Skip to main content
Log in

ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Research on the mechanisms of bilirubin-induced neurological dysfunction focuses mainly on neuronal death, astrocyte-mediated events and microglia activation. Although myelin damage by unconjugated bilirubin (UCB) has been documented in neonatal kernicterus cases, the events leading to myelination impairment were never explored. This condition may occur by reduced oligodendrocyte precursor cells (OPC) number, or failure of OPC to differentiate in myelinating oligodendrocytes. We have shown that UCB elicits an inflammatory response, glutamate release and reactive oxygen species (ROS) generation in neurons and glial cells, biomolecules with toxic properties on OPC. Hence, we propose to examine whether UCB determines OPC demise and, if so, which signaling pathways are involved. Our results show that OPC display increased apoptosis and necrosis-like cell death upon UCB exposure, mediated by early signals of endoplasmic reticulum (ER) stress [e.g. upregulation of glucose-regulated protein (GRP)78, inositol-requiring enzyme (IRE)-1α and activation transcription factor (ATF)-6, as well as activation of caspase-2 and c-Jun N-terminal kinase (JNK)], followed by mitochondrial dysfunction (e.g. loss of mitochondria membrane potential and caspase-9 activation). The later calpain activation points to intracellular Ca2+ overload and intervention of both ER and mitochondria. Downstream production of ROS may derive from mitochondria damage and secondary injuries, possibly determining the second cycle of GRP78, IRE-1α, caspase-2 and JNK activation. Moreover, inhibition of caspases, calpains and oxidative stress, by using specific inhibitors, prevented UCB-induced OPC death. UCB did not induce the release of cytokines or glutamate by OPC. These results indicate that UCB by reducing OPC survival, through a cascade of programmed intracellular events triggered by ER stress and mitochondria dysfunction, can compromise myelinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahdab-Barmada, M., & Moossy, J. (1984). The neuropathology of kernicterus in the premature neonate: Diagnostic problems. Journal of Neuropathology and Experimental Neurology, 43(1), 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Benarroch, E. E. (2009). Oligodendrocytes: Susceptibility to injury and involvement in neurologic disease. Neurology, 72(20), 1779–1785.

    Article  PubMed  Google Scholar 

  • Benjamins, J. A., Nedelkoska, L., & George, E. B. (2003). Protection of mature oligodendrocytes by inhibitors of caspases and calpains. Neurochemical Research, 28(1), 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Bernales, S., Papa, F. R., & Walter, P. (2006). Intracellular signaling by the unfolded protein response. Annual Review of Cell and Developmental Biology, 22, 487–508.

    Article  PubMed  CAS  Google Scholar 

  • Bogler, O., Wren, D., Barnett, S. C., Land, H., & Noble, M. (1990). Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA, 87(16), 6368–6372.

    Article  PubMed  CAS  Google Scholar 

  • Brites, D. (2011). Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Seminars in Perinatology, 35(3), 114–120.

    Article  PubMed  Google Scholar 

  • Brito, M. A., Brites, D., & Butterfield, D. A. (2004). A link between hyperbilirubinemia, oxidative stress and injury to neocortical synaptosomes. Brain Research, 1026(1), 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Brito, M. A., Lima, S., Fernandes, A., Falcão, A. S., Silva, R. F., Butterfield, D. A., et al. (2008a). Bilirubin injury to neurons: Contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology, 29(2), 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Brito, M. A., Rosa, A. I., Falcão, A. S., Fernandes, A., Silva, R. F., Butterfield, D. A., et al. (2008b). Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiology of Diseases, 29(1), 30–40.

    Article  CAS  Google Scholar 

  • Brito, M. A., Zurolo, E., Pereira, P., Barroso, C., Aronica, E., & Brites, D. (2012). Cerebellar axon/myelin loss, angiogenic sprouting and neuronal increase of vascular endothelial growth factor in a preterm infant with kernicterus. Journal Child of Neurology, 27(5), 615–624.

    Article  Google Scholar 

  • Calligaris, R., Bellarosa, C., Foti, R., Roncaglia, P., Giraudi, P., Krmac, H., et al. (2009). A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells. BMC Genomics, 10, 543.

    Article  PubMed  Google Scholar 

  • Carragher, N. O., & Frame, M. C. (2002). Calpain: A role in cell transformation and migration. International Journal of Biochemistry and Cell Biology, 34(12), 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil, P. (2000). Cell death in the oligodendrocyte lineage: A molecular perspective of life/death decisions in development and disease. Glia, 29(2), 124–135.

    Article  PubMed  CAS  Google Scholar 

  • Chang, F. Y., Lee, C. C., Huang, C. C., & Hsu, K. S. (2009). Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity. PLoS One, 4(6), e5876.

    Article  PubMed  Google Scholar 

  • Chen, H. C., Wang, C. H., Tsan, K. W., & Chen, Y. C. (1971). An electron microscopic and radioautographic study on experimental kernicterus. II. Bilirubin movement within neurons and release of waste products via astroglia. American Journal of Pathology, 64(1), 45–66.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., et al. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2(5), 1044–1051.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Feng, X. C., Lu, F., Xu, X. L., Zhou, G. H., Li, Q. Y., et al. (2011). Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Meat Science, 87(3), 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Chew, L. J., Coley, W., Cheng, Y., & Gallo, V. (2010). Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. Journal of Neuroscience, 30(33), 11011–11027.

    Article  PubMed  CAS  Google Scholar 

  • Claireaux, A. E. (1961). Pathology of human kernicterus. In A. Sass-Kortsak (Ed.), Kernicterus: A Report Based on a Symposium Held at the IX International Congress of Paediatrics (pp. 140–149). Toronto: University of Toronto Press.

  • Deganuto, M., Cesaratto, L., Bellarosa, C., Calligaris, R., Vilotti, S., Renzone, G., et al. (2010). A proteomic approach to the bilirubin-induced toxicity in neuronal cells reveals a protective function of DJ-1 protein. Proteomics, 10(8), 1645–1657.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W., Rosenberg, P. A., Volpe, J. J., & Jensen, F. E. (2003). Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci USA, 100(11), 6801–6806.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W., Pleasure, J., & Pleasure, D. (2008). Progress in periventricular leukomalacia. Archives of Neurology, 65(10), 1291–1295.

    Article  PubMed  Google Scholar 

  • Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F., & Brites, D. (2005). Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiology of Diseases, 20(2), 199–206.

    Article  Google Scholar 

  • Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F., & Brites, D. (2006). Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathologica, 112(1), 95–105.

    Article  PubMed  Google Scholar 

  • Fernandes, A., & Brites, D. (2009). Contribution of inflammatory processes to nerve cell toxicity by bilirubin and efficacy of potential therapeutic agents. Current Pharmaceutical Design, 15(25), 2915–2926.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, A., Silva, R. F., Falcão, A. S., Brito, M. A., & Brites, D. (2004). Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. Journal of Neuroimmunology, 153(1–2), 64–75.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, A., Falcão, A. S., Silva, R. F., Brito, M. A., & Brites, D. (2007). MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. European Journal of Neuroscience, 25(4), 1058–1068.

    Article  PubMed  Google Scholar 

  • Fernandes, A., Barateiro, A., Falcão, A. S., Silva, S. L., Vaz, A. R., Brito, M. A., et al. (2011). Astrocyte reactivity to unconjugated bilirubin requires TNF-alpha and IL-1beta receptor signaling pathways. Glia, 59(1), 14–25.

    Article  PubMed  Google Scholar 

  • Fields, R. D., & Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science, 298(5593), 556–562.

    Article  PubMed  CAS  Google Scholar 

  • Franco, S., Perrin, B., & Huttenlocher, A. (2004). Isoform specific function of calpain 2 in regulating membrane protrusion. Experimental Cell Research, 299(1), 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Sun, W., Shi, Y., Shi, R., & Cheng, J. X. (2009). Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS One, 4(8), e6705.

    Article  PubMed  Google Scholar 

  • Galluzzi, L., Blomgren, K., & Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Reviews Neuroscience, 10(7), 481–494.

    Article  PubMed  CAS  Google Scholar 

  • Gard, A. L., & Pfeiffer, S. E. (1990). Two proliferative stages of the oligodendrocyte lineage (A2B5 + O4- and O4 + GalC-) under different mitogenic control. Neuron, 5(5), 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Genc, S., Genc, K., Kumral, A., Baskin, H., & Ozkan, H. (2003). Bilirubin is cytotoxic to rat oligodendrocytes in vitro. Brain Research, 985(2), 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Gkoltsiou, K., Tzoufi, M., Counsell, S., Rutherford, M., & Cowan, F. (2008). Serial brain MRI and ultrasound findings: Relation to gestational age, bilirubin level, neonatal neurologic status and neurodevelopmental outcome in infants at risk of kernicterus. Early Human Development, 84(12), 829–838.

    Article  PubMed  Google Scholar 

  • Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83(3), 731–801.

    PubMed  CAS  Google Scholar 

  • Gomes, A., Fernandes, E., & Lima, J. L. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2–3), 45–80.

    Article  PubMed  CAS  Google Scholar 

  • Gordo, A. C., Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F., & Brites, D. (2006). Unconjugated bilirubin activates and damages microglia. Journal of Neuroscience Research, 84(1), 194–201.

    Article  PubMed  CAS  Google Scholar 

  • Gu, C., Casaccia-Bonnefil, P., Srinivasan, A., & Chao, M. V. (1999). Oligodendrocyte apoptosis mediated by caspase activation. Journal of Neuroscience, 19(8), 3043–3049.

    PubMed  CAS  Google Scholar 

  • Gu, H., Chen, X., Gao, G., & Dong, H. (2008). Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Molecular Cancer Therapeutics, 7(8), 2298–2307.

    Article  PubMed  CAS  Google Scholar 

  • Gurba, P. E., & Zand, R. (1974). Bilirubin binding to myelin basic protein, histones and its inhibition in vitro of cerebellar protein synthesis. Biochemical and Biophysical Research Communications, 58(4), 1142–1147.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. W. R. (2000). Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics, 106(2), E15.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T., Tommarello, S., & Allen, J. (2001). Subcellular localization of bilirubin in rat brain after in vivo i.v. administration of [3H]bilirubin. Pediatric Research, 49(2), 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Jew, J. Y., & Williams, T. H. (1977). Ultrastructural aspects of bilirubin encephalopathy in cochlear nuclei of the Gunn rat. Journal of Anatomy, 124(Pt 3), 599–614.

    PubMed  CAS  Google Scholar 

  • Kassmann, C. M., & Nave, K. A. (2008). Oligodendroglial impact on axonal function and survival—a hypothesis. Current Opinion in Neurology, 21(3), 235–241.

    Article  PubMed  Google Scholar 

  • Khorchid, A., Fragoso, G., Shore, G., & Almazan, G. (2002). Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia, 40(3), 283–299.

    Article  PubMed  Google Scholar 

  • Kim, R., Emi, M., Tanabe, K., & Murakami, S. (2006). Role of the unfolded protein response in cell death. Apoptosis, 11(1), 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Kotter, M. R., Stadelmann, C., & Hartung, H. P. (2011). Enhancing remyelination in disease—can we wrap it up? Brain, 134(Pt 7), 1882–1900.

    Article  PubMed  Google Scholar 

  • Kraskiewicz, H., & FitzGerald, U. (2011). Partial XBP1 knockdown does not affect viability of oligodendrocyte precursor cells exposed to new models of hypoxia and ischemia in vitro. Journal of Neuroscience Research, 89(5), 661–673.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, P., Rajagopalan, K., Yeater, D., & Getzenberg, R. H. (2011). Protein folding and the order/disorder paradox. Journal of Cellular Biochemistry, 112(7), 1949–1952.

    Article  PubMed  CAS  Google Scholar 

  • Lauer, B. J., & Spector, N. D. (2011). Hyperbilirubinemia in the newborn. Pediatrics in Review, 32(8), 341–349.

    Article  PubMed  Google Scholar 

  • Levine, J. M., Reynolds, R., & Fawcett, J. W. (2001). The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences, 24(1), 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., & Lee, A. S. (2006). Stress induction of GRP78/BiP and its role in cancer. Current Molecular Medicine, 6(1), 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Limperopoulos, C. (2010). Advanced neuroimaging techniques: Their role in the development of future fetal and neonatal neuroprotection. Seminars in Perinatology, 34(1), 93–101.

    Article  PubMed  Google Scholar 

  • Lin, W., & Popko, B. (2009). Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neuroscience, 12(4), 379–385.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. C., Kobeissy, F., Zheng, W., Zhang, Z., Hayes, R. L., & Wang, K. K. (2011). Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN Neuro, 3(1), e00051.

    Article  PubMed  Google Scholar 

  • Lopes, J. P., Oliveira, C. R., & Agostinho, P. (2010). Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: The role of Cdk5. Aging Cell, 9(1), 64–77.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, M., Machamer, C. E., Roy, S., Nicholson, D. W., Thornberry, N. A., Casciola-Rosen, L. A., et al. (2000). Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. Journal of Cell Biology, 149(3), 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Martich-Kriss, V., Kollias, S. S., & Ball, W. S., Jr. (1995). MR findings in kernicterus. American Journal of Neuroradiology (AJNR), 16(4 Suppl), 819–821.

    CAS  Google Scholar 

  • Mato, S., Victoria Sánchez-Gómez, M., & Matute, C. (2010). Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia, 58(14), 1739–1747.

    Article  PubMed  Google Scholar 

  • McDonagh, A. F., & Assisi, F. (1972). The ready isomerization of bilirubin IX- in aqueous solution. Biochemical Journal, 129(3), 797–800.

    PubMed  CAS  Google Scholar 

  • McTigue, D. M., & Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry, 107(1), 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. H. (2002). Regulation of oligodendrocyte development in the vertebrate CNS. Progress in Neurobiology, 67(6), 451–467.

    Article  PubMed  CAS  Google Scholar 

  • Monge, M., Kadiiski, D., Jacque, C. M., & Zalc, B. (1986). Oligodendroglial expression and deposition of four major myelin constituents in the myelin sheath during development. An in vivo study. Developmental Neuroscience, 8(4), 222–235.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, K., Chowdhary, G., Singh, P., Kumar, P., & Narang, A. (2010). Neurodevelopmental outcome of acute bilirubin encephalopathy. Journal of Tropical Pediatrics, 56(5), 333–336.

    Article  PubMed  Google Scholar 

  • Murakami, Y., Aizu-Yokota, E., Sonoda, Y., Ohta, S., & Kasahara, T. (2007). Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. Journal of Biochemistry, 141(3), 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Nave, K. A. (2010). Myelination and support of axonal integrity by glia. Nature, 468(7321), 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H., & Stallcup, W. B. (1996). Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. Journal of Neuroscience Research, 43(3), 299–314.

    Article  PubMed  CAS  Google Scholar 

  • Oakes, G. H., & Bend, J. R. (2010). Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. Journal of Biochemical and Molecular Toxicology, 24(2), 73–88.

    PubMed  CAS  Google Scholar 

  • Özkan, H., Akkoç, N., Aydin, A., Kavukçu, S., Olgun, N., Írken, G., et al. (1995). Relationship between serum unconjugated bilirubin levels and the autofluorescence of white blood cells in neonatal jaundice. Biology of the Neonate, 68(2), 100–103.

    Article  PubMed  Google Scholar 

  • Palmela, I., Cardoso, F. L., Bernas, M., Correia, L., Vaz, A. R., Silva, R. F., et al. (2011). Elevated levels of bilirubin and long-term exposure impair human brain microvascular endothelial cell integrity. Current Neurovascular Research, 8(2), 153–169.

    Article  PubMed  CAS  Google Scholar 

  • Panaretakis, T., Laane, E., Pokrovskaja, K., Bjorklund, A. C., Moustakas, A., Zhivotovsky, B., et al. (2005). Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Molecular Biology of the Cell, 16(8), 3821–3831.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3(6), 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Pirianov, G., Jesurasa, A., & Mehmet, H. (2006). Developmentally regulated changes in c-Jun N-terminal kinase signalling determine the apoptotic response of oligodendrocyte lineage cells. Cell Death and Differentiation, 13(3), 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Romisch, K. (2005). Endoplasmic reticulum-associated degradation. Annual Review of Cell and Developmental Biology, 21, 435–456.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, A., Matute, C., & Alberdi, E. (2010). Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death and Disease, 1, e54.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: Coping with stress. Trends in Cell Biology, 14(1), 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Saatman, K. E., Creed, J., & Raghupathi, R. (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 7(1), 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Gómez, M. V., Alberdi, E., Ibarretxe, G., Torre, I., & Matute, C. (2003). Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. Journal of Neuroscience, 23(29), 9519–9528.

    PubMed  Google Scholar 

  • Sánchez-Gómez, M. V., Alberdi, E., Perez-Navarro, E., Alberch, J., & Matute, C. (2011). Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. Journal of Neuroscience, 31(8), 2996–3006.

    Article  PubMed  Google Scholar 

  • Shapiro, S. M. (2010). Chronic bilirubin encephalopathy: Diagnosis and outcome. Seminars in Fetal and Neonatal Medicine, 15(3), 157–163.

    Article  PubMed  Google Scholar 

  • Silberberg, D. H., & Schutta, H. S. (1967). The effects of unconjugated bilirubin and related pigments on cultures of rat cerebellum. Journal of Neuropathology and Experimental Neurology, 26(4), 572–583.

    Article  PubMed  CAS  Google Scholar 

  • Silva, R., Mata, L. R., Gulbenkian, S., Brito, M. A., Tiribelli, C., & Brites, D. (1999). Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: Role of concentration and pH. Biochemical and Biophysical Research Communications, 265(1), 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Silva, R. F., Rodrigues, C. M., & Brites, D. (2001). Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. Journal of Hepatology, 34(3), 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Silva, S. L., Vaz, A. R., Barateiro, A., Falcão, A. S., Fernandes, A., Brito, M. A., et al. (2010). Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiology of Diseases, 40(3), 663–675.

    Article  CAS  Google Scholar 

  • Sorimachi, H., Ishiura, S., & Suzuki, K. (1997). Structure and physiological function of calpains. Biochemical Journal, 328(Pt 3), 721–732.

    PubMed  CAS  Google Scholar 

  • Upton, J. P., Austgen, K., Nishino, M., Coakley, K. M., Hagen, A., Han, D., et al. (2008). Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Molecular and Cellular Biology, 28(12), 3943–3951.

    Article  PubMed  CAS  Google Scholar 

  • Vaz, A. R., Delgado-Esteban, M., Brito, M. A., Bolaños, J. P., Brites, D., & Almeida, A. (2010). Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. Journal of Neurochemistry, 112(1), 56–65.

    Article  PubMed  CAS  Google Scholar 

  • Vaz, A. R., Silva, S. L., Barateiro, A., Falcão, A. S., Fernandes, A., Brito, M. A., et al. (2011a). Selective vulnerability of rat brain regions to unconjugated bilirubin. Molecular and Cellular Neuroscience, 48(1), 82–93.

    Article  PubMed  CAS  Google Scholar 

  • Vaz, A. R., Silva, S. L., Barateiro, A., Fernandes, A., Falcão, A. S., Brito, M. A., et al. (2011b). Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Experimental Neurology, 229(2), 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Verma, G., & Datta, M. (2012). The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. Journal of Cellular Physiology, 227(5), 1791–1795.

    Article  PubMed  CAS  Google Scholar 

  • Waldbaum, S., & Patel, M. (2010). Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Research, 88(1), 23–45.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., & Kaufman, R. J. (2006). From acute ER stress to physiological roles of the unfolded protein response. Cell Death and Differentiation, 13(3), 374–384.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the strategic project PEst-OE/SAU/UI4013/2011 and PTDC/SAU-NEU/64385/2006 grants from Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal (to D. B.). A. B. was recipient of a PhD fellowship (SFRH/BD/43885/2008) from FCT. The funding organization had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Brites.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12017_2012_8187_MOESM1_ESM.tiff

Inhibition of caspases, calpains and oxidative stress prevented unconjugated bilirubin (UCB)-induced oligodendrocyte precursor cell (OPC) death. Rat cortical OPC were exposed to 50 μM UCB in the presence of 100 μM human serum albumin and to specific inhibitors for caspases (Z-VAD-FMK, 1 μM), calpains (calpeptin, 25 μM) or oxidative stress (N-acetylcysteine – NAC, 100 μM). a Caspase-9, caspase-2 and caspase-3 activities with or without Z-VAD-FMK incubation were determined by colorimetric substrate cleavage assay as indicated in Materials and Methods at 4, 8 and 24 h, respectively. Graph bars represent the fold change from vehicle (mean ± SEM), from at least three independent experiments. b Reactive oxygen species (ROS) were determined at 6 h by fluorescence assay with dihydrorhodamine 123 as described in Materials and Methods after incubation in the presence or absence of NAC. Representative images of one experiment and graph bars with fold change from vehicle (mean ± SEM) for ROS production from at least three independent experiments are shown. c Calpain activity was determined at 4 h of incubation using a specific fluorogenic substrate as indicated in Materials and Methods after treatment with or without calpeptin. Representative images of one experiment and graph bars with fold change from vehicle (mean ± SEM) for calpain activation from at least three independent experiments are shown. **P < 0.01 vs. respective vehicle; ## P < 0.01 vs. respective UCB. (TIFF 9060 kb)

12017_2012_8187_MOESM2_ESM.tiff

Unconjugated bilirubin (UCB) induces an increase in ATF-6 and IRE-1α, chaperones usually involved in endoplasmic reticulum stress, in oligodendrocyte precursor cells (OPC). Rat cortical OPC were exposed to 50 μM UCB in the presence of 100 μM human serum albumin for the indicated time periods. a Representative results of ATF-6 and IRE-1α protein expression by Western blot using specific antibodies are shown. b Graph bars represent the fold increase from vehicle (mean ± SEM) obtained for protein band intensity by scanning densitometry standardized with respect to β-actin protein for ATF-6 and IRE-1α, determined as indicated in Materials and Methods, from at least four independent experiments. **P < 0.01 and *P < 0.05 vs. respective vehicle. (TIFF 2855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barateiro, A., Vaz, A.R., Silva, S.L. et al. ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin. Neuromol Med 14, 285–302 (2012). https://doi.org/10.1007/s12017-012-8187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8187-9

Keywords

Navigation