidities, inflammation and cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arosio, B., Trabattoni, D., Galimberti, L., Bucciarelli, P., Fasano, F., Calabresi, C., et al. (2004). Interleukin-10 and interleukin-6 gene polymorphisms as risk factors for Alzheimer’s disease. Neurobiology of Aging, 25(8), 1009–1015. doi:10.1016/j.neurobiolaging.2003.10.009.

    Article  PubMed  CAS  Google Scholar 

  • Bigalke, B., Schreitmuller, B., Sopova, K., Paul, A., Stransky, E., Gawaz, M., et al. (2011). Adipocytokines and CD34 progenitor cells in Alzheimer’s disease. PLoS ONE, 6(5), e20286. doi:10.1371/journal.pone.0020286.

    Article  PubMed  CAS  Google Scholar 

  • Calvani, M., Scarfone, A., Granato, L., Mora, E. V., Nanni, G., Castagneto, M., et al. (2004). Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes, 53(4), 939–947.

    Article  PubMed  CAS  Google Scholar 

  • Diniz, B. S., Nunes, P. V., Yassuda, M. S., Pereira, F. S., Flaks, M. K., Viola, L. F., et al. (2008). Mild cognitive impairment: Cognitive screening or neuropsychological assessment? Revista Brasileira de Psiquiatria, 30(4), 316–321.

    Article  PubMed  Google Scholar 

  • Diniz, B. S., Teixeira, A. L., Campos, A. C., Miranda, A. S., Rocha, N. P., Talib, L. L., et al. (2012). Reduced serum levels of adiponectin in elderly patients with major depression. Journal of Psychiatric Research, 46(8), 1081–1085. doi:10.1016/j.jpsychires.2012.04.028.

    Article  PubMed  Google Scholar 

  • Diniz, B. S., Teixeira, A. L., Ojopi, E. B., Talib, L. L., Mendonca, V. A., Gattaz, W. F., et al. (2010). Higher serum sTNFR1 level predicts conversion from mild Cognitive impairment to Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(4), 1305–1311. doi:10.3233/JAD-2010-100921.

    PubMed  CAS  Google Scholar 

  • Dzielinska, Z., Januszewicz, A., Wiecek, A., Demkow, M., Makowiecka-Ciesla, M., Prejbisz, A., et al. (2003). Decreased plasma concentration of a novel anti-inflammatory protein—adiponectin—in hypertensive men with coronary artery disease. Thrombosis Research, 110(5–6), 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer, M., Kralisch, S., Klier, M., Lossner, U., Bluher, M., Klein, J., et al. (2003). Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 301(4), 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Forlenza, O. V., Diniz, B. S., & Gattaz, W. F. (2010a). Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Medicine, 8, 89. doi:10.1186/1741-7015-8-89.

    Article  PubMed  Google Scholar 

  • Forlenza, O. V., Diniz, B. S., Talib, L. L., Mendonca, V. A., Ojopi, E. B., Gattaz, W. F., et al. (2009). Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 28(6), 507–512. doi:10.1159/000255051.

    Article  PubMed  CAS  Google Scholar 

  • Forlenza, O. V., Diniz, B. S., Talib, L. L., Radanovic, M., Yassuda, M. S., Ojopi, E. B., et al. (2010b). Clinical and biological predictors of Alzheimer’s disease in patients with amnestic mild cognitive impairment. Revista Brasileira de Psiquiatria, 32(3), 216–222.

    Article  PubMed  Google Scholar 

  • Giordano, V., Peluso, G., Iannuccelli, M., Benatti, P., Nicolai, R., & Calvani, M. (2007). Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochemistry Research, 32(4–5), 555–567. doi:10.1007/s11064-006-9125-8.

    Article  CAS  Google Scholar 

  • Gu, Y., Luchsinger, J. A., Stern, Y., & Scarmeas, N. (2010). Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(2), 483–492. doi:10.3233/JAD-2010-100897.

    PubMed  CAS  Google Scholar 

  • Hara, K., Horikoshi, M., Yamauchi, T., Yago, H., Miyazaki, O., Ebinuma, H., et al. (2006). Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care, 29(6), 1357–1362. doi:10.2337/dc05-1801.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, A., Thaker, U., Iwatsubo, T., Pickering-Brown, S. M., & Mann, D. M. (2002). Pathological relationships between microglial cell activity and tau and amyloid beta protein in patients with Alzheimer’s disease. Neuroscience Letters, 331(3), 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Hivert, M. F., Sullivan, L. M., Fox, C. S., Nathan, D. M., D’Agostino, R. B., Sr, Wilson, P. W., et al. (2008). Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 93(8), 3165–3172. doi:10.1210/jc.2008-0425.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, C., Cunningham, C., Zotova, E., Woolford, J., Dean, C., Kerr, S., et al. (2009). Systemic inflammation and disease progression in Alzheimer disease. Neurology, 73(10), 768–774. doi:10.1212/WNL.0b013e3181b6bb95.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Ouchi, N., Kihara, S., Walsh, K., Kumada, M., Abe, Y., et al. (2004). Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circulation Research, 94(4), e27–e31. doi:10.1161/01.RES.0000119921.86460.37.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis, 14(5–6), 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., et al. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 8(7), 731–737. doi:10.1038/nm724.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Mrak, R. E. (2009). Neuropathology and the neuroinflammation idea. Journal of Alzheimer’s Disease, 18(3), 473–481. doi:10.3233/JAD-2009-1158.

    PubMed  Google Scholar 

  • Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y., & Walsh, K. (2003). Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology, 14(6), 561–566. doi:10.1097/01.mol.0000103609.38789.96.

    Article  PubMed  CAS  Google Scholar 

  • Pajvani, U. B., Hawkins, M., Combs, T. P., Rajala, M. W., Doebber, T., Berger, J. P., et al. (2004). Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry, 279(13), 12152–12162. doi:10.1074/jbc.M311113200.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.

    Article  PubMed  CAS  Google Scholar 

  • Poehlman, E. T., & Dvorak, R. V. (1998). Energy expenditure in Alzheimer’s disease. Journal of Nutrition Health and Aging, 2(2), 115–118.

    CAS  Google Scholar 

  • Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., et al. (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13, 1359–1362. doi:10.1038/nm1653.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. O., Geda, Y. E., Knopman, D. S., Boeve, B. F., Christianson, T. J., Pankratz, V. S., et al. (2009). Association of C-reactive protein with mild cognitive impairment. Alzheimers & Dementia, 5(5), 398–405. doi:10.1016/j.jalz.2009.01.025.

    Article  CAS  Google Scholar 

  • Roth, M., Tym, E., Mountjoy, C. Q., Huppert, F. A., Hendrie, H., Verma, S., et al. (1986). CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry, 149, 698–709.

    Article  PubMed  CAS  Google Scholar 

  • Sonnen, J. A., Santa Cruz, K., Hemmy, L. S., Woltjer, R., Leverenz, J. B., Montine, K. S., et al. (2011). Ecology of the aging human brain. Archives of Neurology, 68(8), 1049–1056. doi:10.1001/archneurol.2011.157.

    Article  PubMed  Google Scholar 

  • Spranger, J., Verma, S., Gohring, I., Bobbert, T., Seifert, J., Sindler, A. L., et al. (2006). Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes, 55(1), 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski, E., Andreasen, N., Tarkowski, A., & Blennow, K. (2003). Intrathecal inflammation precedes development of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74, 1200–1205.

    Article  CAS  Google Scholar 

  • Taylor, V. H., & Macqueen, G. M. (2010). The role of adipokines in understanding the associations between obesity and depression. Journal of Obesity,. doi:10.1155/2010/748048.

    Google Scholar 

  • Une, K., Takei, Y. A., Tomita, N., Asamura, T., Ohrui, T., Furukawa, K., et al. (2011). Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. European Journal of Neurology, 18(7), 1006–1009. doi:10.1111/j.1468-1331.2010.03194.x.

    Article  PubMed  CAS  Google Scholar 

  • van Himbergen, T. M., Beiser, A. S., Ai, M., Seshadri, S., Otokozawa, S., Au, R., et al. (2012). Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and Alzheimer disease: Results from the Framingham Heart Study. Archives of Neurology, [Epub ahead of print]. doi:10.1001/archneurol.2011.670.

  • Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B., & Tilg, H. (2004). Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochemical and Biophysical Research Communications, 323(2), 630–635. doi:10.1016/j.bbrc.2004.08.145.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., et al. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 96(5), 1723–1732.

    PubMed  CAS  Google Scholar 

  • Zuliani, G., Ranzini, M., Guerra, G., Rossi, L., Munari, M. R., Zurlo, A., et al. (2007). Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. Journal of Psychiatric Research, 41, 686–693. doi:10.1016/j.jpsychires.2006.02.008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Fundação de Amparo à Pesquisa de Minas Gerais (Fapemig, Brazil), Fundação de Amparo à Pesquisa de São Paulo (FAPESP Grant no. 09/52825-8, Brazil) and Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno S. Diniz.

Additional information

Antonio L. Teixeira and Breno S. Diniz contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, A.L., Diniz, B.S., Campos, A.C. et al. Decreased Levels of Circulating Adiponectin in Mild Cognitive Impairment and Alzheimer’s Disease. Neuromol Med 15, 115–121 (2013). https://doi.org/10.1007/s12017-012-8201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8201-2

Keywords

Navigation