Skip to main content
Log in

Assessment of Glioma Risk Associated with an Inherited Variant at Chromosome 11q23

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It is still unclear whether or not rs498872 at 11q23.3 increases the risk of developing glioma, because the previous literature has reported mixed findings. We carried out a meta-analysis with an aim to test the hypothesis that rs498872 contributes to the development of glioma. Eligible studies were identified through databases including the Chinese biomedical literature database, China national knowledge infrastructure, Science Direct, Embase and PubMed. The risk of glioma (OR and 95 % CI) was evaluated with the fixed-effects model or the random-effects model. Sensitivity analysis and publication bias tests were performed to check the reliability of our findings. Ten independent populations representing three ethnicities were analyzed in this study. We found 1.17–1.34-fold increased risk of glioma associated with rs498872 genotypes (OR 1.34, 95 % CI 1.22–1.46; OR 1.24, 95 % CI 1.14–1.35; OR 1.20, 95 % CI 1.10–1.31; OR 1.17, 95 % CI 1.08–1.27). In the stratified analysis by ethnicity, we also observed a significant increase in the risk of glioma in both Americans and Europeans. The results of our study support that the rs498872 polymorphism at 11q23.3 locus may be an important risk factor for glioma risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bondy, M. L., et al. (2008). Brain tumor epidemiology: Consensus from the Brain Tumor Epidemiology Consortium. Cancer, 113(7 Suppl), 1953–1968.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Siegel, R., et al. (2011). Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: A Cancer Journal for Clinicians, 61(4), 212–236.

    Google Scholar 

  3. Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.

    Google Scholar 

  4. Preston-Martin, S., Chakrabarti, M. R., & Nervous system, I. (2006). Nervous system. In D. Schottenfeld & J. F. Fraumeni Jr (Eds.), Cancer epidemiology and prevention (pp. 1173–1195). New York: Oxford University Press.

    Chapter  Google Scholar 

  5. Wrensch, M., et al. (1997). Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. American Journal of Epidemiology, 145(7), 581–593.

    Article  CAS  PubMed  Google Scholar 

  6. Malmer, B., Henriksson, R., & Gronberg, H. (2003). Familial brain tumours-genetics or environment? A nationwide cohort study of cancer risk in spouses and first-degree relatives of brain tumour patients. International Journal of Cancer, 106(2), 260–263.

    Article  CAS  Google Scholar 

  7. Hill, D. A., et al. (2003). Cancer in first-degree relatives and risk of glioma in adults. Cancer Epidemiology, Biomarkers and Prevention, 12(12), 1443–1448.

    PubMed  Google Scholar 

  8. Scheurer, M. E., et al. (2007). Aggregation of cancer in first-degree relatives of patients with glioma. Cancer Epidemiology, Biomarkers and Prevention, 16(11), 2491–2495.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wrensch, M., et al. (2009). Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nature Genetics, 41(8), 905–908.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Andersson, U., et al. (2010). A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncologica, 49(6), 767–775.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartzbaum, J. A., et al. (2007). An international case–control study of glutathione transferase and functionally related polymorphisms and risk of primary adult brain tumors. Cancer Epidemiology, Biomarkers and Prevention, 16(3), 559–565.

    Article  CAS  PubMed  Google Scholar 

  12. Sanson, M., et al. (2011). Chromosome 7p11.2 (EGFR) variation influences glioma risk. Human Molecular Genetics, 20(14), 2897–2904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Stacey, S. N., et al. (2011). A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nature Genetics, 43(11), 1098–1103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yang, T. H., et al. (2011). Combinations of newly confirmed glioma-associated loci link regions on chromosomes 1 and 9 to increased disease risk. BMC Medical Genomics, 4, 63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Egan, K. M., et al. (2011). Cancer susceptibility variants and the risk of adult glioma in a US case-control study. Journal of Neuro-oncology, 104(2), 535–542.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Shete, S., et al. (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nature Genetics, 41(8), 899–904.

    Article  CAS  PubMed  Google Scholar 

  17. Safaeian, M., et al. (2013). Joint effects between five identified risk variants, allergy, and autoimmune conditions on glioma risk. Cancer Causes and Control, 24(10), 1885–1891.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang, S. S., et al. (2011). Joint associations between genetic variants and reproductive factors in glioma risk among women. American Journal of Epidemiology, 174(8), 901–908.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zintzaras, E., & Ioannidis, J. P. (2005). Heterogeneity testing in meta-analysis of genome searches. Genetic Epidemiology, 28(2), 123–137.

    Article  PubMed  Google Scholar 

  20. Higgins, J. P., et al. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.

    Article  PubMed Central  PubMed  Google Scholar 

  21. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  22. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    CAS  PubMed  Google Scholar 

  23. Macaskill, P., Walter, S. D., & Irwig, L. (2001). A comparison of methods to detect publication bias in meta-analysis. Statistics in Medicine, 20(4), 641–654.

    Article  CAS  PubMed  Google Scholar 

  24. Zintzaras, E., & Lau, J. (2008). Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. Journal of Clinical Epidemiology, 61(7), 634–645.

    Article  PubMed  Google Scholar 

  25. Rice, T., et al. (2013). Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology. Neuro-Oncology, 15(5), 535–541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Di Stefano, A. L., et al. (2013). Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro-Oncology, 15(5), 542–547.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chen, H., et al. (2011). Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. American Journal of Epidemiology, 173(8), 915–922.

    Article  PubMed  Google Scholar 

  28. Rutherford, S., et al. (2007). A chromosome 11q quantitative-trait locus influences change of blood-pressure measurements over time in Mexican Americans of the San Antonio Family Heart Study. American Journal of Human Genetics, 81(4), 744–755.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Guo, C., et al. (1999). Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene, 18(35), 4948–4957.

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins, R. B., et al. (2011). Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. Cancer Genetics, 204(1), 13–18.

    Article  PubMed Central  PubMed  Google Scholar 

  31. NBSC, China’s Health Statistics Yearbook (2009). [in Chinese]. Peking, China: Peking Union Medical College Press. (http://www.moh.gov.cn/publicfiles/business/htmlfiles/zwgkzt/ptjnj/year2009/t-9.htm). (Accessed May 24, 2010) p. 254.

  32. Verzat, C., et al. (1990). Influence of host sex on the growth of a human glioblastoma line in athymic mice. Neuropathology and Applied Neurobiology, 16(2), 141–151.

    Article  CAS  PubMed  Google Scholar 

  33. Plunkett, R. J., et al. (1999). Hormonal effects on glioblastoma multiforme in the nude rat model. Journal of Neurosurgery, 90(6), 1072–1077.

    Article  CAS  PubMed  Google Scholar 

  34. Ohgaki, H., & Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathologica, 109(1), 93–108.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y., Guo, X. et al. Assessment of Glioma Risk Associated with an Inherited Variant at Chromosome 11q23. Cell Biochem Biophys 71, 69–75 (2015). https://doi.org/10.1007/s12013-014-0164-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0164-5

Keywords

Navigation